

SCIENCE PASSION TECHNOLOGY

# Modern Public Key Cryptography

Complexity Theory and Computational Hardness Assumptions

Lukas Helminger

March 2, 2022

> www.iaik.tugraz.at

#### Outline

Motivation

Preliminaries

Basic Complexity Theory

**Computational Hardness Assumptions** 

# Public-Key Cryptography

Provable security idea:

- Breaking encryption (RSA, ECC, ...)
- as hard as solving hard problem (factoring, discrete logarithm)

# Everything is an Algorithm

Encryption scheme:

- $key \leftarrow KeyGeneration(\cdot)$
- $c \leftarrow \text{Encryption}(m)$
- $m \leftarrow \text{Decryption}(c)$

Security Properties & Adversary

**Properties:** 

Correctness

m = Decryption(Encryption(m)).

- *c* = Encryption(*m*) does not leak "any" information.
- unforgeability.

Adversary:

- runtime (poly-time).
- quantum

# Hard problems

No crypto system relies on a proven hard problem.

# Notation I

#### We denote

- **2** as the set of integers  $\{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\mathbb{N}$  as the set of natural numbers  $\{0, 1, 2, ... \}$
- $\mathbb{Z}_N$  as the set of integers modulo N
- $\mathbb{Z}_N^*$  as the set of invertible integers modulo N
- $\mathbb{P}$  as the set of prime numbers

### Notation II

We use  $\mathbb{G}$  to denote a group.

- With  $\mathbb{G} = \langle g 
  angle$ , we denote that g generates  $\mathbb{G}$
- | G | denotes the order of a group
- $\kappa$ ... security parameter (in bits), e.g., RSA:  $\kappa = 80$  bit  $\approx 1024$  bit modulus
- With  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ , we denote the following setup:
  - p is a prime of bitlength  $\kappa$ , and
  - $\mathbb{G} = \langle g \rangle$  is a group with  $|\mathbb{G}| = p$

# **Discrete Probability Distributions**

#### Definition

A discrete probability distribution is a probability distribution that can take on a countable number of values.

Example: uniform distribution

 $x \stackrel{\scriptscriptstyle R}{\leftarrow} X$  denotes x is drawn uniformly at random from X

# Languages and Computational Problems

| Definition                                    | Example                 |
|-----------------------------------------------|-------------------------|
|                                               |                         |
| $\Sigma$ be a finite alphabet                 | $\{0, 1\}$              |
| $\Sigma^*$ is set of all strings of $\Sigma$  | $\{0, 1, 10, 11, 01,\}$ |
| A formal language L is a subset of $\Sigma^*$ | strings of even length  |

- *Decision Problem:* Let  $L \subseteq \Sigma^*$  be a language. On the input of  $x \in \Sigma^*$ , output true if  $x \in L$  and false otherwise.
- Search Problem: Let  $R \subseteq \Sigma^* \times \Sigma^*$  be a relation between inputs and outputs. On the input of  $x \in \Sigma^*$ , output  $y \in \Sigma^*$  such that  $(x, y) \in R$ .

#### Oracle

#### Oracle

An oracle  ${\mathcal O}$  is a black-box that can be used to solve a computational problem in one computational step.

Note: No analysis or modification of internal computations.

Let  $\mathcal{A}$  be an algorithm (TM). We use  $\mathcal{A}^{\mathcal{O}}$  to denote that  $\mathcal{A}$  has access to oracle  $\mathcal{O}$ , e.g.

 $\overline{SAT} \in P^{SAT}$ .

# Probabilistic Polynomial Time (PPT)

A PPT algorithm A can make (polynomial many) random steps upon execution. The output of A is a random variable.

Find(*k*, *a*<sub>1</sub>, ..., *a<sub>n</sub>*):

- Pick  $i \in \{1, ..., n\}$  randomly and set  $x \leftarrow a_i$
- Scan  $a_1, \ldots, a_n$  and count the number *m* of  $a_j$ 's s.t.  $a_j \le x$ .
- If m = k output x.
- If m > k copy all elements  $a_j$  with  $a_j \le x$  in a new array L and run Find<sub>k</sub>(k, L)
- If m < k copy all elements  $a_j$  with  $a_j > x$  in a new array L and run Find<sub>k</sub>(k m, L)

### Reductions



We write  $P_1 \leq P_2$ , i.e.,  $P_2$  is at least as hard as  $P_1$ .

# Algorithms in a Cryptographic Setting



### **Reductionist Security**

Prove security by reduction to specific hard problem:

- Assume an PPT adversary *A* breaking a crypto system
- Show that there is an efficient reduction  $\mathcal{R}$  from the crypto system to the hard problem

Goal: Crypto system is secure as long as factoring is hard.

