
SASD Name:
Winter Term 2018
Exam 1 Immatriculation Number:
25.01.2019
Time Limit: 90 Minutes

This exam contains 9 pages (including this cover page) and 5 questions. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your immatriculation
number on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.

• Write all your answers on these sheets!

• Write legible - illegible answers are considered
wrong.

• If you need more space, use the back of the pages;
clearly indicate when you have done this.

Do not write in the table to the right.

Question Points Score

1 10

2 10

3 10

4 10

5 4

Total: 44

SASD Exam 1 - Page 2 of 9 25.01.2019

1. (10 points) Low Level

0 247

(a) (4 points) Name the 9 sections of a typical x86-64 user-space application on a recent Linux
in the above figure.

(b) (1 point) Which sections are writable?

(c) (1 point) Which sections are executable?

(d) (1 point) Which sections are both writable and executable?

(e) (3 points) In which section does the following snippet occur most likely?

14c0: ff 35 72 79 20 00 pushq 0x207972(%rip)
14c6: ff 25 74 79 20 00 jmpq *0x207974(%rip)
14cc: 0f 1f 40 00 nopl 0x0(%rax)

SASD Exam 1 - Page 3 of 9 25.01.2019

2. (10 points) Memory Corruption
int main(int argc , char * argv []) {
if (argc != 2) r et ur n -1;

char * password = argv [1];
u n s i g n e d char password_length = strlen (password);

if (password_length >= 5 && password_length < 12) {
if (strncmp (password + 12, "SASD", 4) == 0) {

system ("/bin/bash");
}

} else {
puts("Wrong password length \n");

}
re t ur n 0;

}

(a) (2 points) Describe all memory safety violations which you find in the program.

(b) (4 points) Give a sample input which opens a shell and explain what it does.

(c) (2 points) Why is the length check circumventable?

(d) (2 points) How can you fix the program?

SASD Exam 1 - Page 4 of 9 25.01.2019

3. (10 points) Defensive Programming
Let’s assume we use a buggy password manager. It has all kinds of flaws, including use-after-free
bugs, format string vulnerabilities, and potential buffer overflows on the stack.
(a) (2 points) Briefly explain the advantages that sandboxing provides in this scenario.

(b) (2 points) What are the limitations of sandboxing in this scenario?

(c) (3 points) Can the attacker still mount an attack? If so, describe which attack and how
it is mounted.

(d) (3 points) Briefly describe an attack which is perfectly mitigated by using virtualization
or full system emulation but not mitigated by using a sandbox.

SASD Exam 1 - Page 5 of 9 25.01.2019

4. (10 points) Exploits
You control the stack of a vulnerable program, which uses no libc and has non-executable
buffers. Given is a part of the memory contents. Construct a ROP chain on the stack frame
by filling in values/addresses.
Your ROP chain should add the line “u:x:1002:1002:,,,:/home/u:/bin/sh” to the file
“/etc/passwd” when the current function returns.

Hints:

• A syscall return value is in RAX.

• The file mode is ignored (can be 0).

• The flag for write and append
(O RDWR | O APPEND) is 1026.

• You do not have to close the file.

ASM Hex
pop RAX; ret 58 C3

pop RBX; ret 5B C3

pop RCX; ret 59 C3

pop RDX; ret 5A C3

pop RSI; ret 5E C3

pop RDI; ret 5F C3

xchg RAX, RDI; ret 97 C3

inc RAX; ret 48 FF C0 C3

xor RAX, RAX; ret 48 31 C0 C3

syscall; ret 0F 05 C3

Gadget Cheat Sheet

Saved RBP
buffer[n-1]

...

buffer[0]

 buffer

Current Stack Frame
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123 4567 89 AB CDEF

01745000 54 0c 9e 30 a5 20 9b 36 93 a5 5f bb d8 55 5a b9 |T ..0|. .6|.. _.|. UZ .|
01745010 c9 33 2f 5c 31 59 c3 a6 4b 05 0f 05 c3 c9 b7 ba |.3/\|1 Y..|K ...|....|
01745020 91 0f 61 cf f9 e3 ee ee d7 15 61 f4 b8 d3 97 c3 |..a .|....|.. a .|....|
01745030 f0 6d be e1 42 17 5a c3 a4 ea 2f 65 74 63 2f 70 |.m..|B.Z .|../ e|tc/p|
01745040 61 73 73 77 64 00 a8 37 ab 6c 56 00 f0 ea 58 c3 |assw|d ..7|. lV .|..X.|
01745050 13 e6 f4 ec 5b c3 61 a8 b9 78 e9 0c b4 3f 80 d9 |....|[. a.|.x ..|.?..|
01745060 d7 43 83 ba c4 5e c3 dd dd 0f d7 f1 d5 b6 de b6 |.C ..|.ˆ..|....|....|
01745070 26 cb 6d 75 3a 78 3a 31 30 30 32 3a 31 30 30 32 |&. mu |:x :1|002:|1002|
01745080 3a 2c 2c 2c 3a 2f 68 6f 6d 65 2f 75 3a 2f 62 69 |: , , ,|:/ ho|me/u|:/ bi|
01745090 6e 2f 73 68 00 d6 08 8f df 04 d4 e7 99 5f c3 e6 |n/sh |....|....|. _..|

Memory Dump from 0x01745000 to 0x0174509f

SASD Exam 1 - Page 6 of 9 25.01.2019

5. (4 points) (Bonus) Lecture Challenges
To get points for the lecture challenges, you have to provide your lecture challenge username
and answer a short question for every lecture challenge you have solved.

