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1 / 38



Formal Definition

Public Key Encryption

A PKE scheme is a tuple of PPT algorithms:
KeyGen(1κ): This probabilistic algorithm takes a security parameter κ and outputs a pair of keys

(sk, pk) (pk fixes plaintext spaceM and ciphertext space C).
Enc(m, pk): This (probabilistic) algorithm takes a messagem ∈M and a public key pk and outputs

a ciphertext c← Enc(m, pk) ∈ C.
Dec(c, sk): This deterministic algorithm takes a ciphertext c ∈ C and a private key sk and outputs

m← Dec(c, sk) ∈ M ∪ {⊥}.

2 / 38



Security

Correctness

∀(sk, pk)← KeyGen(1κ) : Pr [Dec(Enc(m, pk), sk) = m] = 1− ε(κ)

How to define when a scheme is secure?

Given c and pk it should be hard to findm?

Very weak guarantees . . .

We will gradually develop the idea of security for PKE
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Overview of Target and Attacks

Targets (hardest to easiest)

One-wayness (OW): hard to invert

Semantically secure (Indistinguishable - (IND)): no information about the message
in Enc(m, pk) is leaked

Non-malleable (NM): for any non-trivial relation R it is hard to compute
Enc(R(m),pk) from Enc(m,pk)
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Overview of Target and Attacks

Attacks (weak to strong)

Passive attacks: Chosen plaintext attack (CPA)

Active attacks: Chosen ciphertext attacks (CCA)

Highest security guarantees if strongest attacker can not even achieve the weakest
target: NM-CCA2 (IND-CCA2)
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Textbook RSA Encryption

Use a trapdoor one-way function for encryption (e.g., RSA, Rabin)

KeyGen(1κ): Pick two random κ-bit primes p, q, set N = pq, pick e s.t. gcd(e,ϕ(N)) = 1, compute
d← e−1 mod ϕ(N) output (sk, pk)← ((d,N), (e,N))

Enc(m, pk): On inputm ∈ Z∗
N and pk = (e,N), compute and output c← me (mod N)

Dec(c, sk): On input c and sk = (d,N), compute and outputm← cd mod N
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Security of Textbook RSA

How hard is it to recoverm given c and pk = (e,N)

This has been formalized as the RSA problem and is assumed to be hard
Assumes that c (and thusm) is a random element of ZN
Very strong assumption for a secure PKE

Some of the problems of textbook RSA

RSA encryption is deterministic: Small message spaceM′ ⊆M, just test any
m ∈M′

RSA encryption function is a homomorphism:

Enc(m0, pk) · Enc(m1, pk) = me
0 ·me

1 = (m0 ·m1)
e = Enc(m0 ·m1, pk)
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One-Wayness

One-Wayness

For all PPT adversariesA and security parameters κ there is a negligible function ε such that:

Pr

[
(sk, pk)← KeyGen(1κ),m←R M,

m∗ ← A(pk, Enc(m, pk)) : m∗ = m

]
≤ ε(κ).

Not meaningful for most applications of PKE (but okay for RSA-KEM)

Amay still compute some information aboutm

How to formalize "does not leak any information"?
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More Powerful Passive Adversaries (CPA)

Experiment ExpIND−CPA
Π,A (·):
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IND-CPA Security

We can define the advantage of adversaryA for the IND-CPA experiment for
scheme Π as

AdvIND−CPA
Π,A (κ) =

∣∣∣∣Pr[ExpIND−CPA
Π,A (κ) = 1]− 1

2

∣∣∣∣ .
For a secure scheme, the advantage is negligible as a function of κ for any PPTA

IND-CPA

For all PPT adversariesA and security parameters κ there is a negligible function ε such that:

Pr

[
(pk, sk)← KeyGen(1κ), ((m0,m1), state)← A(pk),

b← {0, 1}, c← Enc(mb, pk), b∗ ← A(state, c) : b∗ = b

]
≤ 1

2
+ ε(κ).
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IND-CPA Security With RSA

Textbook RSA is obviously not IND-CPA secure

It is deterministic:A simply computes c′ ← Enc(m0,pk) and outputs 0 if
c′ = c and 1 otherwise
Leaks Jacobi symbol

If e = 3 andm < N
1
3 , thenm = c

1
3 (in the integers)

No deterministic PKE scheme can be IND-CPA secure: encryption has to be
randomized
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IND-CPA Security With RSA

Hard-core bit for RSA and IND-CPA security

Modify RSA assumption to output z such that z is least significant bit (LSB) ofm
If you can compute LSB, then you can invert RSA

LSB is hardest bit to compute in RSA (a hard-core bit)
Can be used for encryption, but ine�icient (bitwise)

Enc(m, pk) := (LSB(x)⊕m, xe mod N) form ∈ {0, 1} and x←R ZN

Dec((c1, c2), sk) := LSB(cd2 mod N)⊕ c1
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IND-CPA Security With RSA

