

Digital Signature Schemes

Daniel Kales based on slides by Sebastian Ramacher and David Derler

March 24, 2021

TU Graz

S C I E N C E P A S S I O N T E C H N O L O G Y

> www.iaik.tugraz.at

Formal Definition

Signature Scheme

- *KeyGen*(1^{κ}): Given security parameter κ , outputs a key pair (sk, pk) (*pk* fixes M_{κ})
- Sign(m, sk): Given msg $m \in M_{\kappa}$ and signing key sk, computes signature σ on m using sk and outputs σ

Verify (m, σ, pk) : Given msg $m \in M_{\kappa}, \sigma$ and public key pk, returns 1 if (m, σ) is a valid msg-sig pair under pk and 0 otherwise

Algorithm Sign may also be stateful (not considered here)

Security

Correctness

 $\forall \kappa, (\mathsf{sk}, \mathsf{pk}) \leftarrow KeyGen(1^{\kappa}), m \in M_{\kappa} :$ Pr [Verify(m, Sign(m, \mathsf{sk}), \mathsf{pk})] = 1 - \epsilon(\kappa)

How to define when a scheme is secure?

- An adversary should not able to forge valid message/signature pairs
- Even when interacting with an honest signer in some way
 - What does forge and interacting mean?
 - We do not incorporate any semantics (e.g., what is a meaningful message?)

Targets (hardest to easiest)

- Total break: Obtain the secret signing key
- Selective forgery: Produce signature for some selected message(s)
- (Weak) Existential forgery: Produce at least one valid signature for a message where no signature was previously requested
- Strong existential forgery: Produce a valid signature different from any previously seen signature

Attacks (weak to strong)

- No-message attack: Only access to the public key
- Random-message attack: Obtain signatures for random message (no control over messages)
- Known-message attack: Access to a list of signatures (messages chosen before seeing public key)
- Chosen-message attack: Access to a list of signatures (messages chosen after seeing the public key)
- Adaptively chosen-message attack: Obtain signatures for any message

- Another dimension is the number of signatures accessible to an adversary
 - A single signature (one-time)
 - Unbounded number of signatures
- Highest security guarantees if strongest attacker can not even achieve easiest target
 - Existential unforgeability under adaptively chosen message attacks (EUF-CMA)
 - Usually weak existential unforgeability

- Another dimension is the number of signatures accessible to an adversary
 - A single signature (one-time)
 - Unbounded number of signatures
- Highest security guarantees if strongest attacker can not even achieve easiest target
 - Existential unforgeability under adaptively chosen message attacks (EUF-CMA)
 - Usually weak existential unforgeability

EUF-CMA

Experiment $\mathbf{Exp}_{\Sigma,\mathcal{A}}^{\text{EUF-CMA}}(\cdot)$:

if $m^* \notin Q \land \mathsf{Verify}(m^*, \sigma^*, \mathsf{pk}) = \mathsf{true} \text{ return } 1;$ else return 0;

Definition (Existential Unforgeability Under Chosen Message Attacks (EUF-CMA))

The advantage $\mathsf{Adv}^\mathcal{A}_{\mathsf{EUF}\text{-}\mathsf{CMA}}(\cdot)$ of an adversary \mathcal{A} in the EUF-CMA experiment as

$$\mathsf{Adv}^{\mathcal{A}}_{\mathsf{EUF}\text{-}\mathsf{CMA}}(\kappa) = \mathsf{Pr} \left[\begin{array}{cc} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(1^{\kappa}), & m^* \notin \mathcal{Q}^{\mathsf{Sig}} \land \\ (m^*,\sigma^*) \leftarrow \mathcal{A}^{\mathsf{Sig}(\mathsf{sk},\cdot)}(\mathsf{pk}) & : \quad \mathsf{Verify}(\mathsf{pk},m^*,\sigma^*) = \mathbf{1} \end{array} \right]$$

where the environment maintains an initially empty list \mathcal{Q}^{Sig} and the oracles are defined as follows:

$$Sig(sk, m)$$
 : Set $Q^{Sig} \leftarrow Q^{Sig} \cup \{m\}$ and return $\sigma \leftarrow Sign(sk, m)$.

A signature scheme is EUF-CMA attacks, if for every PPT adversary \mathcal{A} , $Adv_{EUF-CMA}^{\mathcal{A}}(\cdot)$ is negligible.

What About Textbook RSA Signatures?

- Plain RSA: pk = (N, e) and sk = (N, d)
 - To sign $m \in \mathbb{Z}_N$ compute $\sigma \leftarrow m^d \mod N$
 - To verify given (m, σ) check if $\sigma^e \equiv m \pmod{N}$

• Choose $\sigma \leftarrow^{\mathbb{R}} \mathbb{Z}_N$ and set $m \leftarrow \sigma^e \mod N$

- The pair (m, σ) is a valid signature!
- Existential forgery under no-message attack
- Also other attacks (homomorphism)
- Use of RSA-FDH/RSA-PSS

What About Textbook RSA Signatures?

