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Literature

The slides are based on the following sources

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

A Decade of Lattice Cryptography, Chris Peikert

Talk: The Short Integer Solutions Problem and Cryptographic Applications by
Daniele Micciancio (Lattice Workshop Berkeley)
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Hardness Proof of SIS



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Recall

SIS problem: Finding a short element in the kernel of Ajtai’s function fA(z) ∶= Az.

Solution exists if β2,m ≥ n log q.

SIS problem ≡ SVPγ .

Solving average-case SIS problem is at least as hard as solving worst-case SIVPγ .

Ajtai’s function is collision resistant.

SIS admits minicrypt primitives (usable, but ine�icient)

3 / 20



Short Integer Solution (SIS)

Definition (SIS, Ajtai’s function)

Givenm uniformly random vectors ai ∈ Znq, forming the columns of a matrix
A ∈ Zn×mq , find a nonzero integer vector z ∈ Zm of norm ∥z∥ ≤ β such that

Az = 0 ∈ Znq.

fA(z) ∶= Az mod q is called Ajtai’s function, i.e., we are interested in short vectors of
the kernel of fA.

We can look at the SIS problem as a short vector problem on so-called q-ary
m-dimensional lattices.

L
�
(A) ∶= {z ∈ Zm ∶ Az = 0 ∈ Znq} ⊃ qZ

m.

Solving the SIS problems can be accomplished by finding a su�iciently short nonzero
vector inL�(A), where A is chosen uniformly at random.
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Hardness of SIS

Theorem

For anym = poly(n), any β > 0, and any su�iciently large q ≥ β ⋅ poly(n), solving
SISn,q,β,m with non-negligible probability is at least as hard as solving SIVPγ on
arbitrary n-dimensional lattices with overwhelming probability, for some
γ = β ⋅ poly(n).

Proof.

Whiteboard.

5 / 20



Hardness of SIS

Theorem

For anym = poly(n), any β > 0, and any su�iciently large q ≥ β ⋅ poly(n), solving
SISn,q,β,m with non-negligible probability is at least as hard as solving SIVPγ on
arbitrary n-dimensional lattices with overwhelming probability, for some
γ = β ⋅ poly(n).

Proof.

Whiteboard.

5 / 20



Ring-SIS



Preleminaries

R = Z[X]/(Xn − 1), i.e., elements of R can be represented by integer polynomials of
degree less than n, e.g.,

R = Z[X]/(X4 − 1), every f(X) ∈ R can be written as

f(X) = α3X3 + α2X2 + α1X + α0 with αi ∈ Z.

Rq ∶= R/qR = Zq[X]/(Xn − 1).

R11 = Z11[X]/(X4 − 1), every f(X) ∈ R11 can be written as
f(X) = α3X3 + α2X2 + α1X + α0 with αi ∈ Z11.

Endow Rwith a norm ∥ ⋅ ∥ (more details later).
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Ring-SIS

Definition (Ring-SIS)

Givenm uniformly random elements ai ∈ Rq, defining a vector a ∈ Rmq , find O ≠ z ∈ Rm
of norm ∥z∥ ≤ β s.t.

aT ⋅ z = 0 ∈ Rq.

E�iciency:

Guarantee of existence of solution:m ≈ log q
What does this imply for our last example? (Key size, Runtime)

Using FFT-like techniques one can compute ai ⋅ zi in quasi-linear time.
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R-SIS versus SIS

In R-SIS each random element a ∈ Rq corresponds to n related vectors in ai ∈ Znq in SIS:

X i ∈ R←ÐÐ→ ei+1 ∈ Zn

X3 + 2X + 1 ∈ Z[X]/(X4 − 1)←ÐÐ→ (1,0,2,1) ∈ Z4

Multiplication by a ∈ Rq is aZ-linear function from R to Rq

⇒ circular matrix Aa ∈ Zn×nq .

This yields the correspondence between a R-SIS instance a = (a1, . . . ,am) ∈ Rmq and
the (structured) SIS instance

A = [Aa1 ∣ ⋯ ∣ Aam] ∈ Z
n×nm
q .
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Geometry of Rings

What is a short vector in R?

Coe�icient embedding: σ ∶ Z[X]→ Zn depends on the choice of representatives of
R. (useful for developing intuition)

Canonical embedding: σ ∶ Z[X]→ Cn independent of representatives of R. (used
in security proofs)

Let f(X) ∶= X3 + 2X + 1 ∈ Z[X]/(X4 − 1), then

∥f(X)∥ ∶=

XXXXXXXXXXXXXXXXXX

1
0
2
1

XXXXXXXXXXXXXXXXXX

=
√
6.
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Ideal Lattices

Let R be a ring. A subring I ⊂ R is called an ideal in R if

∀r ∈ R∀a ∈ I ∶ ar ∈ I.

