

Lattice Cryptography

Lukas Helminger

June 08, 2022

> www.iaik.tugraz.at

SCIENCE PASSION TECHNOLOGY

Outline

Hardness Proof of SIS

Ring-SIS

- Definition
- Relation to SIS
- Hardness

Learning with Errors (LWE)

- Learning with Errors (LWE)
- Ring-LWE

Literature

The slides are based on the following sources

- An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill, Silverman, J.H.
- A Decade of Lattice Cryptography, Chris Peikert
- Talk: The Short Integer Solutions Problem and Cryptographic Applications by
 Daniele Micciancio (Lattice Workshop Berkeley)

Hardness Proof of SIS

SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.

- SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.

- SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.
- SIS problem \equiv SVP $_{\gamma}$.

- SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.
- SIS problem \equiv SVP $_{\gamma}$.
- Solving average-case SIS problem is at least as hard as solving worst-case SIVP $_{\gamma}$.

- SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.
- SIS problem \equiv SVP $_{\gamma}$.
- Solving average-case SIS problem is at least as hard as solving worst-case SIVP $_{\gamma}$.
- Ajtai's function is collision resistant.

- SIS problem: Finding a short element in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.
- SIS problem \equiv SVP $_{\gamma}$.
- Solving average-case SIS problem is at least as hard as solving worst-case SIVP_γ.
- Ajtai's function is collision resistant.
- SIS admits minicrypt primitives (usable, but inefficient)

Short Integer Solution (SIS)

Definition (SIS, Ajtai's function)

Given *m* uniformly random vectors $a_i \in \mathbb{Z}_q^n$, forming the columns of a matrix $A \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that

$$Az = 0 \in \mathbb{Z}_q^n.$$

 $f_A(z) := Az \mod q$ is called Ajtai's function, i.e., we are interested in short vectors of the kernel of f_A .

Short Integer Solution (SIS)

Definition (SIS, Ajtai's function)

Given *m* uniformly random vectors $a_i \in \mathbb{Z}_q^n$, forming the columns of a matrix $A \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that

$$Az = 0 \in \mathbb{Z}_q^n.$$

 $f_A(z) := Az \mod q$ is called Ajtai's function, i.e., we are interested in short vectors of the kernel of f_A .

We can look at the SIS problem as a short vector problem on so-called q-ary *m*-dimensional lattices.

$$\mathcal{L}^{\perp}(A) := \{ z \in \mathbb{Z}^m : Az = 0 \in \mathbb{Z}_q^n \} \supset q\mathbb{Z}^m.$$

Solving the SIS problems can be accomplished by finding a sufficiently short nonzero vector in $\mathcal{L}^{\perp}(A)$, where A is chosen uniformly at random.

Hardness of SIS

Theorem

For any m = poly(n), any $\beta > 0$, and any sufficiently large $q \ge \beta \cdot poly(n)$, solving $SIS_{n,q,\beta,m}$ with non-negligible probability is at least as hard as solving $SIVP_{\gamma}$ on arbitrary *n*-dimensional lattices with overwhelming probability, for some $\gamma = \beta \cdot poly(n)$.

Hardness of SIS

Theorem

For any m = poly(n), any $\beta > 0$, and any sufficiently large $q \ge \beta \cdot poly(n)$, solving $SIS_{n,q,\beta,m}$ with non-negligible probability is at least as hard as solving $SIVP_{\gamma}$ on arbitrary *n*-dimensional lattices with overwhelming probability, for some $\gamma = \beta \cdot poly(n)$.

Proof.

Whiteboard.

Preleminaries

• $R = \mathbb{Z}[X]/(X^n - 1)$, i.e., elements of *R* can be represented by integer polynomials of degree less than *n*, e.g.,

$$R = \mathbb{Z}[X]/(X^4 - 1), \text{ every } f(X) \in R \text{ can be written as}$$
$$f(X) = \alpha_3 X^3 + \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ with } \alpha_i \in \mathbb{Z}.$$

Preleminaries

• $R = \mathbb{Z}[X]/(X^n - 1)$, i.e., elements of *R* can be represented by integer polynomials of degree less than *n*, e.g.,

$$R = \mathbb{Z}[X]/(X^4 - 1), \text{ every } f(X) \in R \text{ can be written as}$$
$$f(X) = \alpha_3 X^3 + \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ with } \alpha_i \in \mathbb{Z}.$$

•
$$R_q \coloneqq R/qR = \mathbb{Z}_q[X]/(X^n-1).$$

 $R_{11} = \mathbb{Z}_{11}[X]/(X^4 - 1), \text{ every } f(X) \in R_{11} \text{ can be written as}$ $f(X) = \alpha_3 X^3 + \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ with } \alpha_i \in \mathbb{Z}_{11}.$

