

Outline

Sequences of Games

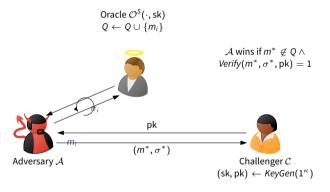
Hybrid Encryption

Game-based Security

- Models security as game between an adversary $\mathcal A$ and a challenger $\mathcal C$ (which takes on role of all honest parties)
- Interactions between A and C well-defined
 - Modeled as oracles that A can query
 - lacktriangle e.g. ${\cal A}$ can query oracle for signatures on arbitrary messages
- At the end, A required to output "something" (e.g. a message-signature pair)
 - Winning condition specifies what \mathcal{A} must output to win game (e.g. unqueried, valid message-signature pair)

Game-based Security: Example

Experiment $\mathbf{Exp}_{\Sigma}^{\mathsf{EUF-CMA}}(\cdot)$:



Why another proof technique?

- Reductionist proofs are often very complex
 → hard to verify
- Idea: What if we slowly "converge" to our solution?
 - We start with original game $G = G_0$, (i.e. security definition)
 - modify it in series of small steps $(G_0 \rightarrow G_1 \rightarrow G_2 \rightarrow ...)$
 - until we end up in game G_n , which allows to prove the statement
- For each game hop, we have to justify distribution changes of values visible to A!

Sequences of Games (ctd)

- Let S_i be event that A wins game G_i
 - e.g. outputs signature forgery in game G_i
- We relate $Pr[S_i]$ and $Pr[S_{i+1}]$ for i = 0, ..., n-1
- If $Pr[S_n]$ is (negligibly close to) "target probability" c, then scheme secure
 - Proof gives bound on success probability of A:
 - Bound on $Pr[S_n]$ gives bound on $Pr[S_0]$
 - \Rightarrow If $Pr[S_n]$ negligible, then $Pr[S_0]$ negligible as well!

Game Hopping

Three different ways to justify game change:

- 1. Indistinguishability
 - Computational: If an efficient algorithm can distinguishing G_i from G_{i+1} , then contradiction to underlying hardness assumption.
 - Statistical distance negligible
- 2. Failure Event: G_i and G_{i+1} identical unless some failure event F occurs
 - $Pr[S_{i+1}] = Pr[S_i] \Pr[\neg F]$
 - if Pr[F] negligible $\Rightarrow Pr[S_{i+1}] \approx Pr[S_i]$
 - but *Pr*[*F*] can also be non-negligible
- 3. Bridging: "Equivalent transformation" to prepare next hop (improves readability) $\Rightarrow Pr[S_i] = Pr[S_{i+1}]$

ElGamal Encryption Scheme

ElGamal

```
KeyGen(1<sup>\kappa</sup>): Pick group \mathbb{G} = \langle g \rangle with |\mathbb{G}| = p \approx 2^{\kappa} prime, pick x \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_p and output (sk, pk) \leftarrow (x, X = g^x)
```

Enc(m, pk): Let $m \in \mathbb{G}$, pick $y \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ and output $(c_1, c_2) \leftarrow (g^y, m \cdot X^y)$

Dec(c, sk): Let $c = (c_1, c_2)$, compute and output $m \leftarrow c_2/c_1^x$

Sequence of Games Proof of RSA-FDH: Outline

- We will prove RSA-FDH secure using a game series, using
 - bridging steps, and
 - failure events
- Basically, same as before but slower and better readable

Sequence of Games Proof of RSA-FDH: G₀

Game G_0 (original EUF-CMA game)

$$(\mathsf{sk},\mathsf{pk}) = ((N,d),(N,e)) \leftarrow \mathit{KeyGen}(1^\kappa)$$
 $(m_0,b) \leftarrow \mathcal{A}(\emptyset,\mathsf{pk})$
 $h_0 \stackrel{\scriptscriptstyle{\mathcal{R}}}{\leftarrow} \mathbb{Z}_N^*$
 $\sigma_i \leftarrow h_i^d \mod N$
 $\mathsf{return}\,(m^*,\sigma^*) \leftarrow \mathcal{A}(m_0,h_0,\sigma_0),\mathsf{pk})$

Let S_0 be event that $m^* \neq m_0$ and $\sigma^e = H(m)$.

