

Modern Public Key Cryptography

Complexity Theory and Computational Hardness Assumptions

Lukas Helminger

March 3, 2020

Public-Key Cryptographic

Provable security idea:

- Breaking encryption (RSA, ECC, ...)
- as hard as solving hard problem (factoring, discrete logarithm)

Everything is an Algorithm

Encryption scheme:

- key ← KeyGeneration(·)
- $c \leftarrow \text{Encryption}(m)$
- $m \leftarrow \text{Decryption}(c)$

Security Properties Adversary

Properties:

Correctness

```
m = Decryption(Encryption(m)).
```

- c = Encryption(m) does not leak "any" information.
- unforgeability.

Adversary:

- runtime (poly-time).
- quantum

Hard problems

No crypto system relies on a proven hard problem.

Outline

Preliminaries

Basic Complexity Theory

Computational Hardness Assumptions

Notation I

We denote

- \mathbb{Z} as the set of integers $\{..., -2, -1, 0, 1, 2, ...\}$
- \mathbb{N} as the set of natural numbers $\{0, 1, 2, ...\}$
- \mathbb{Z}_N as the set of integers modulo N
- lacksquare \mathbb{Z}_N^* as the set of invertible integers modulo N
- \blacksquare \mathbb{P} as the set of prime numbers
- $(x_i)_{i=1}^n := (x_1, ..., x_n)$

Notation II

We use \mathbb{G} to denote a group.

- With $\mathbb{G}=\langle g
 angle$, we denote that g generates \mathbb{G}
- | G | denotes the order of a group
- ullet $\kappa...$ security parameter (in bits), e.g., RSA: $\kappa=$ 80 bit pprox 1024 bit modulus
- With $\mathcal{G}^{\kappa}=(\mathbb{G},p,g)$, we denote the following setup:
 - p is a prime of bitlength κ , and
 - $\mathbb{G} = \langle g \rangle$ is a group with $|\mathbb{G}| = p$

Discrete Probability Distributions

Definition

A discrete probability distribution is a probability distribution that can take on a countable number of values.

Example: uniform distribution

 $x \stackrel{\scriptscriptstyle R}{\leftarrow} X$ denotes x is drawn uniformly at random from X

Languages and Computational Problems

Definition	Example
Σ be a finite alphabet	$\{0, 1\}$
Σ^* is set of all strings of Σ	$\{0, 1, 10, 11, 01,\}$
A formal language L is a subset of Σ^*	strings of even length

- *Decision Problem:* Let $L \subseteq \Sigma^*$ be a language. On the input of $x \in \Sigma^*$, output true if $x \in L$ and false otherwise.
- Search Problem: Let $R \subseteq \Sigma^* \times \Sigma^*$ be a relation between inputs and outputs. On the input of $x \in \Sigma^*$, output $y \in \Sigma^*$ such that $(x,y) \in R$.

Oracle

Oracle

An oracle $\mathcal O$ is a black-box that can be used to solve a computational problem in one computational step.

Note: No analysis or modification of internal computations.

Let \mathcal{A} be an algorithm (TM). We use $\mathcal{A}^{\mathcal{O}}$ to denote that \mathcal{A} has access to oracle \mathcal{O} , e.g.

$$\overline{SAT} \in P^{SAT}$$
.

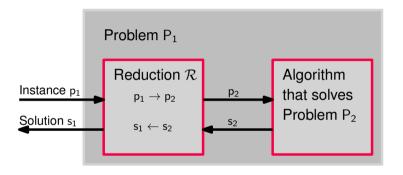
Probabilistic Polynomial Time (PPT)

A PPT algorithm $\mathcal A$ can make (polynomial many) random steps upon execution. The output of $\mathcal A$ is a random variable.

Find($k, a_1, ..., a_n$):

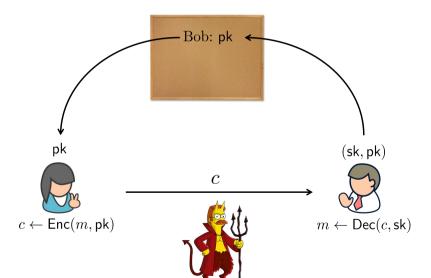
- Pick $i \in \{1, ..., n\}$ randomly and set $x \leftarrow a_i$
- Scan $a_1, ..., a_n$ and count the number m of a_j 's s.t. $a_j \le x$.
- If m = k output x.
- If m > k copy all elements a_j with $a_j \le x$ in a new array L and run Find $_k(k, L)$
- If m < k copy all elements a_j with $a_j > x$ in a new array L and run Find $_k(k m, L)$

Reductions



We write $P_1 \leq P_2$, i.e., P_2 is at least as hard as P_1 .