- Plain RSA: pk = (N, e) and sk = (N, d)
 - To sign $m \in \mathbb{Z}_N$ compute $\sigma \leftarrow m^d \mod N$
 - To verify given (m, σ) check if $\sigma^e \equiv m \pmod{N}$

- Choose $\sigma \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_N$ and set $m \leftarrow \sigma^e \mod N$
 - The pair (m, σ) is a valid signature!
 - Existential forgery under no-message attack
 - Also other attacks (homomorphism)
- Use of RSA-FDH/RSA-PSS

RSA-Full-Domain Hash (RSA-FDH)

Scheme

KeyGen(1^{κ}): Output public and private RSA keys (pk, sk) \leftarrow ((*N*, *e*), *d*). Specify function *H* : {0, 1}* $\rightarrow \mathbb{Z}_N$.

Sign(m, sk): Return signature $\sigma \leftarrow (H(m))^d \mod N$

/erify (m, σ, pk) : Return [$\sigma^e == H(m)$]

RSA-Full-Domain Hash (RSA-FDH)

Scheme

KeyGen(1^{κ}): Output public and private RSA keys (pk, sk) \leftarrow ((*N*, *e*), *d*). Specify function *H* : {0, 1}* $\rightarrow \mathbb{Z}_N$.

Sign(m, sk): Return signature $\sigma \leftarrow (H(m))^d \mod N$

Verify (m, σ, pk) : Return $[\sigma^e == H(m)]$

RSA-Full-Domain Hash (RSA-FDH)

Scheme

KeyGen(1^{κ}): Output public and private RSA keys (pk, sk) \leftarrow ((*N*, *e*), *d*). Specify function *H* : {0, 1}* $\rightarrow \mathbb{Z}_N$.

Sign(m, sk): Return signature $\sigma \leftarrow (H(m))^d \mod N$

```
Verify(m, \sigma, pk): Return [\sigma^e == H(m)]
```

How to Prove RSA-FDH is EUF-CMA secure in the ROM?

Outline

- Suppose *A* breaks EUF-CMA security of RSA-FDH with non-negligible probability
- Then, we try to build adversary \mathcal{A}' breaking the RSA assumption, i.e.,

given (N, e, c) try to find $c^d = m \mod N$.

Proof: RSA-FDH

Proof Sketch (Coron, 2000 [4])

 \mathcal{A}' gets input (N, e, c), starts \mathcal{A} on pk $\leftarrow (N, e)$ and simulates RO and EUF-CMA environment for \mathcal{A} :

- When \mathcal{A} queries RO for m, \mathcal{A}' picks $r \leftarrow \mathbb{Z}_N^*$, computes hash $h \leftarrow r^e \mod N$ with probability p and $h \leftarrow c \cdot r^e \mod N$ with probability 1 p, stores (m, h, r) and returns h
- When A queries signature for m, ℝ gets (m, h, r) and returns r if h = r^e mod N and aborts otherwise
- If \mathcal{A} returns forgery $(m^*, \sigma^*)^1$ s.t. $H(m^*) = h^* = c \cdot (r^*)^e \mod N, \sigma^* = c^d \cdot r^* \mod N$. \mathcal{A}' returns $c^d = \sigma^*/r^* \mod N$

¹Observe: to compute σ^* , \mathcal{A} must have queried RO on m^*

Analysis

- Values *h* look random to *A*, making simulation of RO perfect, as
 - values r random
 - *A* has never seen *c* directly
 - Simulation of signatures perfect (according to previous observation)

Analysis

- Values *h* look random to *A*, making simulation of RO perfect, as
 - values r random
 - *A* has never seen *c* directly
- Simulation of signatures perfect (according to previous observation)

- Simulation works with prob. p^q (for q signature queries)
- If simulation ok, \mathcal{A}' can use forgery with prob. $\mathbf{1}-p$
- If \mathcal{A} succeeds with non-negligible prob. $\epsilon(\kappa)$, \mathbb{R} succeeds with non-negligible prob. $(1-p)p^q\epsilon(\kappa)$ and asymptotically: $O(\frac{\epsilon(\kappa)}{q})$
- Reduction not always successful: Security loss by q

- Simulation works with prob. p^q (for q signature queries)
- If simulation ok, \mathcal{A}' can use forgery with prob. 1 p
- If \mathcal{A} succeeds with non-negligible prob. $\epsilon(\kappa)$, \mathbb{R} succeeds with non-negligible prob. $(1-p)p^q\epsilon(\kappa)$ and asymptotically: $O(\frac{\epsilon(\kappa)}{q})$
- Reduction not always successful: Security loss by q

- Simulation works with prob. p^q (for q signature queries)
- If simulation ok, \mathcal{A}' can use forgery with prob. 1 p
- If \mathcal{A} succeeds with non-negligible prob. $\epsilon(\kappa)$, \mathbb{R} succeeds with non-negligible prob. $(1-p)p^q\epsilon(\kappa)$ and asymptotically: $O(\frac{\epsilon(\kappa)}{q})$
- Reduction not always successful: Security loss by q

