
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Modern Public Key Cryptography
Provable Security in Symmetric Cryptography

Daniel Kales

May 25, 2022

www.iaik.tugraz.at

Outline

µ¤ Provable Security in Symmetric Cryptography

 Hashing

 The Sponge Construction

ü Security of the Sponge

1 / 22

Provable Security in Symmetric Cryptography
µ¤

Provable Security

For all previous topics

Assumptions of hard problems
Reduction of security of scheme to hardness of problem

Is there something similar in the symmetric world?

hard problems↔ symmetric primitives
cryptographic schemes↔modes of operation
reduce the security of higher-level construction to security of primitive!

2 / 22

Provable Security

For all previous topics

Assumptions of hard problems
Reduction of security of scheme to hardness of problem

Is there something similar in the symmetric world?

hard problems↔ symmetric primitives
cryptographic schemes↔modes of operation
reduce the security of higher-level construction to security of primitive!

2 / 22

Ideal Primitives

Idea: replace concrete building blocks with ideal variants

Ideal block cipher (Ideal cipher model)

Ideal hash function (RO model)

Prove protocol secure if primitive is replaced by ideal variant.

3 / 22

Algorithmic Description of an Ideal Cipher

Ideal Cipher

Internally keep a table T, storing key-plaintext-ciphertext tuples.
On Query (K, P):

1. Check if (K, P, ∗) already in table T. If yes, return corresponding C.

2. If not, generate a random C.

3. Check if (K, ∗, C) already in T. If yes, go to (2).

4. Add (K, P, C) to T and return C.

Decryption similar.

4 / 22

Problems with the Ideal Cipher model

Some theoretical problems with RO and IC models

existence of (contrived) constructions that are secure in the IC model, but are
insecure when instantiated with any cipher

Concrete problems:

Ideal ciphers: select one of 2n! possible permutations at random

Real ciphers: key selects one of 2k possible permutations

Often more reasonable to assume other properties of building blocks.

5 / 22

Pseudorandom Generator

Pseudorandom Generator (PRG)

A function G : {0, 1}n 7→ {0, 1}m, withm≫ n is a pseudorandom generator if:

G is efficient

for all PPT adversariesA:

|Pr[x←R {0, 1}n,A(G(x)) = 1]− Pr[r←R {0, 1}m,A(r) = 1]| ≤ ϵ(n).

Last bullet: Indistinguishability from truly random output. (Equivalent definition: No
PPT algorithm can predict the next output bit with non-negligible advantage given
previous output.)

6 / 22

Pseudorandom Function

Pseudorandom Function (PRF)

A function F : {0, 1}k × {0, 1}n 7→ {0, 1}m is a pseudorandom function if:

for any K ∈ {0, 1}k, F is efficient

for all PPT adversariesA:∣∣∣Pr[K←R {0, 1}k,AFK(1n) = 1]− Pr[fn←R Fn,m,Afn(1n) = 1]
∣∣∣ ≤ ϵ(k).

Last bullet: Indistinguishability from truly random function (drawn from setFn,m of all
possible functions with input domain {0, 1}n and output domain {0, 1}m)

7 / 22

Building PRFs from PRGs

Suppose we have a secure PRG G : {0, 1}n 7→ {0, 1}2n. How can we construct a PRF
from this?

1-bit input PRF F from PRG G

Define F : {0, 1}k × {0, 1} 7→ {0, 1}n as

F(k, x) =

{
G(k)[0]||G(k)[1]|| ... ||G(k)[n− 1], if x = 0,
G(k)[n]||G(k)[n+ 1]|| ... ||G(k)[2n− 1], if x = 1;

i.e., call G on k, and return either the first or the second half of the output based on
the input bit x.

How to extend to bigger inputs? (Hint: Tree)

8 / 22

Building PRFs from PRGs

Suppose we have a secure PRG G : {0, 1}n 7→ {0, 1}2n. How can we construct a PRF
from this?