More e�iciency with random oracles (RSA-CPA)

Let H : ZN → {0, 1}` be a random oracle

Enc(m, pk) := (H(x)⊕m, xe mod N) form ∈ {0, 1}` and x←R ZN

Dec((c1, c2), sk) := H(cd2 mod N)⊕ c1

IND-CPA secure in the random oracle model
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RSA-CPA IND-CPA Proof Idea

To obtain information aboutm from (H(x)⊕m, xe (mod N)), one has to learn
some information about H(x)

As H is a random oracle, the only way to learn any information about H(x) is to
evaluate H at x

An adversary who learns anything aboutm thus knows x

The adversary thus can break the RSA assumption

If adversary does not query H(x), then challenge ciphertext c is independent from
mb
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Concrete vs. Asymptotic Security

Asymptotic security does not care about the runtime of the reduction (as long as
polynomial time)

Concrete security relates runtime t and success probability ε of adversary to t′ and
ε′ of reduction

Reduction is tight if ε ≈ ε′ and t ≈ t′ ( t′ε′ ≈
t
ε )

Non-tight if t� t′ or if ε� ε′ (tightness gap is t′ε
tε′ )

t′
ε′ ≥ qO · tε , whereO is some oracle (RO, signing, etc.)

Tightness relates security of the scheme to the problem
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RSA-CPA IND-CPA Proof

Theorem

If there exists an (t, qH, ε) IND-CPA adversary against RSA-CPA, then there is a (t′, ε′)
solver for the RSA assumption with ε′ ≥ 2ε and t′ ≤ t + (q2

H + qH · texp).

Proof (by Reduction):

Reduction B obtains RSA challenge (e, y,N) (want to find x s.t. y ≡ xe (mod N))

B runsA on pk = (e,N) and obtains challenge (m0,m1)

B gives ciphertext (r, y) toA for r←R {0, 1}` and RSA challenge y (as long as x s.t.
y ≡ xe (mod N) not queried to H, challenge ciphertext information theoretically
hidden)
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RSA-CPA IND-CPA Proof (ctd.)

Simulation of the random oracle H (maintainig a listQ of tuples (xi, hi) - initially empty)

H(xj)
1 z ← xej (mod N)

2 i f z = y then
3 o u t p u t xj and B aborts / / s o l v e d RSA c h a l l e n g e
4 e l s e
5 i f xj i n Q then
6 r e t u r n hj
7 e l s e
8 hj←

R
{0, 1}`

9 s t o r e (xj , hj) i n Q
10 r e t u r n hj
11 end i f
12 end i f
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RSA-CPA IND-CPA Proof (ctd.)

W event thatAwins the IND-CPA game (with prob. 1
2 + ε); Q event thatA queries

H(x) s.t. y = xe (mod N).

Pr[W] = Pr[W|Q] · Pr[Q] + Pr[W|¬Q] · Pr[¬Q]

≤ Pr[Q] +
1
2
· Pr[¬Q]

= Pr[Q] +
1
2

(1− Pr[Q])

=
1
2

+
1
2
· Pr[Q]

1
2

+ ε ≤
1
2

+
1
2
· Pr[Q]

2ε ≤ Pr[Q]︸︷︷︸
≤ε′

.

If ε non-negl., so is ε′; contradicting RSA assumption.

t′ ≤ t + (q2
H + qH · texp) (search in Q and one exp. per call)
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Tightness of the Reduction

RSA-CPA has a tight reduction (additive factor)

RSA-FDH has no tight reduction (multiplicative factor)

Bellare et al.’s proof looses a factor of qH
Coron’s proof only looses a factor of qS
It is o�en assumed that qH ≤ 260 and qS ≤ 230

Assume RSA with 80 bit security: 1248 bit modulus (ECRYPT II)
To obtain this security level w.r.t. Bellare et al.’s analysis we at least require
4000 bit RSA!
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Encrypting With Di�ie-Hellman

Let G be a group of prime order p and g a generator

No trapdoor known to invert discrete exponentiation function

How to encrypt?
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ElGamal Encryption Scheme

ElGamal

KeyGen(1κ): Pick group G = 〈g〉with |G| = p ≈ 2κ prime, pick x←R Zp and output
(sk,pk)← (x, X = gx)

Enc(m,pk): Letm ∈ G, pick y←R Zp and output (c1, c2)← (gy,m · Xy)

Dec(c, sk): Let c = (c1, c2), compute and outputm← c2/cx1

21 / 38



ElGamal Encryption Scheme (ctd.)

Recall: DDH Assumption

Let G = 〈g〉with |G| = p prime, log2 p = κ, then ∀ PPTA

|Pr[x, y←R Zp : A(gx , gy , gxy) = 1]−
Pr[x, y, z←R Zp : A(gx , gy , gz) = 1]| ≤ ε(κ)

and let us denote this probability as AdvDDH
G,g,p(A).