# **Negligible Functions**

#### Definition

A function  $\epsilon : \mathbb{N} \to \mathbb{R}$  is called negligible, if for every polynomial function  $p : \mathbb{N} \to \mathbb{R}$ , there is an  $n_0 \in \mathbb{N}$  such that

$$\epsilon(n) \leq rac{1}{p(n)} \quad orall \ n \geq n_0.$$

i.e.  $\epsilon$  must be exponentially small  $\forall n \ge n_0$ .

### **Computational Hardness**

Why: Information theoretically secure primitives are rare and often not very practical

Hard? Educated guess (heuristics).

#### Note

Assumptions can be analyzed independently of schemes.

# Discrete Logarithm Assumption

Let  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ .

The discrete logarithm (*DL*) assumption states that forall PPT adversaries A there is a negligible function  $\epsilon(\cdot)$  such that

$$\Pr\left[x \stackrel{\scriptscriptstyle {\mathcal R}}{\leftarrow} \mathbb{Z}_p, \ x^* \leftarrow \mathcal{A}(\mathcal{G}^{\kappa}, g^x) \ : \ x = x^*\right] \le \epsilon(\kappa).$$

### **Commitment Scheme**



m + r = m

Hiding: Cannot learn *m* from Comm(*m*).

Binding: Cannot open Comm(m) to two different messages.

# Example: Commitment<sup>1</sup> under DL

Let  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$  and additionally  $\mathbb{G} = \langle h \rangle$ .

Commitment *C* to message  $m \in \mathbb{Z}_p$ :

- Choose  $r \leftarrow^{\mathbb{R}} \mathbb{Z}_p^*$
- Compute  $C \leftarrow g^m h^r$

Binding:  $\forall \mathsf{PPT} \ \mathcal{A} \exists \mathsf{negl.} \epsilon(\cdot) \mathsf{such that}$ 

$$\Pr\left[\begin{array}{cc} C = g^{m_0} h^{r_0} \wedge \\ (C, m_0, r_0, m_1, r_1) \leftarrow \mathcal{A}(\mathcal{G}^{\kappa}, h) & : & C = g^{m_1} h^{r_1} \wedge \\ & & m_0 \neq m_1 \end{array}\right] \leq \epsilon(\kappa).$$

<sup>&</sup>lt;sup>1</sup>Pedersen Commitment

# Example II

Prove binding by showing that an efficient adversary  $\mathcal{A}^{\text{bind}}$  against binding can be used to construct an efficient adversary against *DL*.



# Computational Diffie-Hellman Assumption

Let  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ .

The computational Diffie-Hellman (*CDH*) assumption states that  $\forall$  PPT  $\mathcal{A} \exists$  negl.  $\epsilon(\cdot)$  such that

$$\Pr\left[x,y \stackrel{\scriptscriptstyle {\scriptscriptstyle R}}{\leftarrow} \mathbb{Z}_p, \ h \leftarrow \mathcal{A}(\mathcal{G}^\kappa,g^x,g^y) \ : \ h = g^{xy}\right] \leq \epsilon(\kappa).$$

### **Decisional Diffie-Hellman Assumption**

Informally: Distinguish  $(g^x, g^y, g^{xy})$  from  $(g^x, g^y, r), r \in_R \mathbb{G}$ .

Let  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ . The decisional Diffie-Hellman (*DDH*) assumption states that  $\forall$  PPT  $\mathcal{A} \exists$  negl.  $\epsilon(\cdot)$  such that

$$\Pr\left[\begin{array}{cc} x, y, z \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p, \ b \stackrel{\mathcal{R}}{\leftarrow} \{0, 1\}, \\ b^* \leftarrow \mathcal{A}(\mathcal{G}^{\kappa}, g^x, g^y, g^{(1-b)\cdot z + b \cdot xy}) : \\ b = b^* \end{array}\right] \leq \frac{1}{2} + \epsilon(\kappa).$$

#### **Relations between Assumptions**

#### Theorem

Fix  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ , then the following holds

 $DDH \leq_P CDH \leq_P DL.$ 

#### Proof: Exercise.

#### **Bilinear Maps I**

Let  $\mathbb{G}_1=\langle g_1
angle$  ,  $\mathbb{G}_2=\langle g_2
angle$  and  $\mathbb{G}_T$  be three groups of prime order p.