Sequence of Games Proof of RSA-FDH: G₀

Game G₀ (original EUF-CMA game)

$$(\mathsf{sk}, \mathsf{pk}) = ((N, d), (N, e)) \leftarrow \textit{KeyGen}(\mathbf{1}^{\kappa})$$

$$\mathsf{for} \ i = 1, ..., q \ \mathsf{do}$$

$$(m_i, b) \leftarrow \mathcal{A}((m_j, h_j, \sigma_j)_{j=1}^{i-1}, \mathsf{pk})$$

$$h_i \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_N^*$$

$$\sigma_i \leftarrow h_i^d \mod N$$

$$\mathsf{return} \ (m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk})$$

Let S_0 be event that $m^* \neq m_i$ for i = 1, ..., q and $Verify(m^*, \sigma^*, pk) = 1$ in G_0

Sequence of Games Proof of RSA-FDH: G₁

Now, we change game to work without access to sk.

```
Game G<sub>1</sub>
  (\cdot,\mathsf{pk}) = (\cdot,(N,e)) \leftarrow \mathsf{KeyGen}(1^{\kappa})
  for i = 1, \dots, a do
           (m_i, b) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^{i-1}, \mathsf{pk})
          r_i \leftarrow^R \mathbb{Z}_N^*
          h_i \leftarrow r_i^e \mod N
           \sigma_i \leftarrow r_i
   return (m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk})
```

From A's view G_0 and G_1 identical (bridging step): $Pr[S_0] = Pr[S_1]$

Sequence of Games Proof of RSA-FDH: G2

Include RSA instance (N, e, c) with some probability 1 - p

Game G_2 (simplified: sim. + game combined)

```
pk \leftarrow (N, e), L \leftarrow \emptyset
for i = 1, \dots, q do
          (m_i, b) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^{i-1}, \mathsf{pk})
          r_i \stackrel{R}{\leftarrow} \mathbb{Z}_N^*
       h_i \leftarrow \begin{cases} r_i^e \mod N & \text{with probability } p \\ c \cdot r_i^e \mod N & \text{with probability } (1-p) \end{cases}
\sigma_i \leftarrow \begin{cases} r_i & \text{if } h_i = r_i^e \mod N \\ \text{abort otherwise} \end{cases}
L[m_i] \leftarrow (h_i, r_i)
(m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, pk), (h^*, r^*) \leftarrow L[m^*]
return (m^*, \sigma^*) if h^* \neq (r^*)^e \mod N, else abort =0
```

Sequence of Games Proof of RSA-FDH: Remarks G₂

Remarks

- L is just a list (not visible to A) to store important values
- Experiment aborts if
 - simulation impossible
 - in such cases, reduction would already have to break RSA problem by itself
 - result of "no value"
 - in this case, result is value that reduction can compute itself

Sequence of Games Proof of RSA-FDH: $G_1 \rightarrow G_2$

Transition $G_1 o G_2$

Let F be failure event that an abort happens in G_2 .

$$Pr[F] = 1 - Pr[Forgery good \land Simulation ok] = 1 - Pr[Forgery good | Simulation ok] \cdot Pr[Simulation ok] = 1 - (1 - p) \cdot p^q$$

Thus, we have $Pr[F] = 1 - (1 - p) \cdot p^q$ and get

$$Pr[S_2] = Pr[\neg F] \cdot Pr[S_1] = (1 - p)p^q \cdot Pr[S_1]$$

Sequence of Games Proof of RSA-FDH: G₃

Here, we assume that no abort will happen

Game G_3 (simplified: sim. + game combined)

$$\begin{aligned} \mathsf{pk} &\leftarrow (N, e), \rho \overset{\mathcal{R}}{\leftarrow} R \\ \mathsf{for} \, i &= 1, \dots, q \, \mathsf{do} \\ & (m_i, b) \leftarrow \mathcal{A}((m_j, h_j, \sigma_j)_{j=1}^{i-1}, \mathsf{pk}; \rho) \\ & r_i \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_N^* \\ & h_i \leftarrow \begin{cases} r_i^e \mod N & \text{with probability } p \\ c \cdot r_i^e \mod N & \text{with probability } (1-p) \\ & \sigma_i \leftarrow r_i \end{cases} \\ \mathsf{return} \, (m^*, c^d \cdot r^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk}; \rho) \end{aligned}$$