An ideal lattice is a lattice corresponding to an ideal in R under some embedding.

Ideals of R are closed under multiplication by X. Corresponds to rotation by one
coordinate in the coe�icient embedding, i.e.,

(1,2,3,4) ∈ L⇒ (4,1,2,3) ∈ L.
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Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to
convert one short vector in n lin. ind. vectors of the same length.

Again reduction to worst-case problems

SVP appears to be very hard on ideal lattices, but ideal lattices have not been
investigated as much as arbitrary lattices from a computational view.

11 / 20



Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to
convert one short vector in n lin. ind. vectors of the same length.

Again reduction to worst-case problems

SVP appears to be very hard on ideal lattices, but ideal lattices have not been
investigated as much as arbitrary lattices from a computational view.

11 / 20



Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to
convert one short vector in n lin. ind. vectors of the same length.

Again reduction to worst-case problems

SVP appears to be very hard on ideal lattices, but ideal lattices have not been
investigated as much as arbitrary lattices from a computational view.

11 / 20



Collision Resistance

It depends on the ring R...

If R = Z[X]/(Xn − 1) is not collision resistant⇒ homogeneous R-SIS is easy. (R is not
an integral domain)

If R = Z[X]/(Xn + 1) for power-of-two n, then fa is collision resistant, assuming that
SVPγ is hard for ideal lattices in R.
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Summary

Instead of integers the elements in R-SIS are integer polynomials (mod q) of
degree n.

Existence of solution:m doesn’t depend on n (m ≈ log q)
↝ better e�iciency (Key size of order n instead of n2)

R-SIS instance yields several structured SIS instances.

R-SIS reduces to SVPγ on ideal lattices.
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Learning with Errors (LWE)



Learning with Errors (LWE)

Definition (LWE Distribution)

For a vector s ∈ Znq called the secret, the LWE distribution As,χ overZnq ×Zq is
sampled by choosing a ∈ Znq uniformly at random, choosing e← χ, and outputting

(a,b = s ⋅ a + e mod q).

14 / 20



LWE Problems

Definition (Search-LWEn,q,χ,m)

Givenm independent samples (ai,bi) ∈ Znq ×Zq drawn from As,χ for a uniformly
random s ∈ Znq (fixed for all samples), find s.

Definition (Decision-LWEn,q,χ,m)

Givenm independent samples (ai,bi) ∈ Znq ×Zq where every sample is distributed
according to either:

(i) As,χ for a uniformly random s ∈ Znq (fixed for all samples), or

(ii) the uniform distribution,

distinguish which is the case.
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LWE and Lattices

Bounded Distance Decoding Problem (BDDγ): Given a basis B of an n-dimensional
lattice L and a target point t ∈ Rn with the guarantee that dist(t, L) < d = λ1(L)/2γ(n),
find the unique lattice vector v ∈ L such that ∥t − v∥ < d.

Search-LWE can be seen as BDD problem in the lattice

L(A) ∶= {x ∈ Zm ∶ ∃s ∈ Zn, x = As mod q} = AZnq + qZ
m,

with target point t = b and dist(b, L) = ∥s∥ ≈
√
m ⋅

√
Var(As,χ).
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Hardness of LWE

Theorem ([Reg05])

For anym = poly(n), any modulus q ≤ 2poly(n), and any (discretized) Gaussian
distribution χ of parameter αq ≥ 2

√
nwhere 0 < α < 1, solving the

decision-LWEn,q,χ,m problem is at least as hard as quantumly solving SIVPγ on
arbitrary n-dimensional lattices, for some γ = O(n/α).

Proof.

Whiteboard. For a classical reduction see [Pei09].

Decision-LWE reduces to SIVPγ on arbitrary n-dimension lattices.
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Ring LWE

Definition (Ring-LWE distribution)

For an s ∈ Rq called the secret, the ring-LWE distribution As,χ over Rq × Rq is sampled
by choosing a ∈ Rq uniformly at random, choosing e← χ, and outputting

(a,b = s ⋅ a + e mod q).

Connection to LWE:
Given a R-LWE sample (a,b = s ⋅ a + e) ∈ Rq × Rq, we can transform it to n LWE samples

(Aa,bt = stAa + et) ∈ Zn×nq ×Znq,

where Aa correspondence to multiplication by a.
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What you should know...

Proof sketch of SIS hardness

Ring-SIS (relation to SIS, e�iciency, hardness)

LWE (definition, hardness)
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Further Reading I

[Pei09] Chris Peikert.

Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract.

In STOC, pages 333–342. ACM, 2009.

[Reg05] Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography.

In STOC, pages 84–93. ACM, 2005.
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