

Lattice Cryptography

Lukas Helminger

> www.iaik.tugraz.at

May 19, 2021

SCIENCE PASSION TECHNOLOGY

Why Lattice-Based Cryptography?

Conjectured security against quantum attacks:

One half of the 2nd round candidates for NIST Post-Quantum Cryptography Standardization are lattice-based (in the category PKE).

Crazy Crypto:

- Fully Homomorphic Encryption
- Attribute-Based Encryption

Outline

Lattices: Definition and Properties

- Fundamental Domain
- Volume
- Computational Problems

Short Integer Solution Problem

- Definition and Properties
- Hardness
- Cryptographic Applications

Literature

The slides are based on the following sources

- An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill, Silverman, J.H.
- A Decade of Lattice Cryptography, Chris Peikert
- Talk: The Short Integer Solutions Problem and Cryptographic Applications by
 Daniele Micciancio (Lattice Workshop Berkeley)

Many graphics are based on graphics from Maria Eichlseder.

Lattices: Definition and Properties

Lattices

Definition (Lattice)

An *n*-dimensional lattice *L* is any subset of \mathbb{R}^n that is both:

- an additive subgroup
- discrete

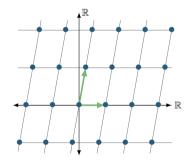
A basis for *L* is any set of independent vectors that generates *L*.

Lattice: Example

In other words, let $v_1, \ldots, v_n \in \mathbb{R}^n$ be a set of linearly independent vectors. The lattice generated by v_1, \ldots, v_n is the set of linear combinations of v_1, \ldots, v_n with coefficients in \mathbb{Z} ,

$$L = \{a_1v_1 + \cdots + a_nv_n : a_1, \ldots, a_n \in \mathbb{Z}\}.$$

Example:

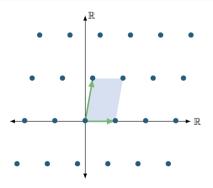


Fundamental Domains

Definition (Fundamental Domain)

Let *L* be a lattice of dimension *n* and let v_1, \ldots, v_n be a basis for *L*. The fundamental domain is the set

$$F = [0, 1)v_1 + \dots + [0, 1)v_n.$$



Volumes

Definition (Volume)

Let *L* be a lattice of dimension *n* and let *F* be a fundamental domain of *L*. Then the *n*-dimensional volume of *F* is called the volume of *L* (or sometimes the determinant of *L*).

Example: Let *L* be generated by the vectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1/4 \\ \sqrt{2} \end{pmatrix}$$

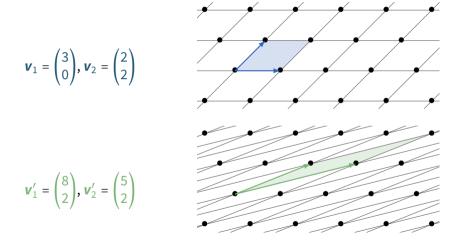
we write $L = \mathcal{L}(v_1, v_2)$. First, compute Gram matrix:

$$G = \begin{pmatrix} 1 & 0 \\ \frac{1}{4} & \sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & \frac{1}{4} \\ 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{4} \\ \frac{1}{4} & \frac{33}{16} \end{pmatrix}$$

Therefore,

$$\operatorname{vol}(L) = \sqrt{\det G} = \sqrt{2}$$

Same Lattice?



Volume: Task

Task: Compute the volumes V resp. V' of the fundamental domains corresponding to $\mathcal{L}(v_1, v_2)$ respectively $\mathcal{L}(v'_1, v'_2)$.

$$G = \begin{pmatrix} 3 & 0 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 2 \end{pmatrix} =$$
$$G' = \begin{pmatrix} 8 & 2 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 2 & 2 \end{pmatrix} =$$

Therefore V =

= V'.

Proposition

Every fundamental domain for a given lattice *L* has the same volume.

Minimum Distance

Definition (Minimum Distance)

The minimum distance of a lattice *L* is the length of a shortest nonzero lattice vector, i.e.,

 $\lambda_1(L) \coloneqq \min_{v \in L \setminus \{0\}} \|v\|.$

More generally, the *i*th minimum $\lambda_i(L)$ is defined as the minimum of $\max_{1 \le j \le i} ||v_j||$ over all *i* linearly independent lattice vectors $v_1, \ldots, v_i \in L$.

