
IAIK

IAIK

Android Application Security
Mobile Security 2022

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at
Slides based on those by Johannes Feichtner

IAIK

● Android application format
● App Distribution
● Permissions
● Data Storage
● Application Security
● Attacks and Malware
● Reverse-Engineering & Analysis

Outline

IAIK

What?
20.000 trojanized apps with various
local root exploits: Memexploit,
Framaroot, ExynosAbuse

How?
● Repackaged > 1000 popular apps
● Distributed on 3rd party markets

Result
System applications with root
à Super-permissions to
break out of sandbox

Source: http://goo.gl/bRWWGw

http://goo.gl/bRWWGw

IAIK

What?
PlayStore listed fake
WhatsApp Messenger

How?
● Author added non-visible

Unicode character to
vendor name

● 1 to 5 Mio. downloads

Problem
● Ad-loaded wrapper app to

download whatsapp.apk
● Barely visible in app list:

blank icon, no text
Source: https://goo.gl/3F8JBG

https://goo.gl/3F8JBG

Install
Confirmation

Google
Play Unknown

Sources
Warning

Verify Apps
Consent

Verify Apps
Warning Runtime Security

Checks

Sandbox &
Permissions

Multiple Layers of Defense

Source: http://goo.gl/7xZ4cd

http://goo.gl/7xZ4cd

Android Applications

IAIK

Android apps are developed in Java* and compiled to Dalvik Bytecode
* Or other languages that compile to Java Bytecode (such as Kotlin)

Advantages:
● Apps compatible with all CPU architectures
● Use existing tools and libraries
● Convenient high-level language

- Garbage collection

Disadvantages:
● Slower than native code

Android App Development
Java Source

Code

Java Bytecode

Dalvik
Bytecode

javac

d8

IAIK

Responsible for executing Dalvik bytecode (DEX) on device

● ART Runtime:
- Interpretation: Quick start of newly installed apps
- Ahead-Of-Time compilation
- Just-In-Time compilation

● Parts of apps may also be compiled from C/C++ to native machine code
- Java Native Interface (JNI)

Android Runtime

IAIK

Android App Structure

File / Folder Purpose
assets/ Raw asset files, e.g. textures for games. Identified by filename
AndroidManifest.xml Meta data about app: Required permissions, app components, …
classes.dex All classes in Dalvik bytecode

lib/ Compiled native code (C/C++) as shared-objects (.so)
Platform-specific versions, e.g. ARM („armeabi“), ARMv7, x86, MIPS

res/ App resources, e.g. GUI layouts in XML format, graphics, colors, …
resources.arsc Index of resources + compressed string resources

Applications are packaged into APK files during build

ZIP file containing

IAIK

APK files are signed by the application developer

● Self-signed X.509 certificate
● Package update requires same certificate

● Three different signing schemes
- v1: Signed individual uncompressed files, but not ZIP metadata
- v2: Signature over complete compressed data
- v3: Extends v2 with support for key rotation
- v4: Signature in separate file, supports verification during app download

Application Signing

Android 7.0+

Android 11+

Android 9+

Source: source.android.com

https://source.android.com/security/apksigning

IAIK

Application Signing != Code Signing

● Android supports code loading at runtime
- Useful for shared frameworks, testing, dynamic addon loading
- Can also be loaded from Internet!
- By loading & executing any other application‘s code (createPackageContext API)

Problems
● Malicious app can evade detection by application analysts
● Code injection attacks on benign apps may affect millions of users!

Signing Dilemma

IAIK

What if…
● Code is loaded from external domains via HTTP

- MITM! à Possible for attackers to modify / replace downloaded code
● Code is loaded and stored on device‘s file system

- E.g. Directories on external storage (SD card)
- Other apps may tamper additional code before loading

● Applications forge package names
- Package name not displayed during installation
- First-come, first serve à malicious app could be installed prior to legitimate one!

Conclusion: Real code signing (as on iOS) would
● …mitigate many exploits & attack surfaces
● …ease static application analysis significantly!