- Simulation works with prob. p^q (for q signature queries)
- If simulation ok, \mathcal{A}' can use forgery with prob. 1-p
- If \mathcal{A} succeeds with non-negligible prob. $\epsilon(\kappa)$, \mathbb{R} succeeds with non-negligible prob. $(1-p)p^q\epsilon(\kappa)$ and asymptotically: $O(\frac{\epsilon(\kappa)}{q})$
- Reduction not always successful: Security loss by q

Message Length Extension

- We have associated a message space M_κ related to the security parameter κ to any scheme Σ
- How can we extend the message space to (nearly) arbitrary message sizes?
 - Block-wise signing (not efficient)
 - Hash-then-sign paradigm (very efficient)

Hash-Then-Sign Paradigm

 Let Σ' be: Use hash function H to map any arbitrary length message m to M_κ before applying Sign of Σ

Theorem

If Σ is EUF-CMA secure and H is collision resistant, then Σ' is EUF-CMA secure

Proof Sketch.

Let $m_1, ..., m_\ell$ be the messages queried by \mathcal{A} and (m^*, σ^*) the valid forgery

Case 1. $H(m^*) = H(m_i)$ for some $i \in [\ell]$: we have a collision for H

Case 2. $H(m^*) \neq H(m_i)$ for all $i \in [\ell]$: we have that $(H(m^*), \sigma^*)$ is a forgery for Σ

Constructions

- Constructions based on general assumption (not covered)
 - OWFs imply sEUF-CMA secure schemes
 - "Hash-based" signatures (post-quantum)
- Constructions in the ROM
 - Have already seen RSA-FDH
 - Will look at pairing-based version
- Constructions in the SM
 - see "Further Reading"

Generic Compilers for Strong Security

- CMA from RMA
 - Split *m* into m_L and m_R for $m_L \leftarrow \{0, 1\}^k$ such that $m = m_L \oplus m_R$
 - Sign $r||m_L$ and $r||m_R$ with two independent keys of Σ , where $r \leftarrow \{0, 1\}^k$
- CMA from KMA
 - Let Σ be a KMA-secure scheme, Σ' be a KMA-secure one-time scheme.
 Generate a long-term key-pair for Σ
 - For message *m* generate one-time key of Σ' and sign *m* with one-time key.
 Sign one-time public key using long-term signing key
- CMA from IBE
- CMA in RO from ID schemes (Fiat-Shamir)

BLS Signatures

"Bilinear" analogue to RSA-FDH scheme. Let $H : \{0, 1\}^k \to \mathbb{G}$.

Scheme

KeyGen(1^{$$\kappa$$}): Choose \mathcal{G}^{κ} and $x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p^*$ and set sk $\leftarrow x$ and pk $\leftarrow y = g^x$

```
Sign(m, sk): Compute h = H(m) and output \sigma \leftarrow h^{x}
```

```
Verify(m, \sigma, pk): Return [e(\sigma, g) = e(H(m), y)]
```

Very short signatures. Signature valid if $(H(m), y, \sigma)$ is DDH tuple

BLS Signatures

Theorem

If CDH assumption holds in $\mathbb G$ and H is a random oracle, then BLS is sEUF-CMA secure.

- Proof nearly identical to RSA-FDH proof
- For non-tight reduction
 - Obtain CDH instance (*h*, *y*)
 - Guess index $i \in [q_H]$ of RO query
 - Embed *h* into *i*th query and hope forgery (m^*, σ^*) is for m_i
 - If $m^* = m_i$ output σ^* as CDH solution
- Works also with Coron's strategy (tighter reduction; see RSA-FDH proof)

What you should know...

- Security models for digital signature schemes
 - Types of forgeries and attacks
- RSA-FDH proof idea
- Message length extension (hash-then-sign)
- Generic compilers from RMA/KMA

Questions?

Further Reading I

[1] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.

Relations Among Notions of Security for Public-Key Encryption Schemes.

In Advances in Cryptology - CRYPTO '98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, pages 26–45, 1998.

[2] Dan Boneh and Xavier Boyen.

Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups.

J. Cryptology, 21(2):149–177, 2008.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham.

Short Signatures from the Weil Pairing.

J. Cryptology, 17(4):297–319, 2004.

Further Reading II

[4] Jean-Sébastien Coron.

On the exact security of full domain hash.

In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings, volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer, 2000.

[5] Rosario Gennaro, Shai Halevi, and Tal Rabin.

Secure hash-and-sign signatures without the random oracle.

In Advances in Cryptology - EUROCRYPT '99, International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 123–139, 1999.

[6] Susan Hohenberger and Brent Waters.

Short and stateless signatures from the RSA assumption.

In Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 654–670, 2009.

Further Reading III

[7] Jonathan Katz.

Digital Signatures.

Springer, 2010.

[8] Brent Waters.

Efficient identity-based encryption without random oracles.

In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 114–127, 2005.