Lecture challenge username:

(a) (0.5 points) Challenge #1 (minielf)
With which tool did you create the ELF binary?

(b) (0.5 points) Challenge #2 (quadfloat)
How many bits does a IEEE 754 quadruple-precision binary floating-point number have?

(c) (0.5 points) Challenge #3 (format)
What was the limitation in the format string attack?

(d) (0.5 points) Challenge #4 (needle)
Which git command did you use to solve the challenge?

(e) (0.5 points) Challenge #5 (mystery)
What was the target architecture of the mysterious binary?

(f) (0.5 points) Challenge #6 (shellcode)
Which helper tool(s) did you use to write the shellcode?

(g) (0.5 points) Challenge #7 (secwrap)
Which function is used to apply all the seccomp rules?

(h) (0.5 points) Challenge #8 (aslr)
Name one compiler flag which has an effect on ASLR.

SASD Exam 1 - Page 7 of 9 25.01.2019

Appendix: ASCII Table

Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec Char
0x00 0 NULL (null) 0x20 32 space 0x40 64 @ 0x60 96 ‘

0x01 1 SOH (start of heading) 0x21 33 ! 0x41 65 A 0x61 97 a

0x02 2 STX (start of text) 0x22 34 " 0x42 66 B 0x62 98 b

0x03 3 ETX (end of text) 0x23 35 # 0x43 67 C 0x63 99 c

0x04 4 EOT (end of transmission) 0x24 36 $ 0x44 68 D 0x64 100 d

0x05 5 ENQ (enquiry) 0x25 37 % 0x45 69 E 0x65 101 e

0x06 6 ACK (acknowledge) 0x26 38 & 0x46 70 F 0x66 102 f

0x07 7 BELL (bell) 0x27 39 ’ 0x47 71 G 0x67 103 g

0x08 8 BS (backspace) 0x28 40 (0x48 72 H 0x68 104 h

0x09 9 TAB (horizontal tab) 0x29 41) 0x49 73 I 0x69 105 i

0x0a 10 LF (new line) 0x2a 42 * 0x4a 74 J 0x6a 106 j

0x0b 11 VT (vertical tab) 0x2b 43 + 0x4b 75 K 0x6b 107 k

0x0c 12 FF (form feed) 0x2c 44 , 0x4c 76 L 0x6c 108 l

0x0d 13 CR (carriage return) 0x2d 45 - 0x4d 77 M 0x6d 109 m

0x0e 14 SO (shift out) 0x2e 46 . 0x4e 78 N 0x6e 110 n

0x0f 15 SI (shift in) 0x2f 47 / 0x4f 79 O 0x6f 111 o

0x10 16 DLE (data link escape) 0x30 48 0 0x50 80 P 0x70 112 p

0x11 17 DC1 (device control 1) 0x31 49 1 0x51 81 Q 0x71 113 q

0x12 18 DC2 (device control 2) 0x32 50 2 0x52 82 R 0x72 114 r

0x13 19 DC3 (device control 3) 0x33 51 3 0x53 83 S 0x73 115 s

0x14 20 DC4 (device control 4) 0x34 52 4 0x54 84 T 0x74 116 t

0x15 21 NAK (negative ack) 0x35 53 5 0x55 85 U 0x75 117 u

0x16 22 SYN (synchronous idle) 0x36 54 6 0x56 86 V 0x76 118 v

0x17 23 ETB (end transmission) 0x37 55 7 0x57 87 W 0x77 119 w

0x18 24 CAN (cancel) 0x38 56 8 0x58 88 X 0x78 120 x

0x19 25 EM (end of medium) 0x39 57 9 0x59 89 Y 0x79 121 y

0x1a 26 SUB (substitute) 0x3a 58 : 0x5a 90 Z 0x7a 122 z

0x1b 27 FSC (escape) 0x3b 59 ; 0x5b 91 [0x7b 123 {

0x1c 28 FS (file separator) 0x3c 60 < 0x5c 92 \ 0x7c 124 |

0x1d 29 GS (group separator) 0x3d 61 = 0x5d 93] 0x7d 125 }

0x1e 30 RS (record separator) 0x3e 62 > 0x5e 94 ˆ 0x7e 126 ˜

0x1f 31 US (unit separator) 0x3f 63 ? 0x5f 95 0x7f 127 DEL

SASD Exam 1 - Page 8 of 9 25.01.2019

Appendix: C Function Reference

This appendix provides a short summary of C library functions used in the code snippets. The descrip-
tions are taken from “The C Library Reference Guide” by Eric Huss.