Preleminaries

• $R = \mathbb{Z}[X]/(X^n - 1)$, i.e., elements of *R* can be represented by integer polynomials of degree less than *n*, e.g.,

$$R = \mathbb{Z}[X]/(X^4 - 1), \text{ every } f(X) \in R \text{ can be written as}$$
$$f(X) = \alpha_3 X^3 + \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ with } \alpha_i \in \mathbb{Z}.$$

•
$$R_q := R/qR = \mathbb{Z}_q[X]/(X^n - 1).$$

 $R_{11} = \mathbb{Z}_{11}[X]/(X^4 - 1), \text{ every } f(X) \in R_{11} \text{ can be written as}$ $f(X) = \alpha_3 X^3 + \alpha_2 X^2 + \alpha_1 X + \alpha_0 \text{ with } \alpha_i \in \mathbb{Z}_{11}.$

• Endow *R* with a norm $\|\cdot\|$ (more details later).

Definition (Ring-SIS)

Given *m* uniformly random elements $a_i \in R_q$, defining a vector $\mathbf{a} \in R_q^m$, find $O \neq \mathbf{z} \in R^m$ of norm $\|\mathbf{z}\| \leq \beta$ s.t.

$$\mathbf{a}^{\mathsf{T}} \cdot \mathbf{z} = \mathbf{0} \in R_q.$$

Definition (Ring-SIS)

Given *m* uniformly random elements $a_i \in R_q$, defining a vector $\mathbf{a} \in R_q^m$, find $O \neq \mathbf{z} \in R^m$ of norm $\|\mathbf{z}\| \leq \beta$ s.t.

$$\mathbf{a}^{\mathsf{T}} \cdot \mathbf{z} = \mathbf{0} \in R_q$$

Efficiency:

Guarantee of existence of solution: *m* ≈ log *q* What does this imply for our last example? (Key size, Runtime)

Definition (Ring-SIS)

Given *m* uniformly random elements $a_i \in R_q$, defining a vector $\mathbf{a} \in R_q^m$, find $O \neq \mathbf{z} \in R^m$ of norm $\|\mathbf{z}\| \leq \beta$ s.t.

$$\mathbf{a}^{\mathsf{T}} \cdot \mathbf{z} = \mathbf{0} \in R_q$$

Efficiency:

- Guarantee of existence of solution: *m* ≈ log *q* What does this imply for our last example? (Key size, Runtime)
- Using FFT-like techniques one can compute $a_i \cdot z_i$ in quasi-linear time.

In R-SIS each random element $a \in R_q$ corresponds to *n* related vectors in $a_i \in \mathbb{Z}_q^n$ in SIS:

In R-SIS each random element $a \in R_q$ corresponds to *n* related vectors in $a_i \in \mathbb{Z}_q^n$ in SIS:

$$\begin{aligned} X^i \in R \longleftrightarrow e_{i+1} \in \mathbb{Z}^n \\ X^3 + 2X + 1 \in \mathbb{Z}[X]/(X^4 - 1) \longleftrightarrow (1, 0, 2, 1) \in \mathbb{Z}^4 \end{aligned}$$

In R-SIS each random element $a \in R_q$ corresponds to *n* related vectors in $a_i \in \mathbb{Z}_q^n$ in SIS:

$$X^i \in R \longleftrightarrow e_{i+1} \in \mathbb{Z}^n$$

 $X^3 + 2X + 1 \in \mathbb{Z}[X]/(X^4 - 1) \longleftrightarrow (1, 0, 2, 1) \in \mathbb{Z}^4$

Multiplication by $a \in R_q$ is a \mathbb{Z} -linear function from R to R_q

 \Rightarrow circular matrix $A_a \in \mathbb{Z}_q^{n \times n}$.

In R-SIS each random element $a \in R_q$ corresponds to *n* related vectors in $a_i \in \mathbb{Z}_q^n$ in SIS:

$$X^i \in R \longleftrightarrow e_{i+1} \in \mathbb{Z}^n$$

 $X^3 + 2X + 1 \in \mathbb{Z}[X]/(X^4 - 1) \longleftrightarrow (1, 0, 2, 1) \in \mathbb{Z}^4$

Multiplication by $a \in R_q$ is a \mathbb{Z} -linear function from R to R_q

 \Rightarrow circular matrix $A_a \in \mathbb{Z}_q^{n \times n}$.

This yields the correspondence between a R-SIS instance $\mathbf{a} = (a_1, \dots, a_m) \in R_q^m$ and the (structured) SIS instance

$$A = [A_{a_1} \mid \cdots \mid A_{a_m}] \in \mathbb{Z}_q^{n \times nm}.$$

Geometry of Rings

What is a short vector in R?