Signing Dilemma

IAIK

APKs signed with v1 signature scheme may be modified without breaking
signature

● Signature scheme v1 only signs file entries in the ZIP

● DEX code can be embedded in the ZIP file
- ZIP file: Trailer at end points to file entries
- DEX file: Header at start points to following data chunks
- A file can be a valid DEX file and ZIP file at the same time

● Android runtime supports running APK or DEX files
- File type confusion can be exploited

Application Signing: v1 vulnerability (Janus)

Source: guardsquare.com

https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare

IAIK

App Distribution

IAIK

Android allows installation of apps from
● Google Play

- Trusted by default
- Requires license from Google

● Third-party app stores
- Amazon, F-Droid, Samsung, ….
- Popular in regions where Google Play is unavailable (China)
- Requires explicit permission to install apps

● From file system
- If app available as .apk file
- Can be downloaded from anywhere

App Sources

IAIK

● Pre-installed on (almost) all Android devices
● User needs Google account

- App retrieval limited by customer age and geographic location
● Developer needs Google account

- Personal data validated and exposed publicly
- 20$ one-time fee (+30% on all sales / 15% for small developers)

Security mechanisms
● Automated and manual app reviews

Google Play

IAIK

In a nutshell…
● Dynamic & static runtime analysis of every uploaded app
● Emulated Android environment based on qemu
● Runs for 5 minutes
● Uses Google‘s infrastructure / IP addresses for external network access

Analysis
1. Explore app by emulating UI input, clicking, etc.
2. Check for known malware

- Malware signatures, heuristics, similarities, source / developer, third-party reports
- If flagged malicious à Manual analysis by human being
- If confirmed malicious à Goodbye Google account J

Google Bouncer (2012)

Source: googlemobile.blogspot.com

http://googlemobile.blogspot.com/2012/02/android-and-security.html

IAIK

● Remote connect-back shell by J. Oberheide and C. Miller
- https://www.youtube.com/watch?v=ZEIED2ZLEbQ

● Construct strings at runtime
- If Bouncer statically detects /system/bin/ls: never executed dynamically

● There are various ways to evade detection
- Only load malicious code after 5 minutes
- …

Conclusion: Automated app analysis is never perfect!

2012: Playing with the Bouncer

Source: J. Oberheide, C. Miller: “Dissecting the Android Bouncer”

https://www.youtube.com/watch?v=ZEIED2ZLEbQ
https://jon.oberheide.org/files/summercon12-bouncer.pdf

IAIK

App scans extend to user side

● Apps are verified / categorized prior to install
- Remote database with malware signatures

● Sends log data, related URLs and device info to Google

● Warn or block potentially harmful apps (PHA)

Verify Apps (2012) Can be disabled by user!

Source: androidauthority.com

https://www.androidauthority.com/android-4-2-verify-apps-security-feature-explained-by-google-131514/

IAIK

● Constantly scans installed apps instead of just at installation
- React to threats that only became known after installation

● Monitor device state
- Dead or Insecure: A device stopped checking up with Verify Apps server
- Likely either because malware disabled VA or device had to be reset
- Both indicate a previously installed app was malicious
- DOI app: Many devices DOI after installing this app

● The introduction of machine learning into Google’s app analysis

Verify Apps (2014 – 2017)

Sources: android.googleblog.com, android-developers.googleblog.com

https://android.googleblog.com/2014/04/expanding-googles-security-services-for.html
https://android-developers.googleblog.com/2017/01/findingmalware.html

IAIK

● Google Bouncer and Verify Apps were rebranded

● „Advanced similarity detection“
- Google claims to use machine learning algorithms
- No implementation details documented

● Unknown apps can be sent to Google servers
- For further analysis

● 2021: Separate app
- No longer integrated into Play Store
- Still depends on Google Play Services

Google Play Protect (2017-)

Sources: security.googleblog.com, android.com, 9to5google.com

Can still be disabled by user!

https://security.googleblog.com/2020/03/how-google-play-protect-kept-users-safe.html
https://www.android.com/intl/en_ie/play-protect/
https://9to5google.com/2017/07/19/google-play-protect-rollout/

IAIK

● (Paid) APK files can be
- Extracted from Android devices
- Modified and resigned
- Redistributed on the Internet

● Pirated applications
- Paid applications for free, removed license checks, …
- Commonly augmented with malicious components

● Android is prone to “Repackaging Attacks”
- Not possible on (unjailbroken) iOS!