We have $Pr[S_2] = Pr[S_3]$ (bridging step) and can compute c^d

Sequence of Games Proof of RSA-FDH: Analysis

Analysis

Now, for S_3 (i.e. A outputs "useful" forgery (m^*, σ^*)) we have as "target probability"

$$Pr[S_3] = Adv_{RSA}^{OW}(\mathcal{R})$$

Combined:

$$\begin{aligned} \mathbf{Adv}_{\mathsf{RSA}}^{\mathsf{OW}}(\mathcal{R}) &= \mathit{Pr}[S_3] = \mathit{Pr}[S_2] = (1-p)p^q \cdot \mathit{Pr}[S_1] = \\ &= (1-p)p^q \cdot \mathit{Pr}[S_0] = (1-p)p^q \cdot \mathbf{Adv}_{\mathsf{RSA-FDH}}^{\mathsf{EUF-CMA}}(\mathcal{A}) \end{aligned}$$

Same result as before

Key Encapsulation Mechanism

Definition (KEM, [KL14])

A key-encapsulation mechanism (KEM) is a tuple of PPT algorithm (KGen, Encaps, Decaps) such that:

- 1. Algorithm KGen takes as input the security parameter 1^n and outputs the key public-/private-key pair (pk, sk).
- 2. Algorithm Encaps takes as input a public key pk and the security parameter 1^n . It outputs a ciphertext c and a key $k \in \{0,1\}^{l(n)}$, where l(n) is the key length.
- 3. Algorithm Decaps takes as input a private key sk and a ciphertext c, and outputs a key k or a special symbol \perp denoting failure.

It is required that with all but negligible probability over (sk, pk) output by $KGen(1^n)$, if $Encaps_{pk}(1^n)$ outputs (c, k), then $Decaps_{sk}(c)$ outputs k.

KEM/DEM Paradigm

Let $\Pi = (KGen, Encaps, Decaps)$ be a KEM with key length n, and let $\Pi' = (KGen', Enc', Dec')$ be a private-key encryption scheme. Construct a public-key encryption scheme $\Pi^{hy} = (KGen^{hy}, Enc^{hy}, Dec^{hy})$ as follows:

$KGen^{hy}(1^n)$	Enc ^{hy} (pk, <i>m</i>)	$\overline{Dec^{hy}(sk,(c,c'))}$
1: return (pk, sk) \leftarrow s KGen(1 ⁿ)	$(c,k) \leftarrow_{\mathfrak{s}} Encaps_{pk}(1^n)$	$(k) \leftarrow_{\$} Decaps_{sk}(c)$
	$c' \leftarrow_{\$} Enc'_k(m)$	$m \leftarrow_{\$} Dec'_k(c')$
	return (c, c')	return m

Efficiency

Fix n.

 α ... cost of encapsulating (Encaps) an n-bit key β ... cost of encryption (Enc') per bit of plaintext Assume |m| > n (why?).

What is the cost per bit of plaintext using Π^{hy} ?

$$etapprox lpha\cdot 10^{-5}, m=10^6$$

Ciphertext Length

Fix n.

L... length of ciphertext output by Encaps Ciphertext Enc'(m) has length n + |m|. Assume |m| > n (why?).

What is the ciphertext length of Π^{hy} ?

Security

Definition

(KEM Game)

- 1. $(pk, sk) \leftarrow KGen(1^n)$. Then $(c, k) \leftarrow Encaps_{pk}(1^n)$, with $k \in \{0, 1\}^n$.
- 2. $b \stackrel{R}{\leftarrow} \{0,1\}$. $\hat{k} = k$ if b = 0, else $\hat{k} \stackrel{R}{\leftarrow} \{0,1\}^n$.
- 3. $b' \leftarrow \mathcal{A}(pk, c, \hat{k})$. Winning game if b = b'.

A KEM is IND-CPA-secure if there exists no adversary that wins with more than 1/2 + negl(n) probability.

Further Reading I

[KL14] Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography, Second Edition.

CRC Press, 2014.

[Sho04] Victor Shoup.

Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology ePrint Archive, 2004:332, 2004.