A bilinear pairing is a map  $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_7$ , with the following properties:

- Bilinearity:  $e(g_1^a, g_2^b) = e(g_1, g_2)^{ab} = e(g_1^b, g_2^a) \ orall \ a, b \in \mathbb{Z}_p$
- Non-degeneracy:  $e(g_1,g_2) \neq 1_{\mathbb{G}_T}$ , i.e.,  $e(g_1,g_2)$  generates  $\mathbb{G}_T$

# **Digital Signature Scheme**

 $\begin{array}{l} \mathsf{KeyGen}: \ \mathsf{Choose} \ e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}} \ \mathsf{where,} \ |\mathbb{G}|, \ \mathsf{and} \ |\mathbb{G}_{\mathcal{T}}| \ \mathsf{is a prime. Further, } \mathsf{let} \ g \\ & \mathsf{generate} \ \mathbb{G}. \ \mathsf{Choose} \ \mathsf{sk} \leftarrow ^{\mathcal{R}} \mathbb{Z}_p \ \mathsf{and} \ \mathsf{pk} \leftarrow g^{\mathsf{sk}}. \end{array}$ 

Sign(sk, m) : Output a signature  $\sigma \leftarrow m^{sk}$ .

Verify( $pk, m, \sigma$ ) : Check if:

 $e(m, \mathsf{pk}) = e(\sigma, g).$ 

### Example - Bilinear Maps I

Recall: Diffie-Hellman key agreement

•  $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$ 



### Example - Bilinear Maps II

Three party Diffie-Hellman key agreement

•  $\mathcal{BG}^{\kappa} = (e, \mathbb{G}, \mathbb{G}_{T}, p, q)$ 



### **Bilinear Maps - Instantiations**

Efficient instantiations using elliptic curve groups

- Here, G<sub>1</sub> and G<sub>2</sub> are prime order *p* elliptic curve subgroups
  - with point addition as group operation, and
  - $\mathbb{G}_T$  is the multiplicative order *p* subgroup of some extension field.
- Thus, often additive notation used for  $\mathbb{G}_1$  and  $\mathbb{G}_2$ , e.g., for  $P \in \mathbb{G}_1, P' \in \mathbb{G}_2, a, b \in \mathbb{Z}_p$  one would write

$$e(aP, bP') = e(P, P')^{ab} = e(bP, aP')$$

#### **Bilinear Assumptions**

Counterparts of CDH, DDH in the pairing setting.

Let  $\mathcal{BG}_1^{\kappa} = (e, \mathbb{G}_1, \mathbb{G}_7, p, g_1)$ . Then,  $\forall \mathsf{PPT} \ \mathcal{A} \exists \mathsf{negl.} \epsilon(\cdot) \mathsf{such that}$ 

Computational bilinear Diffie-Hellman assumption (CBDH):

$$\mathsf{Pr}\left[x,y,z \stackrel{\scriptscriptstyle{\mathcal{R}}}{\leftarrow} \mathbb{Z}_p, e(g_1,g_1)^{xyz} = \mathcal{A}(\mathcal{BG}_1^\kappa,g_1^x,g_1^y,g_1^z)\right] \leq \epsilon(\kappa).$$

Decisional bilinear Diffie-Hellman assumption (DBDH)

$$\Pr\left[\begin{array}{c}x,y,z,w \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_{p}, b \stackrel{\mathcal{R}}{\leftarrow} \{0,1\},\\b^{*} \leftarrow \mathcal{A}(\mathcal{B}\mathcal{G}_{1}^{\kappa}, g_{1}^{x}, g_{1}^{y}, g_{1}^{z},\\e(g_{1},g_{1})^{(1-b)\cdot w+b\cdot xyz}):\\b=b^{*}\end{array}\right] \leq 1/2 + \epsilon(\kappa).$$

# Assumptions in Hidden-Order Groups

Let p, q be two appropriately chosen primes such that N = pq is of bitlength  $\kappa$ . Then,  $\forall$  PPT  $\mathcal{A} \exists$  negl.  $\epsilon(\cdot)$  such that

Integer factorization assumption:

$$\Pr\left[(p,q) \leftarrow \mathcal{A}(\mathsf{N}) \, : \, \mathsf{N} = p \cdot q
ight] \leq \epsilon(\kappa)$$

RSA assumption: Given e s.t.  $gcd(e, \varphi(N)) = 1$ 

$$\Pr[m \leftarrow \mathcal{A}(e, c, N) : m^e \equiv c \pmod{N}] \leq \epsilon(\kappa)$$

Strong RSA assumption (s-RSA):

$$\Pr[(m,e) \leftarrow \mathcal{A}(c,N) : m^e \equiv c \pmod{N}] \leq \epsilon(\kappa)$$

# **Relations of Hidden-Order Assumptions**

- It is easy to see that if one can factor, both RSA and s-RSA do not hold.
- Open problem: Show whether (s-)RSA is equivalent to factoring.

# What you should know...

- Basic mathematical constructions: groups, generator, probability distribution
- Basic complexity theory: language, oracle, PPT
- High-level idea of reduction
- Discrete logarithm assumption
- Bilinear maps