• Coefficient embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{Z}^n$ depends on the choice of representatives of *R*. (useful for developing intuition)

Geometry of Rings

What is a short vector in R?

- Coefficient embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{Z}^n$ depends on the choice of representatives of R. (useful for developing intuition)
- Canonical embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{C}^n$ independent of representatives of *R*. (used in security proofs)

Geometry of Rings

What is a short vector in R?

- Coefficient embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{Z}^n$ depends on the choice of representatives of R. (useful for developing intuition)
- Canonical embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{C}^n$ independent of representatives of *R*. (used in security proofs)

Let $f(X) := X^3 + 2X + 1 \in \mathbb{Z}[X]/(X^4 - 1)$, then

$$\|f(X)\| := \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix} = \sqrt{6}.$$

Ideal Lattices

Let *R* be a ring. A subring $I \subset R$ is called an ideal in *R* if

 $\forall r \in R \forall a \in I : ar \in I.$

Ideal Lattices

Let *R* be a ring. A subring $I \subset R$ is called an ideal in *R* if

 $\forall r \in R \forall a \in I : ar \in I.$

An ideal lattice is a lattice corresponding to an ideal in *R* under some embedding.

Ideal Lattices

Let *R* be a ring. A subring $I \subset R$ is called an ideal in *R* if

```
\forall r \in R \forall a \in I : ar \in I.
```

An ideal lattice is a lattice corresponding to an ideal in *R* under some embedding.

Ideals of *R* are closed under multiplication by *X*. Corresponds to rotation by one coordinate in the coefficient embedding, i.e.,

 $(1,2,3,4)\in L \Rightarrow (4,1,2,3)\in L.$

Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

• SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to convert one short vector in *n* lin. ind. vectors of the same length.

Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

- SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to convert one short vector in *n* lin. ind. vectors of the same length.
- Again reduction to worst-case problems

Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

- SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to convert one short vector in *n* lin. ind. vectors of the same length.
- Again reduction to worst-case problems
- SVP appears to be very hard on ideal lattices, but ideal lattices have not been investigated as much as arbitrary lattices from a computational view.

Collision Resistance

It depends on the ring R...

• If $R = \mathbb{Z}[X]/(X^n - 1)$ is not collision resistant \Rightarrow homogeneous R-SIS is easy. (*R* is not an integral domain)

Collision Resistance

It depends on the ring R...

- If $R = \mathbb{Z}[X]/(X^n 1)$ is not collision resistant \Rightarrow homogeneous R-SIS is easy. (*R* is not an integral domain)
- If $R = \mathbb{Z}[X]/(X^n + 1)$ for power-of-two *n*, then f_a is collision resistant, assuming that SVP_{γ} is hard for ideal lattices in *R*.

- Instead of integers the elements in R-SIS are integer polynomials (mod q) of degree n.
- Existence of solution: *m* doesn't depend on *n* (*m* ≈ log *q*)
 → better efficiency (Key size of order *n* instead of *n*²)

- Instead of integers the elements in R-SIS are integer polynomials (mod q) of degree n.
- Existence of solution: *m* doesn't depend on *n* (*m* ≈ log *q*)
 → better efficiency (Key size of order *n* instead of *n*²)

- Instead of integers the elements in R-SIS are integer polynomials (mod q) of degree n.
- Existence of solution: *m* doesn't depend on *n* ($m \approx \log q$) \rightarrow better efficiency (Key size of order *n* instead of n^2)
- R-SIS instance yields several structured SIS instances.

- Instead of integers the elements in R-SIS are integer polynomials (mod q) of degree n.
- Existence of solution: *m* doesn't depend on *n* ($m \approx \log q$) \rightarrow better efficiency (Key size of order *n* instead of n^2)
- R-SIS instance yields several structured SIS instances.
- R-SIS reduces to SVP_{γ} on ideal lattices.

Learning with Errors (LWE)

Learning with Errors (LWE)

Definition (LWE Distribution)

For a vector $s \in \mathbb{Z}_q^n$ called the secret, the LWE distribution $A_{s,\chi}$ over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ is sampled by choosing $a \in \mathbb{Z}_q^n$ uniformly at random, choosing $e \leftarrow \chi$, and outputting

 $(a, b = s \cdot a + e \mod q).$

LWE Problems

Definition (Search-LWE_{n,q,χ,m})

Given *m* independent samples $(a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ drawn from $A_{s,\chi}$ for a uniformly random $s \in \mathbb{Z}_q^n$ (fixed for all samples), find *s*.

