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Public-Key Cryptographic

Provable security idea:
= Breaking encryption (RSA, ECC,...)

= as hard as solving hard problem (factoring, discrete logarithm)



Everything is an Algorithm

Encryption scheme:
= key + KeyGeneration(-)
= ¢ < Encryption(m)

= m < Decryption(c)



Security Properties Adversary

Properties:

= Correctness
m = Decryption(Encryption(m)).

= ¢ =Encryption(m) does not leak "any" information.
= unforgeability.

Adversary:

= runtime (poly-time).

= quantum



Hard problems

No crypto system relies on a proven hard problem.
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Notation |

We denote

Z as the set of integers {...,—2,-1,0,1,2, ... }
N as the set of natural numbers {0, 1,2, ... }
Zy as the set of integers modulo N

Zj, as the set of invertible integers modulo N

P as the set of prime numbers

() = (X150, Xn)



Notation Il

We use G to denote a group.

With G = (g), we denote that g generates G

| G | denotes the order of a group

= k... security parameter (in bits), e.g., RSA: k = 80 bit ~ 1024 bit modulus

With G* = (G, p, g), we denote the following setup:

m  pisaprime of bitlength «, and
m G=(g)isagroupwith| G |=p



Discrete Probability Distributions

A discrete probability distribution is a probability distribution that can take on a
countable number of values.

Example: uniform distribution

x <2 X denotes x is drawn uniformly at random from X
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Languages and Computational Problems

Definition | Example
Y be afinite alphabet {0,1}
Y * is set of all strings of | {0,1,10,11,01,...}

Aformal language L is a subset of ©* \ strings of even length

= Decision Problem: Let L C ¥* be a language. On the input of x € ¥*, output true if
x € Land false otherwise.

= Search Problem: LetR C ¥* x ¥* be arelation between inputs and outputs. On
the input of x € £*, outputy € X* suchthat (x,y) € R.



Oracle

An oracle O is a black-box that can be used to solve a computational problem in one
computational step.

Note: No analysis or modification of internal computations.

Let A be an algorithm (TM). We use A® to denote that A has access to oracle O, e.g.

SAT € P,
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Probabilistic Polynomial Time (PPT)

A PPT algorithm A can make (polynomial many) random steps upon execution. The
output of A is a random variable.

Find(k,ay, ..., a,):
= Picki e {1,...,n} randomly and set x < q;

= Scanay,...,d, and count the number mof gj’s s.t. a; < x.

If m = k output x.

If m > k copy all elements a; with a; < xinanew array L and run Findy(k, L)

If m < k copy all elements a; with a; > x in a new array L and run Find,(k — m, L)
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Reductions

Instance p;

Solution s;

Problem P,
Reduction R
p1 — P2 P2l
S1 < S2 S2

—_

Algorithm
that solves
Problem P,

We write P; < P,,i.e., P, is at least as hard as P;.
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Algorithms in a Cryptographic Setting

¢ < Enc(m, pk)
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Reductionist Security

Prove security by reduction to specific hard problem:
= Assume an PPT adversary A breaking a crypto system

= Show that there is an efficient reduction R from the crypto system to the hard
problem

Goal: Crypto system is secure as long as factoring is hard.
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Negligible Functions

Afunction e : N — R is called negligible, if for every polynomial functionp : N — R,
thereis an ng € N such that
e(n)gL V' n > no.
p(n)

i.e. e must be exponentially smallV n > nq.
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Computational Hardness

Why: Information theoretically secure primitives are rare and often not very practical

Hard? Educated guess (heuristics).

Assumptions can be analyzed independently of schemes.

16/33



Discrete Logarithm Assumption

LetG" = (G,p,9).

The discrete logarithm (DL) assumption states that forall PPT adversaries A there is a
negligible function €(-) such that

Prix <<Zp, x* < A(G",9") : x =x"] <e(k).
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Commitment Scheme

m commit - [T

err:m

Hiding: Cannot learn m from Comm(m).

Binding: Cannot open Comm(m) to two different messages.
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Example: Commitment! under DL

Let G¥ = (G, p,g) and additionally G = (h).
Commitment C to message m € Zy:

= Chooser <~ Z;

= Compute C < g™h"

Binding: V PPT A 3 negl. () such that

C = g™ho A
Pr| (C,mo,ro,my, 1) <= A(G",h) : C=g™h™ A
mo # My

'pedersen Commitment

< e(k).