Algorithms in a Cryptographic Setting



Reductionist Security

Prove security by reduction to specific hard problem:

- Assume an PPT adversary A breaking a crypto system
- Show that there is an efficient reduction $\mathcal R$ from the crypto system to the hard problem

Goal: Crypto system is secure as long as factoring is hard.

Negligible Functions

Definition

A function $\epsilon : \mathbb{N} \to \mathbb{R}$ is called negligible, if for every polynomial function $p : \mathbb{N} \to \mathbb{R}$, there is an $n_0 \in \mathbb{N}$ such that

$$\epsilon(n) \leq \frac{1}{p(n)} \quad \forall \ n \geq n_0.$$

i.e. ϵ must be exponentially small \forall $n \geq n_0$.

Computational Hardness

Why: Information theoretically secure primitives are rare and often not very practical Hard? Educated guess (heuristics).

Note

Assumptions can be analyzed independently of schemes.

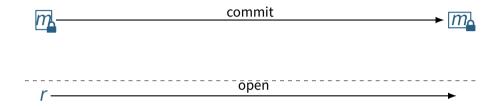
Discrete Logarithm Assumption

Let
$$\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$$
.

The discrete logarithm (DL) assumption states that forall PPT adversaries \mathcal{A} there is a negligible function $\epsilon(\cdot)$ such that

$$\Pr[x \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p, \ x^* \leftarrow \mathcal{A}(\mathcal{G}^\kappa, g^x) : x = x^*] \leq \epsilon(\kappa).$$

Commitment Scheme



$$m+r=m$$

Hiding: Cannot learn m from Comm(m).

Binding: Cannot open Comm(m) to two different messages.

Example: Commitment¹ under DL

Let $\mathcal{G}^{\kappa}=(\mathbb{G},p,g)$ and additionally $\mathbb{G}=\langle h \rangle$.

Commitment *C* to message $m \in \mathbb{Z}_p$:

- Choose $r \leftarrow^{\mathbb{R}} \mathbb{Z}_p^*$
- Compute $C \leftarrow g^m h^r$

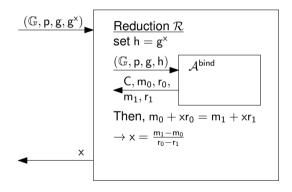
Binding: \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

$$\mathsf{Pr}\left[\begin{array}{c} \mathsf{C} = g^{m_0}h^{r_0} \wedge \\ (\mathsf{C}, m_0, r_0, m_1, r_1) \leftarrow \mathcal{A}(\mathcal{G}^\kappa, h) & \colon \mathsf{C} = g^{m_1}h^{r_1} \wedge \\ m_0 \neq m_1 \end{array}\right] \leq \epsilon(\kappa).$$

¹Pedersen Commitment

Example II

Prove binding by showing that an efficient adversary $\mathcal{A}^{\text{bind}}$ against binding can be used to construct an efficient adversary against DL.



20/33

Computational Diffie-Hellman Assumption

Let
$$\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$$
.

The computational Diffie-Hellman (*CDH*) assumption states that \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

$$\Pr\left[x,y \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p, \ h \leftarrow \mathcal{A}(\mathcal{G}^\kappa,g^x,g^y) \ : \ h=g^{xy}\right] \leq \epsilon(\kappa).$$

Decisional Diffie-Hellman Assumption

Informally: Distinguish (g^x, g^y, g^{xy}) from $(g^x, g^y, r), r \in_{\mathcal{R}} \mathbb{G}$.

Let $\mathcal{G}^{\kappa}=(\mathbb{G},p,g)$. The decisional Diffie-Hellman (*DDH*) assumption states that \forall PPT \mathcal{A} \exists negl. $\epsilon(\cdot)$ such that

$$\mathsf{Pr}\left[egin{array}{c} x,y,z \overset{\scriptscriptstyle{\kappa}}{\leftarrow} \mathbb{Z}_p, \;\; b \overset{\scriptscriptstyle{\kappa}}{\leftarrow} \{0,1\}, \ b^* \leftarrow \mathcal{A}(\mathcal{G}^\kappa, g^x, g^y, g^{(1-b)\cdot z+b\cdot xy}) \;\; : \ b=b^* \end{array}
ight] \leq {}^1\!/{}_2 + \epsilon(\kappa).$$

Relations between Assumptions

Theorem

Fix $\mathcal{G}^{\kappa}=(\mathbb{G},p,g)$, then the following holds

$$DDH \leq_P CDH \leq_P DL$$
.

Proof: Exercise.

Bilinear Maps I

Let $\mathbb{G}_1=\langle g_1 \rangle$, $\mathbb{G}_2=\langle g_2 \rangle$ and \mathbb{G}_T be three groups of prime order p.