Theorem

If DDH assumption holds, ElGamal is IND-CPA.
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ElGamal IND-CPA Proof

Proof (by Game Hopping):

In future Lecture!
Need to first look at constructing proofs via Game Hopping!

Basic Idea:

Write down scheme as algorithm
Transform algorithm by changing it slightly

Argue that Adversary cannot distinguish between old and new algorithm

Repeat until we arrive at one algorithm that cannot be broken
e.g., it does not have access to the secret key at all
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ElGamal and DDH

Careful with choice of groups

In Z∗p for p prime DDH is not hard (take prime order q subgroup, e.g.,
p = 2q + 1)
In symmetric pairings no DDH; in the XDH setting DDH is not hard in G2

Can switch to Linear ElGamal (DLIN)

DLIN Assumption

Let G with |G| = p, log2 p = κ and u, v, h ∈ G, then ∀ PPTA

|Pr[x, y←R Zp : A(ux , vy , hx+y) = 1]−
Pr[x, y, z←R Zp : A(ux , vy , hz) = 1]| ≤ ε(κ)
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Linear ElGamal

Linear ElGamal

KeyGen(1κ): Pick group G = 〈g〉with |G| = p ≈ 2κ prime, pick u, v←R Zp, h←R G, set
(U, V , h)← (h1/u, h1/v , h) and output (sk, pk)← ((u, v), (U, V , h)

Enc(m, pk): Letm ∈ G, pick y, z←R Zp and output (c1, c2, c3)← (Uy , Vz,m · hy+z)

Dec(c, sk): Let c = (c1, c2, c3), compute and outputm← c3/(cu1 · cv2)

Theorem
If DLIN assumption holds, Linear ElGamal is IND-CPA.
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Problems With IND-CPA Security

Malleability: Adversary may change a ciphertext such that plaintexts are related

RSA-CPA:
(H(x)⊕m ⊕ m′, xe mod N)

ElGamal:
(gy0 ,m0Xy0 )?(gy1 ,m1Xy1 ) = (gy0+y1 , (m0 ·m1)Xy0+y1 )

Sometimes desired (computing on encrypted data)

Sometimes problematic (e.g., Bleichenbacher)
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Active Adversaries (CCA)

How to formalize malleability (NM)? Dolev et al. have done this back in 1993 with a
simulation-based notion

Bellare et al. have shown that NM implies the IND notion

The strongest notion NM-CCA2 is equivalent to IND-CCA2
IND notion is more convenient to use

Idea of a stronger IND notion

Give the adversary access to a decryption oracle

IND-CCA2 automatically yields security in universal composabability (UC)
framework
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Active Adversaries (CCA)
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Active Adversaries (CCA)

IND-CCA1 (lunchtime attacks)

A only access toODec
1 (before seeing the challenge ciphertext)

Best we can get for homomorphic schemes (within our notions)

IND-CCA2

A also has access toODec
2 (a�er seeing the challenge)

Is not allowed to submit c∗
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IND-CCA2 Schemes?

In the random oracle model

RSA-OAEP(+) (RSA)
Hybrid ElGamal (strong DH)
Twin Hybrid ElGamal (DH)

Without random oracles

Hash proof system (e.g., Cramer-Shoup)
From CPA secure IBE schemes
Twin-encryption using non-interactive zero-knowledge

Conversion from IND-CPA (e.g., Fujisaki-Okamoto)
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Theory vs. Practice

Many "pure" PKES not useful for content encryption

Use of hybrid encryption (KEM/DEM) approach

Combine PKE with symmetric encryption (and MAC or RO)
Generic conversions follow this approach

Plain PKE schemes still very useful

Homomorphic encryption
Threshold encryption
Zero-knowledge proofs of knowledge (plaintext equality, inequality)
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Relation Among Notions

NM-CPA

��
6
''

NM-CCA1oo //

��

NM-CCA26
oo

��
IND-CPA IND-CCA1

6

gg

oo IND-CCA2oo

OO
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Additional Security Notions for PKE

Replayable CCA (RCCA)

IND-CPA too weak and IND-CCA2 o�en too strong
Capture schemes that are CCA2-secure except for allowing re-randomization
of ciphertexts

Altering ciphertext is "ok", if it decrypts to original message

Circular Security

Encrypt a secret key under the corresponding public key (1-cycle)
Important for fully homomorphic encryption (bootstrapping)

Homomorphically evaluating decryption function on ciphertext (use encryption of secret
key)
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Additional Security Notions for PKE

Key Dependent Message (KDM) security

Generalization of circular security
Encrypted messages might depend on arbitrary function of secret keys

Security under leakage

Leak a bounded number of bits of secret key
Leak an adversarially chosen function of secret key
...
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What you should know...

Security models for PKE

Active and passive adversaries
“Games” for di�erent Adversaries

Asymptotic vs. concrete security

Basic Idea of (Random) Oracles
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Questions?
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