Clearly $\lambda_1(L) \leq \cdots \leq \lambda_n(L)$.

$$L = \mathcal{L}\left(\begin{pmatrix} 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right) \Rightarrow \lambda_1(L) = \sqrt{8}$$

Computational Problems

- Shortest Vector Problem (SVP): Find a shortest nonzero vector $v \in L$, i.e. $||v|| = \lambda_1(L)$.
- Approximate Shortest Vector Problem (SVP_{γ}): Let $\gamma \ge 1$ be a approximation factor. Given a basis *B* of an *n*-dimensional lattice *L*, find a nonzero vector $v \in L$ s.t.

$$\|v\| \leq \gamma(n) \cdot \lambda_1(L).$$

Approximate Shortest Independent Vectors Problem (SIVP_γ): Given a basis B of an n-dimensional lattice L, find set {s₁,..., s_n} ⊂ L of n linearly independent vectors s.t.

$$\|s_i\| \leq \gamma(n) \cdot \lambda_n(L)$$
 for all *i*.

Summary

- Lattices are "discrete vector spaces".
- Basis of the same lattice can be quite different (from a computational point of view).
- $\lambda_1(L) =$ length of shortest nonzero lattice vector.
- SVP $_{\gamma}$: Find somewhat short vector.

Short Integer Solution Problem

Short Integer Solution (SIS)

Definition (SIS, Ajtai's function)

Given *m* uniformly random vectors $a_i \in \mathbb{Z}_q^n$, forming the columns of a matrix $A \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that

$$Az = 0 \in \mathbb{Z}_q^n.$$

 $f_A(z) := Az \mod q$ is called Ajtai's function, i.e., we are interested in short vectors of the kernel of f_A .

Example: $q = 10, z \in \{0, 1\}^m$ $\begin{bmatrix}
1 & 4 & 5 & 9 & 3 & 0 & 2 \\
4 & 2 & 8 & 6 & 2 & 4 & 3 \\
7 & 5 & 5 & 4 & 7 & 8 & 0 \\
2 & 7 & 0 & 1 & 4 & 6 & 9
\end{bmatrix} \cdot
\begin{bmatrix}
z_1 \\
z_2 \\
z_3 \\
z_4 \\
z_5 \\
z_6 \\
z_7
\end{bmatrix} =
\begin{bmatrix}
2 \\
2 \\
7 \\
1
\end{bmatrix}$

Observations about SIS problem

- Without constraint on ||z||, it is easy to find solution via Gaussian elimination.
- If $\beta \ge q$, then $z = (q, 0, ..., 0) \in \mathbb{Z}^m$ is a solution.
- If z is a solution for a matrix A then z can be converted to a solution for [A | A'] (appending z with zeros).

$$\begin{bmatrix} 1 & 4 & 5 & 9 & 3 & 0 & 2 \\ 4 & 2 & 8 & 6 & 2 & 4 & 3 \\ 7 & 5 & 5 & 4 & 7 & 8 & 0 \\ 2 & 7 & 0 & 1 & 4 & 6 & 9 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 7 \\ 1 \end{bmatrix}$$

Requirements for a solution to SIS problem

The number of vectors m and the norm β must be large enough. A solution exists if

 $\beta \ge \sqrt{\lceil n \log q \rceil}$ and $m \ge \lceil n \log q \rceil$.

Proof.

w.l.o.g. assume $m = \lceil n \log q \rceil$. Observe that

$$| \{x \in \{0,1\}^m\} |= 2^m \ge 2^{n \log q} = q^n.$$

By the pigeonhole argument there exists $x \neq x' : Ax = Ax' \in \mathbb{Z}_q^n$. $\Rightarrow z := x - x' \in \{0, \pm 1\}^m$ is a solution and

$$||z|| \leq \sqrt{m} = \sqrt{\lceil n \log q \rceil} \leq \beta.$$

Example

 $q = 10, z \in \{0, 1\}^m$

$$\begin{bmatrix} 1 & 4 & 5 & 9 & 3 & 0 & 2 \\ 4 & 2 & 8 & 6 & 2 & 4 & 3 \\ 7 & 5 & 5 & 4 & 7 & 8 & 0 \\ 2 & 7 & 0 & 1 & 4 & 6 & 9 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_7 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 7 \\ 1 \end{bmatrix}$$

•

Are the following conditions satisfied?

$$\beta \ge \sqrt{\lceil n \log q \rceil}$$
 and $m \ge \lceil n \log q \rceil$

 $\sqrt{7} \stackrel{!}{\geq} \sqrt{\left\lceil 4 \log 10 \right\rceil} = \sqrt{14}, \text{ and } 7 \stackrel{!}{\geq} \left\lceil 4 \log 10 \right\rceil = 14.$

Connection to Lattices

We can look at the SIS problem as a short vector problem on so-called q-ary *m*-dimensional lattices.

$$\mathcal{L}^{\perp}(A) := \{ z \in \mathbb{Z}^m : Az = 0 \in \mathbb{Z}_q^n \} \supset q\mathbb{Z}^m.$$

Solving the SIS problems can be accomplished by finding a sufficiently short nonzero vector in $\mathcal{L}^{\perp}(A)$, where A is chosen uniformly at random.