A bilinear pairing is a map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$, with the following properties:

- lacksquare Bilinearity: $e(g_1^a,g_2^b)=e(g_1,g_2)^{ab}=e(g_1^b,g_2^a)\ orall\ a,b\in\mathbb{Z}_p$
- Non-degeneracy: $e(g_1,g_2)
 eq 1_{\mathbb{G}_7}$, i.e., $e(g_1,g_2)$ generates \mathbb{G}_T

Digital Signature Scheme

KeyGen: Choose $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$ where, \mathbb{G} , and \mathbb{G}_T is a prime. Further, let g generate \mathbb{G} . Choose sk $\stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ and pk $\leftarrow g^{\rm sk}$.

Sign(sk, m): Output a signature $\sigma \leftarrow m^{\text{sk}}$.

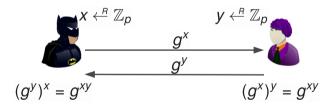
Verify(pk, m, σ) : Check if:

$$e(m, pk) = e(\sigma, g).$$

Example - Bilinear Maps I

Recall: Diffie-Hellman key agreement

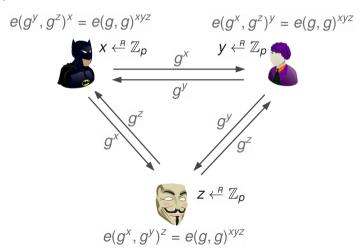
• $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g)$



Example - Bilinear Maps II

Three party Diffie-Hellman key agreement

• $\mathcal{BG}^{\kappa} = (e, \mathbb{G}, \mathbb{G}_{T}, p, q)$



Bilinear Maps - Instantiations

Efficient instantiations using elliptic curve groups

- Here, \mathbb{G}_1 and \mathbb{G}_2 are prime order p elliptic curve subgroups
 - with point addition as group operation, and
 - \mathbb{G}_T is the multiplicative order p subgroup of some extension field.
- Thus, often additive notation used for \mathbb{G}_1 and \mathbb{G}_2 , e.g., for $P \in \mathbb{G}_1, P' \in \mathbb{G}_2, a, b \in \mathbb{Z}_p$ one would write

$$e(aP,bP')=e(P,P')^{ab}=e(bP,aP')$$

Bilinear Assumptions

Counterparts of CDH, DDH in the pairing setting.

Let $\mathcal{BG}_1^{\kappa}=(e,\mathbb{G}_1,\mathbb{G}_7,p,g_1)$. Then, \forall PPT \mathcal{A} \exists negl. $\epsilon(\cdot)$ such that

Computational bilinear Diffie-Hellman assumption (CBDH):

$$\Pr\left[x,y,z \xleftarrow{\scriptscriptstyle R} \mathbb{Z}_p, \mathrm{e}(g_1,g_1)^{xyz} = \mathcal{A}(\mathcal{BG}_1^\kappa,g_1^x,g_1^y,g_1^z)\right] \le \epsilon(\kappa).$$

Decisional bilinear Diffie-Hellman assumption (DBDH)

$$\mathsf{Pr} \left[egin{array}{c} x,y,z,w \stackrel{arkappa}{\leftarrow} \mathbb{Z}_p,b \stackrel{arkappa}{\leftarrow} \{0,1\}, \ b^* \leftarrow \mathcal{A}(\mathcal{B}\mathcal{G}_1^\kappa,g_1^x,g_1^y,g_1^z, \ e(g_1,g_1)^{(1-b)\cdot w+b\cdot xyz}) : \ b=b^* \end{array}
ight] \leq 1/2 + \epsilon(\kappa).$$

Assumptions in Hidden-Order Groups

Let p,q be two appropriately chosen primes such that N=pq is of bitlength κ . Then, \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

Integer factorization assumption:

$$\Pr\left[(p,q)\leftarrow\mathcal{A}(\mathit{N})\,:\,\mathit{N}=p\cdot q
ight]\leq\epsilon(\kappa)$$

RSA assumption: Given e s.t. $gcd(e, \varphi(N)) = 1$

$$\Pr[m \leftarrow \mathcal{A}(e, c, N) : m^e \equiv c \pmod{N}] \leq \epsilon(\kappa)$$

Strong RSA assumption (s-RSA):

$$\Pr[(m,e) \leftarrow \mathcal{A}(c,N) : m^e \equiv c \pmod{N}] \leq \epsilon(\kappa)$$

Relations of Hidden-Order Assumptions

- It is easy to see that if one can factor, both RSA and s-RSA do not hold.
- Open problem: Show whether (s-)RSA is equivalent to factoring.

What you should know...

- Basic mathematical constructions: groups, generator, probability distribution
- Basic complexity theory: language, oracle, PPT
- High-level idea of reduction
- Discrete logarithm assumption
- Bilinear maps