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Literature

The slides are based on the following sources

An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

A Decade of Lattice Cryptography, Chris Peikert

Talk: The Short Integer Solutions Problem and Cryptographic Applications by
Daniele Micciancio (Lattice Workshop Berkeley)



Hardness Proof of SIS



Recall

= SIS problem: Finding a short element in the kernel of Ajtai’s function f4(2) := Az.
= Solution exists if 3%,m > nlogg.

= SIS problem = SVP,,.

= Solving average-case SIS problem is at least as hard as solving worst-case SIVP,,.
= Ajtai’s function is collision resistant.

= SIS admits minicrypt primitives (usable, but inefficient)
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Short Integer Solution (SIS)

Definition (SIS, Ajtai’s function)

Given m uniformly random vectors g; € ZZ, forming the columns of a matrix
A€ Zg™, find a nonzero integer vector z € Z™ of norm | z|| < 8 such that

Az:OeZZ.

fa(z) := Az mod qis called Ajtai’s function, i.e., we are interested in short vectors of
the kernel of f4.

We can look at the SIS problem as a short vector problem on so-called g-ary
m-dimensional lattices.

LH(A):={zeZ":Az=0¢Zy} > qZ".

Solving the SIS problems can be accomplished by finding a sufficiently short nonzero
vector in £*(A), where Ais chosen uniformly at random.
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Hardness of SIS

Theorem

For any m = poly(n), any 8 > 0, and any sufficiently large g > 3 - poly(n), solving
SIS, g,5,m With non-negligible probability is at least as hard as solving SIVP,, on
arbitrary n-dimensional lattices with overwhelming probability, for some

v = B-poly(n).

Proof.

Whiteboard. [
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Ring-SIS



Preleminaries

R =Z[X]/(X" - 1),i.e., elements of R can be represented by integer polynomials of
degree less than n, e.g.,

R =Z[X]/(X* - 1), every f(X) € R can be written as
f(X) = ()é3X3 + CVZXZ + a1 X + ag with o € Z.
Rq = R/qR = Zg[X]/(X" - 1).

Rq; = le[X]/(X4 - 1), every f(X) € Ry; can be written as

f(X) = a3X3 + aZXZ + alX + Qp W|th Qj € le.

Endow R with a norm | - | (more details later).
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Ring-SIS

Definition (Ring-SIS)

Given m uniformly random elements a; € R,, defining a vectora € Rg’, findO+zeR™
of norm ||z|| < S sit.
a'-z=0¢R,

Efficiency:

Guarantee of existence of solution: m ~ log g
What does this imply for our last example? (Key size, Runtime)

Using FFT-like techniques one can compute g; - z; in quasi-linear time.
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R-SIS versus SIS

In R-SIS each random element a € R, corresponds to n related vectorsin a; € ZZ in SIS:

XeR—>ej €7
X +2XX+1eZ[X]/(X* -1) «—— (1,0,2,1) e Z*
Multiplication by a € Ry is a Z-linear function from R to R,
= circular matrix A, € ZZX”.

This yields the correspondence between a R-SIS instance a = (ay, ..., am) € Ry and
the (structured) SIS instance

A=[Ag || A, ] € Zg"".

8/20



Geometry of Rings

What is a short vector in R?

= Coefficient embedding: o : Z[X] — Z" depends on the choice of representatives of
R. (useful for developing intuition)

= Canonical embedding: o : Z[X] — C" independent of representatives of R. (used
in security proofs)

Let f(X) := X3 +2X + 1 € Z[X]/(X* - 1), then

IF O =

N OB
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Ideal Lattices

Let Rbe aring. Asubring/ c Ris called an ideal in R if

VreRVael:arel.
An ideal lattice is a lattice corresponding to an ideal in R under some embedding.
Ideals of R are closed under multiplication by X. Corresponds to rotation by one

coordinate in the coefficient embedding, i.e.,

(1,2,3,4)eL = (4,1,2,3) € L.
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Hardness of R-SIS

Known hardness proofs for R-SIS relate to problems on ideal lattices.

Hardness:

®=  SVP and SIVP problems are equivalent: Symmetries in ideal lattices allow us to
convert one short vector in n lin. ind. vectors of the same length.

= Again reduction to worst-case problems

= SVP appears to be very hard on ideal lattices, but ideal lattices have not been
investigated as much as arbitrary lattices from a computational view.

11/20



Collision Resistance
It depends on thering R...

= IfR=Z[X]/(X" - 1) isnot collision resistant = homogeneous R-SIS is easy. (Ris not
an integral domain)

= IfR=Z[X]/(X" + 1) for power-of-two n, then f, is collision resistant, assuming that
SVP,, is hard for ideal lattices in R.
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Summary

m  Instead of integers the elements in R-SIS are integer polynomials (mod q) of
degree n.

= Existence of solution: m doesn’t depend on n (m ~ log q)
~ better efficiency (Key size of order n instead of n?)

m  R-SISinstance yields several structured SIS instances.

= R-SISreducesto SVP, onideal lattices.
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Learning with Errors (LWE)



Learning with Errors (LWE)

Definition (LWE Distribution)

For a vector s € Zg called the secret, the LWE distribution A , over Zg x Zg is
sampled by choosing a € Zg uniformly at random, choosing e < x, and outputting

(a,b=s-a+e mod q).
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LWE Problems

Definition (Search-LWE, 4 . m)

Given m independent samples (a;, b;) € Zg x Zq drawn from A , for a uniformly
random s € Zg (fixed for all samples), find s.

Definition (Decision-LWE, g . m)

Given m independent samples (a;, b;) € Zg x Zq where every sample is distributed
according to either:

As x for a uniformly random s € Zg (fixed for all samples), or
@ the uniform distribution,

distinguish which is the case.
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LWE and Lattices

Bounded Distance Decoding Problem (BDD,): Given a basis B of an n-dimensional
lattice L and a target point t € R” with the guarantee that dist(t,L) < d = A1 (L)/2v(n),
find the unique lattice vector v € L such that |t — v| < d.

Search-LWE can be seen as BDD problem in the lattice

L(A)={xeZ":3seZ" x=As mod q} = AZq + qZ",

with target point t = b and dist(b, L) = ||s|| » /m - \/Var(As ).
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Hardness of LWE

Theorem ([Reg05])

For any m = poly(n), any modulus g < 2P°Y(") 'and any (discretized) Gaussian
distribution y of parameter ag > 2/n where 0 < a < 1, solving the
decision-LWE, 4 .m problem is at least as hard as quantumly solving SIVP,, on
arbitrary n-dimensional lattices, for some v = O(n/a).

Proof.

Whiteboard. For a classical reduction see [Pei09]. O

Decision-LWE reduces to SIVP,, on arbitrary n-dimension lattices.
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Ring LWE

Definition (Ring-LWE distribution)

Forans € Ry called the secret, the ring-LWE distribution As , over Ry x Ry is sampled
by choosing a € R, uniformly at random, choosing e < x, and outputting

(a,b=s-a+e mod q).

Connection to LWE:
Given a R-LWE sample (a,b =s-a +e) € Ry x Rq, we can transform it to n LWE samples

(Ag, b' =s'Aq +€') € " x 7,

where A, correspondence to multiplication by a.
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What you should know...
= Proof sketch of SIS hardness

= Ring-SIS (relation to SIS, efficiency, hardness)

= LWE (definition, hardness)
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Further Reading |

[Pei09] Chris Peikert.

Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract.

In STOC, pages 333-342. ACM, 2009.

[Reg05] Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84-93. ACM, 2005.
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