Pirated Applications

IAIK

Permissions

IAIK

The Android OS controls access to certain resources through Permissions

● OS defines a set of permissions, each with unique name
- E.g. android.permission.INTERNET
- Not all can be granted to third-party apps

● Developers specify needed permissions in AndroidManifest.xml
- Some granted at install, others require runtime user consent

● Enforced at different levels
- Kernel, e.g. INTERNET permission
- Native service level, e.g. READ_EXTERNAL_STORAGE for SD card access

Android Permissions

IAIK

● Granted at install time

● Not even displayed to the user by default
- Hidden away in Play Store app details

● No runtime checks required

● Once granted, cannot be revoked

● Fine-grained

● Granted for all users on device

Install-Time Permissions

IAIK

● Need to prompt for dangerous permissions

● Can be revoked by user at any time
- Android 13: Revocation also by app

● Granted / revoked with entire group
- Accept „PHONE“ à Grant reading phone ID + calling

● Managed individually per app and user

● Managable by device owner
- Useful for MDM

Runtime Permissions

IAIK

Normal permissions
Automatically granted at install, no user confirmation needed
For ex.: BLUETOOTH, CHANGE_NETWORK_STATE, INTERNET, NFC, INSTALL_SHORTCUT

Dangerous permissions
Require explicit user approval at install or runtime
CALENDAR, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SENSORS, SMS, STORAGE

These permissions are grouped, e.g. PHONE = { READ_PHONE_STATE, CALL_PHONE, … }
à You always grant entire group, e.g. allow reading phone ID + making calls!

Special permissions
Require manual activation through system settings
SYSTEM_ALERT_WINDOW, WRITE_SETTINGS, REQUEST_INSTALL_PACKAGES

Permissions Groups

IAIK

● Applications can define custom permissions

● Can be used for protecting access to app components
- ContentProviders, Services

● Developers can specify protection level
- Signature: Grant at install time only to apps signed with same certificate as the

app that defined the permission
- Dangerous: Show a dialog at runtime

Custom Permissions

IAIK

Stealthily obtain dangerous system permissions by misusing custom permissions

1. Install App A that defines a normal custom permission
2. Install App B that uses this custom permission
3. Uninstall App A and reinstall updated version

Redefines custom permission as dangerous, assigns it to known permission group

4. App B now holds any permission in group android.permission-group.PHONE
- Can now initiate phone calls (system permission CALL_PHONE is in PHONE group)
- User was never asked

Custom Permission Vulnerabilities (2021)

<permission android:name="com.test.cp"
android:protectionLevel="dangerous"
android:permissionGroup="android.permission-group.PHONE"/>

Source: Li et al.: Android Custom Permissions Demystified: From Privilege Escalation to Design Shortcomings

https://ieeexplore.ieee.org/document/9519385

IAIK

Data Storage

IAIK

File Scopes
App-Specific Files
● Private to the application
● Sharing must be initiated by the app

File Locations
Internal Storage
● Always available
● Very limited capacity

Data Storage on Android

Public Files
● Not linked to a particular app
● Media, Documents, Downloads, …

External Storage
● Might be removable (SD, USB)

IAIK

On the first versions of Android, apps had
● Private folder(s) they could access without permissions
● Option to access (almost) full public file system by requesting permission

- Simply use Java File APIs

Today:
● Private folder(s) mostly staid the same

- Though additionally encrypted on Android 10+ to ward off root attackers
● Full public file system access no longer possible
● All public file access routed through system ContentProviders

- Fine-grained per-path access control

Data Storage

IAIK

● Android-specific component for sharing data across processes

● Every data item is addressed through a content:// URI

● Some implemented by the system

● Others by third-party applications

● Optionally protected by permissions

ContentProvider

Source: developer.android.com

Picture: developer.android.com / Apache 2.0

https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/providers/images/content-provider-overview.png