1-bit input PRF F from PRG G

Define F : {0, 1}k × {0, 1} 7→ {0, 1}n as

F(k, x) =

{
G(k)[0]||G(k)[1]|| ... ||G(k)[n− 1], if x = 0,
G(k)[n]||G(k)[n+ 1]|| ... ||G(k)[2n− 1], if x = 1;

i.e., call G on k, and return either the first or the second half of the output based on
the input bit x.

How to extend to bigger inputs? (Hint: Tree)

8 / 22

Building PRFs from PRGs

Suppose we have a secure PRG G : {0, 1}n 7→ {0, 1}2n. How can we construct a PRF
from this?

1-bit input PRF F from PRG G

Define F : {0, 1}k × {0, 1} 7→ {0, 1}n as

F(k, x) =

{
G(k)[0]||G(k)[1]|| ... ||G(k)[n− 1], if x = 0,
G(k)[n]||G(k)[n+ 1]|| ... ||G(k)[2n− 1], if x = 1;

i.e., call G on k, and return either the first or the second half of the output based on
the input bit x.

How to extend to bigger inputs? (Hint: Tree)

8 / 22

Pseudorandom Permutations

Pseudorandom Permutation (PRP)

A function F : {0, 1}k × {0, 1}n 7→ {0, 1}n is a pseudorandom permutation if:

for any K ∈ {0, 1}k, F is a bijection

for any K ∈ {0, 1}k, F, and F−1 are efficient

for all PPT adversariesA:∣∣∣Pr[K←R {0, 1}k,AFK(1n) = 1]− Pr[fn←R Pn,Afn(1n) = 1]
∣∣∣ ≤ ϵ(k).

Last bullet: Indistinguishability from truly random permutation (drawn from setPn of
all possible permutations with domain {0, 1}n)

9 / 22

The PRF/PRP Switching Lemma

Blockciphers are assumed to behave like pseudorandom permutations. However, in
some proofs, it is easier to analyze the security by assuming the use of a PRF instead.

The PRF/PRP Switching Lemma [1]

Let n > 1 be an integer and q the number of queries an adversaryAmakes to
oracles. Then

|Pr[π←R Pn,Aπ(1n) = 1]− Pr[ρ←R Fn,n,Aρ(1n) = 1]| ≤ q(q− 1)
2n+1 .

This switch introduces a loss that is quadratic in the number of oracle queries. Very
simple game-based proof!

10 / 22

Hashing

History and Present

Merkle-Damgård (MD) Construction

Popular construction to build hash functions with unlimited input domain

used to build MD-5, SHA-1, SHA-2, . . .

Requires a compression function f

pad(M) = M1 M2 M3 M4

fh0 = IV f
h1

f
h2

f
h3

· · ·

11 / 22

How to build a Compression Function

Building a compression function y = f(x1, x2) from scratch is non-trivial

Required properties:

Easy to compute y given x1, x2

(Second) pre-image resistance: given y (and x1, x2, so that y = f(x1, x2)), it
should be hard to find x∗1 , x∗2 so that y = f(x∗1 , x∗2) (and (x1, x2) ̸= (x∗1 , x∗2))
Collision resistance: it should be hard to find (x1, x2), (x∗1 , x∗2) so that
f(x1, x2) = f(x∗1 , x∗2)

Common strategy: Build from existing primitives

12 / 22

The Davies-Meyer Construction

Popular construction to build compression function from a block cipher

Requires a block cipher Ek

Secure in the ideal cipher model!

Ehi−1 hi

mi

13 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

Security of Davies-Meyer in the IC model

Lemma (Security of Davies-Meyer [4])

In the IC model, given anm-bit value H, finding any pair (X,K), so that EK(X)⊕ X = H
takes expected time 2m−1.