LWE Problems

Definition (Search-LWE_{n,q,χ,m})

Given *m* independent samples $(a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ drawn from $A_{s,\chi}$ for a uniformly random $s \in \mathbb{Z}_q^n$ (fixed for all samples), find *s*.

Definition (Decision-LWE_{n,q,χ,m})

Given *m* independent samples $(a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ where every sample is distributed according to either:

- (i) $A_{s,\chi}$ for a uniformly random $s \in \mathbb{Z}_q^n$ (fixed for all samples), or
- (iii) the uniform distribution,

distinguish which is the case.

LWE and Lattices

Bounded Distance Decoding Problem (BDD_{γ}): Given a basis *B* of an *n*-dimensional lattice *L* and a target point $t \in \mathbb{R}^n$ with the guarantee that dist $(t, L) < d = \lambda_1(L)/2\gamma(n)$, find the unique lattice vector $v \in L$ such that ||t - v|| < d.

LWE and Lattices

Bounded Distance Decoding Problem (BDD_{γ}): Given a basis *B* of an *n*-dimensional lattice *L* and a target point $t \in \mathbb{R}^n$ with the guarantee that dist $(t, L) < d = \lambda_1(L)/2\gamma(n)$, find the unique lattice vector $v \in L$ such that ||t - v|| < d.

Search-LWE can be seen as BDD problem in the lattice

 $\mathcal{L}(A) := \{ x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \mod q \} = A\mathbb{Z}_q^n + q\mathbb{Z}^m,$

with target point t = b and dist $(b, L) = ||s|| \approx \sqrt{m} \cdot \sqrt{\operatorname{Var}(A_{s,\chi})}$.

Hardness of LWE

Theorem ([Reg05])

For any m = poly(n), any modulus $q \le 2^{poly(n)}$, and any (discretized) Gaussian distribution χ of parameter $\alpha q \ge 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision-LWE_{*n*,*q*, χ ,*m*} problem is at least as hard as quantumly solving SIVP_{γ} on arbitrary *n*-dimensional lattices, for some $\gamma = O(n/\alpha)$.

Hardness of LWE

Theorem ([Reg05])

For any m = poly(n), any modulus $q \le 2^{poly(n)}$, and any (discretized) Gaussian distribution χ of parameter $\alpha q \ge 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision-LWE_{*n*,*q*, χ ,*m*} problem is at least as hard as quantumly solving SIVP_{γ} on arbitrary *n*-dimensional lattices, for some $\gamma = O(n/\alpha)$.

Proof.

Whiteboard. For a classical reduction see [Pei09].

Hardness of LWE

Theorem ([Reg05])

For any m = poly(n), any modulus $q \le 2^{poly(n)}$, and any (discretized) Gaussian distribution χ of parameter $\alpha q \ge 2\sqrt{n}$ where $0 < \alpha < 1$, solving the decision-LWE_{*n*,*q*, χ ,*m*} problem is at least as hard as quantumly solving SIVP_{γ} on arbitrary *n*-dimensional lattices, for some $\gamma = O(n/\alpha)$.

Proof.

Whiteboard. For a classical reduction see [Pei09].

Decision-LWE reduces to SIVP $_{\gamma}$ on arbitrary *n*-dimension lattices.

Ring LWE

Definition (Ring-LWE distribution)

For an $s \in R_q$ called the secret, the ring-LWE distribution $A_{s,\chi}$ over $R_q \times R_q$ is sampled by choosing $a \in R_q$ uniformly at random, choosing $e \leftarrow \chi$, and outputting

 $(a, b = s \cdot a + e \mod q).$

Ring LWE

Definition (Ring-LWE distribution)

For an $s \in R_q$ called the secret, the ring-LWE distribution $A_{s,\chi}$ over $R_q \times R_q$ is sampled by choosing $a \in R_q$ uniformly at random, choosing $e \leftarrow \chi$, and outputting

 $(a, b = s \cdot a + e \mod q).$

Connection to LWE:

Given a R-LWE sample $(a, b = s \cdot a + e) \in R_q \times R_q$, we can transform it to *n* LWE samples

$$(A_a, b^t = s^t A_a + e^t) \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n,$$

where A_a correspondence to multiplication by a.

What you should know...

Proof sketch of SIS hardness

What you should know...

- Proof sketch of SIS hardness
- Ring-SIS (relation to SIS, efficiency, hardness)

What you should know...

- Proof sketch of SIS hardness
- Ring-SIS (relation to SIS, efficiency, hardness)
- LWE (definition, hardness)

Further Reading I

[Pei09] Chris Peikert.

Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.

In STOC, pages 333–342. ACM, 2009.

[Reg05] Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography.

In *STOC*, pages 84–93. ACM, 2005.