strcpy: char *strcpy(char *str1, const char *str2)
Copies the string pointed to by str2 to str1. Copies up to and including the null character of str2.
If str1 and str2 overlap the behavior is undefined. Returns the argument str1.

strncpy: char *strncpy(char *str1, const char *str2, size t n)
Copies up to n characters from the string pointed to by str2 to str1. Copying stops when n
characters are copied or the terminating null character in str2 is reached. If the null character
is reached, the null characters are continually copied to str1 until n characters have been copied.
Returns the argument str1.

malloc: void *malloc(size t size)
Allocates the requested memory and returns a pointer to it. The requested size is size bytes. The
value of the space is indeterminate. On success a pointer to the requested space is returned. On
failure a null pointer is returned.

realloc: void *realloc(void *ptr, size t size)
Attempts to resize the memory block pointed to by ptr that was previously allocated with a call
to malloc or calloc. The contents pointed to by ptr are unchanged. If the value of size is greater
than the previous size of the block, then the additional bytes have an undeterminate value. If the
value of size is less than the previous size of the block, then the difference of bytes at the end of
the block are freed. On success a pointer to the memory block is returned (which may be in a
different location as before). On failure or if size is zero, a null pointer is returned.

gets: char *gets(char *str)
Reads a line from stdin and stores it into the string pointed to by str. It stops when either the
newline character is read or when the end-of-file is reached, whichever comes first. The newline
character is not copied to the string. A null character is appended to the end of the string. On
success a pointer to the string is returned. On error a null pointer is returned. If the end-of-file
occurs before any characters have been read, the string remains unchanged.

system: int system(const char *string)
The command specified by string is passed to the host environment to be executed by the command
processor. A null pointer can be used to inquire whether or not the command processor exists. If
string is a null pointer and the command processor exists, then zero is returned. All other return
values are implementation-defined.

getenv: char *getenv(const char *name)
Searches for the environment string pointed to by name and returns the associated value to the
string. This returned value should not be written to. If the string is found, then a pointer to the
string’s associated value is returned. If the string is not found, then a null pointer is returned.

execv: int execv(const char *path, char *const argv[])
Replaces the current process image with a new process image specified in path. The execv()
function provide an array of pointers (argv) to null-terminated strings that represent the argument
list available to the new program. The first argument should point to the filename associated with
the file being executed. The array of pointers must be terminated by a null pointer.

SASD Exam 1 - Page 9 of 9 25.01.2019

Appendix: 32-bit Linux Syscall List

Nr. Name EAX EBX ECX EDX ESI EDI
1 sys exit 0x01 int exit code - - - -

2 sys fork 0x02 - - - - -

3 sys read 0x03 unsigned int fd char *buf size t count - -

4 sys write 0x04 unsigned int fd const char *buf size t count - -

5 sys open 0x05 const char *filename int flags int mode - -

6 sys close 0x06 unsigned int fd - - - -

7 sys waitpid 0x07 pid t pid int *stat addr int options - -

8 sys creat 0x08 const char *pathname int mode - - -

9 sys link 0x09 const char *oldname const char *newname - - -

10 sys unlink 0x0a const char *pathname - - - -

11 sys execve 0x0b const char *filename const char **argv const char **envp - -

12 sys chdir 0x0c const char *filename - - - -

13 sys time 0x0d time t *tloc - - - -

14 sys mknod 0x0e const char *filename int mode unsigned dev - -

15 sys chmod 0x0f const char *filename mode t mode - - -

16 sys lchown16 0x10 const char *filename old uid t user old gid t group - -

19 sys lseek 0x13 unsigned int fd off t offset unsigned int origin - -

20 sys getpid 0x14 - - - - -

26 sys ptrace 0x1a long request long pid long addr long data -

37 sys kill 0x25 int pid int sig - - -

88 sys reboot 0x58 int magic1 int magic2 unsigned int cmd void *arg -

125 sys mprotect 0x7d unsigned long start size t len unsigned long prot - -

Appendix: 64-bit Linux Syscall List

Nr. Name RAX RDI RSI RDX R10 R8
0 sys read 0x00 unsigned int fd char *buf size t count - -

1 sys write 0x01 unsigned int fd const char *buf size t count - -

2 sys open 0x02 const char *filename int flags int mode - -

3 sys close 0x03 unsigned int fd - - - -

10 sys mprotect 0x0a unsigned long start size t len unsigned long prot - -

59 sys execve 0x3b const char *filename const char **argv const char **envp - -

60 sys exit 0x3c int exit code - - - -