Proof. To obtain a valid answer, the adversary must find a triple (X, Y ,K) such that
Y = EK(X) and X ⊕ Y = H. Therefore, he must query either EK(X) = Y or DK(Y) = X.
Suppose one has called the box unsuccessfully j times with
EK1(X1) = Y1, ... , EKj(Xj) = Yj. Due to the nature of the ideal cipher, any value not
queried is uniformly distributed over all other possible Y values. For any K, X, only one
of these responses can yield in success, so the probability of success at step j is
bounded by 1/(2m − j). The probability of failure after j steps is given by
(1− 1/(2m − 1)) · (1− 1/(2m − 2)) · · · (1− 1/(2m − j− 1)) ≥ 1− j/2m).Thus, the
expected running time until success is at least 2m−1 steps.

14 / 22

The Sponge Construction

Absorb and Squeeze

The Sponge Construction

A modern approach to build hash functions based on an unkeyed permutation.

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

15 / 22

The Sponge Construction (cont.)

Very flexible design

Provable security if f is a random permutation

Security against collision and pre-image attacks only based on the size of the
capacity c and the output

Used (and popularized) by SHA-3 winner Keccak.

Permutation design with large security margin (only 4 out of 24 rounds attackable)

Framework extended to many other use cases (e.g., authenticated encryption)

16 / 22

Security of the Sponge
ü

Indistinguishability and Indifferentiability

Inner Collisions in Sponges

State collision: absorb(A) = absorb(B), A ̸= B

Inner state collision: âbsorb(A) = âbsorb(B), A ̸= B

Inner State: only concerning the capacity part of the state

Uniform output in the absence of inner collisions [3]

Let f be a random permutation and pad a sponge-compliant padding rule. The bits
of the outputs returned by Sponge[f , pad, r] to a sequence of queries are uniformly
and independently distributed if no inner collisions occur during the queries.

17 / 22

The Indistinguishability Game

F S[F] ROcalls

A
An adversaryA is given either access to a random oracle, or an oracle using a sponge
construction S, which internally calls the permutation oracle F. His task is to
distinguish between the two cases.
Proof idea: Based on previous theorem, distinguishing S[F] andRO only possible if
inner collisions occur. Advantage bounded by inner collision probability.

18 / 22

The Indistinguishability Game

F S[F] ROcalls

A
An adversaryA is given either access to a random oracle, or an oracle using a sponge
construction S, which internally calls the permutation oracle F. His task is to
distinguish between the two cases.
Proof idea: Based on previous theorem, distinguishing S[F] andRO only possible if
inner collisions occur. Advantage bounded by inner collision probability.

18 / 22

Problems with Indistinguishability

Think about an instantiation of a sponge-based construction (e.g., Keccak).
Knowledge of used f is public! Security assumptions are no longer satisfied, sinceA
has access to oracleF .

F S[F] ROcalls

A

19 / 22

Problems with Indistinguishability

Think about an instantiation of a sponge-based construction (e.g., Keccak).
Knowledge of used f is public! Security assumptions are no longer satisfied, sinceA
has access to oracleF .

F S[F] ROcalls

A

19 / 22

Extending to Indifferentiability

F S[F] RO P[RO]calls calls

A
Extending the setting to giveA access to both parts of the system. The right side is
extended with a simulator Pwho simulates the permutation and can call the random
oracle for consistency.

20 / 22

Indifferentiability of Sponges

In [2], the authors give a concrete simulatorP for the generic padded sponge
construction, providing an argument for its security against generic attacks.
The concrete proof and simulator use an argument based on graph representations
and result in an advantage of

AdvAIndiff. ≤
(1− 2−r)N2 + (1 + 2−r)N

2c+1 .

This is the reason the size of the capacity part is the dominating factor for the security
of sponge constructions.

21 / 22

Further Reading I

[1] Mihir Bellare and Phillip Rogaway.

Code-based game-playing proofs and the security of triple encryption.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

On the indifferentiability of the sponge construction.

In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[3] Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles.

Cryptographic sponge functions, 2011.

[4] R. S. Winternitz.

A secure one-way hash function built from des.

In 1984 IEEE Symposium on Security and Privacy, pages 88–88, 1984.

22 / 22

	Provable Security in Symmetric Cryptography
	
	Hashing
	
	The Sponge Construction
	
	Security of the Sponge
	