Hardness

Theorem

For any m = poly(n), any $\beta > 0$, and any sufficiently large $q \ge \beta \cdot poly(n)$, solving $SIS_{n,q,\beta,m}$ with non-negligible probability is at least as hard as solving $SIVP_{\gamma}$ on arbitrary *n*-dimensional lattices with overhelming probability, for some $\gamma = \beta \cdot poly(n)$.

- Solving an arbitrary instance of a SIS problem is at least as hard as solving SIVP $_{\gamma}$ in the worst case.
- *m* and *q* play no essential role in the hardness guarantee.
- Approximation factor γ degrades with β .

Collision Resistant Hashing

Already know that $f_A : \{0, 1\}^m \to \mathbb{Z}_q^n$ is compressing provided that $m > n \log q$. The pigeonhole argument from above shows us even more. Assuming hardness of the corresponding SIS problem Ajtai's function

 $f_A: \{0,1\}^m \to \mathbb{Z}_q^n$ is collision resistant.

Proof.

Assume to the contraty that an efficient attacker can find a collision, i.e.,

$$x \neq x' \in \{0, 1\}^m : f_A(x) = f_A(x').$$

Then z := x - x' is a solution for the corresponding SIS problem.

 \Rightarrow *f*_A is a collision resistant hash function.

Commitment Scheme

Choose A_1, A_2 at random.

Commitment *C* to message $m \in \{0, 1\}^m$:

• Choose $r \leftarrow \{0, 1\}^m$

• Compute
$$C \leftarrow f_{[A_1,A_2]}(m,r) = A_1m + A_2r$$

Hiding: *C* hides the message because $A_2 r \approx U(\mathbb{Z}_q^n)$.

Binding: Finding $(m, r) \neq (m', r')$ such that $f_{[A_1, A_2]}(m, r) = f_{[A_1, A_2]}(m', r')$ breaks the collision resistance of $f_{[A_1, A_2]}$.

Linear Homomorphism

Ajtai's function is linear homomorphic in the "message"

 $f_A(x_1 + x_2) = f_A(x_1) + f_A(x_2),$

and the "key"

$$f_{A_1+A_2}(x) = f_{A_1}(x) + f_{A_2}(x)$$

Warning: Domain of f_A is not closed under +.

One-Time Signatures

 f_A can be extend to matrices $X = [x_1, \ldots, x_k]$: $f_A(X) = [f_A(x_1), \ldots, f_A(x_k)] = AX(\mod q)$.

KeyGen : Let $A \in \mathbb{Z}_q^{n \times m}$ be uniformly at random. Choose sk $\leftarrow (X, x) \in \{0, 1\}^{k \times m} \times \{0, 1\}^m$ and pk $\leftarrow (Y = f_A(X), y = f_A(x))$ (image of sk under f_A).

Sign $(sk, m \in \{0, 1\}^k)$: On input of a secret key sk and a message *m*, output a signature Xm + x.

Verify(pk, m, σ): On input of a public key pk, a message m and a signature σ , return 1 if the following holds and 0 otherwise:

 $f_A(\sigma) = Ym + y.$

Efficiency of Ajtai's function

Fix $n = 2^6$, and $q = 2^8$. How should you choose *m* if we aim for a efficient compression function $f_A : \{0, 1\}^m \to \mathbb{Z}_q^n$? (Recall: $\beta \ge \sqrt{n \log q}$, and $m \ge n \log q$)

Key size:?

Runtime:?

Summary

- SIS problem: Finding short solution in the kernel of Ajtai's function $f_A(z) := Az$.
- Solution exists if $\beta^2, m \ge n \log q$.
- SIS problem \equiv SVP $_{\gamma}$.
- Solving average-case SIS problem is at least as hard as solving worst-case SIVP $_{\gamma}$.
- Ajtai's function is collision resistant.
- SIS admits minicrypt primitives (usable, but inefficient)

What you should know...

- Definition of lattices
- Computational problems: SVP_{γ} and $SIVP_{\gamma}$
- SIS problem (parameters for existence of solution, hardness, applications)