19/33



Example ll

Prove binding by showing that an efficient adversary A" against binding can be
used to construct an efficient adversary against DL.

(G.peg) | Reduction R

seth = g~

(G.p.g.h) | gbind
C-, Mo, o,
mi,r

Then, mg + xrg = my + xr;

m;—mg
fo—n

- x=
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Computational Diffie-Hellman Assumption

LetG" = (G,p,9).

The computational Diffie-Hellman (CDH) assumption states that V PPT .4 3 negl. €(+)

such that
Prlx,y <1Zp, h <« A(G",g",9") : h=g"] <e(k).
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Decisional Diffie-Hellman Assumption

Informally: Distinguish (g%, ¢”,g¥) from (9*,¢”,r), r € G.
Let G* = (G, p, g). The decisional Diffie-Hellman (DDH) assumption states that vV PPT
A T negl. €(-) such that
X,Y,2 < Zp, b<-{0,1},
Pr b* «— A(gn,gx’gy,g(l—b).z—i-b,xy) . < 1/2 + e(fi).
b = b*
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Relations between Assumptions

Fix G" = (G, p, 9), then the following holds

DDH <p CDH <p DL.

Proof: Exercise.
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Bilinear Maps |

Let G; = (g1) , G, = (g2) and Gt be three groups of prime order p.
Abilinear pairingisamap e : G; x G, — Gr, with the following properties:

= Bilinearity: e(g{,93) = €(91,92)" = e(g2,95) Va,b € Z,

= Non-degeneracy: e(91,92) # 1g,, i-e., €(g1,92) generates Gr
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Digital Signature Scheme

KeyGen : Choosee : G x G — Gr where, G, and Gy is a prime. Further, let g
generate G. Choose sk <*Z, and pk « g**.

Sign(sk,m) : Output a signature o + m**,

Verify(pk,m, o) : Checkif:
e(m, pk) = e(a,9).
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Example - Bilinear Maps |

Recall: Diffie-Hellman key agreement

= G"=(G,p,9)
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Example - Bilinear Maps Il

Three party Diffie-Hellman key agreement
= BG"=(e,G,Gr,p,q)

X Xyz Xyz

e(9’,9%) = e(g,9) e(9*,9%) = e(g,9)

‘“‘”ZP g VW
" @
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Bilinear Maps - Instantiations

Efficient instantiations using elliptic curve groups
= Here, G; and G; are prime order p elliptic curve subgroups

®m  with point addition as group operation, and

m  Gristhe multiplicative order p subgroup of some extension field.

= Thus, often additive notation used for G; and G, e.g., for
P € G1,P € Gy,a,b € Z, one would write

e(aP,bP’) = e(P,P')® = e(bP,aP’)
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Bilinear Assumptions

Counterparts of CDH, DDH in the pairing setting.
Let BG} = (e, G1,Gr,p,g1). Then,V PPT A 3 negl. €(-) such that

= Computational bilinear Diffie-Hellman assumption (CBDH):
Prix,y,z < Zy,e(g1,91)%* = A(BGY, 91,91, 97)] <

= Decisional bilinear Diffie-Hellman assumption (DBDH)

X,Y,Z,W <~ Zp, b <-{0,1},
b* + A(BGY, 91,91, 95,

e(gl;gl)(l b)-w-+b- Xyz) .
b=b*

(k).

< 124 €(k).
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Assumptions in Hidden-Order Groups

Let p, g be two appropriately chosen primes such that N = pq is of bitlength x. Then, ¥
PPT A 3 negl. ¢(+) such that

m  Integer factorization assumption:
Pri(p,q) < A(N) : N=p-q] < e(x)
= RSAassumption: Given e s.t. gcd(e, o(N)) = 1
Prim < A(e,c,N) : m®* =c (mod N)] < ¢(k)
m  Strong RSA assumption (s-RSA):

Pri(m,e) « A(c,N) : m® =c (mod N)] < ¢(k)
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Relations of Hidden-Order Assumptions

It is easy to see that if one can factor, both RSA and s-RSA do not hold.

Open problem: Show whether (s-)RSA is equivalent to factoring.
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What you should know...

m  Basic mathematical constructions: groups, generator, probability distribution
= Basic complexity theory: language, oracle, PPT

= High-level idea of reduction

= Discrete logarithm assumption

= Bilinear maps
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