IAIK

● App-Specific Files
- FileProvider: Implemented by apps to expose their files to other apps

● Media: Pictures, Audio, Videos
- MediaStore: Local centralised store, modifiable by apps
- CloudMediaProvider: Read-only media from cloud (Android 13)

● Documents: Editable files (+ anything that’s not media)
- DocumentProviders: Central component of the Storage Access Framework
- May be organised in a nested hierarchy

ContentProviders for Data Storage

Sources: developer.android.com, medium.com/androiddevelopers

https://developer.android.com/training/data-storage
https://medium.com/androiddevelopers/scope-storage-myths-ca6a97d7ff37

IAIK

An abstraction layer for file systems implemented on top of ContentProviders

● Several DocumentsProviders implement different data sources
- Have a concept of nested document trees (~ folders)
- External Storage
- Media Store (videos, photos, audio)
- Cloud Providers (Dropbox, Google Drive, …)

● Data source transparent to consuming applications

● User grants access to individual document or document trees

Storage Access Framework Android 4.4+

Source: developer.android.com

https://developer.android.com/training/data-storage/shared/documents-files

IAIK

In Android 11, SAF was made mandatory for accessing public files

● Apps may write to MediaStore without requiring extra permission
● Permission still needed to access items created by other apps

● File API is transparently rerouted to MediaStore provider

● Exemption: All files access permission
- Requires special approval for distribution through Google Play

Scoped Storage

Sources: developer.android.com, support.google.com

https://developer.android.com/about/versions/11/privacy/storage
https://support.google.com/googleplay/android-developer/answer/10467955

IAIK

Application Security

IAIK

Java Cryptography Architecture: Consumer abstracted from Implementor

● Cipher: Encryption and Decryption
● SecureRandom: Random Number Generation
● MessageDigest: Calculating hash values
● SecretKeyFactory: Deriving keys from passwords
● …

Java Secure Socket Extension:

● SSLSocket: Provides TLS and SSL communication

Android Cryptography APIs

IAIK

● Use Android’s HttpsURLConnection class
- By default: Secure TrustManager and HostnameVerifier

(Details depend on Android version)
- Possibility to use custom TrustManager and HostnameVerifier

● Use a third-party library such as OkHttp (built on top of SSLSocket)
- Usually secure custom TrustManager and HostnameVerifier
- Support self-signed certificates, certificate pinning, …

● Implement a custom HTTP stack on top of SSLSocket
- Secure system-default TrustManager
- HostnameVerifier up to developer!

HTTPS on Android

IAIK

● XML-based system for configuring self-signed certificates and pinning
● These use cases no longer require custom validation code
● Default NSC: Don’t trust user-installed CA certificates

However
● Even the NSC can be misconfigured

- Trust user-installed CAs
● Some applications still use custom TrustManagers or HostnameVerifiers

- Overrides the NSC system altogether
● NSC only works on Android 7 or later

- Silently ignored when app is run on older OS

Network Security Configuration (Android 7)

Source: developer.android.com

https://developer.android.com/training/articles/security-config

IAIK

Apps commonly make mistakes in their use of cryptographic primitives

● Cipher: Using ECB mode, Re-using IV and key combination
● SecureRandom: Re-using seed value
● MessageDigest: Using MD5 algorithm
● SecretKeyFactory: Too low iteration count, salt re-use
● SSLSocket: Insecure TrustManager

2020 study found that > 99% of apps using crypto APIs make some mistake

Crypto Misuse on Android

Source: Piccolboni et al: CRYLOGGER: Detecting Crypto Misuses Dynamically

https://arxiv.org/abs/2007.01061

IAIK

● Use trusted high-level libraries instead of re-inventing the wheel
- Crypto: Google Tink
- HTTPS: OkHttp

● Follow best practices from official developer documentation

● Do not trust random code snippets from StackOverflow

Avoiding Crypto API misuse

IAIK

Attacks and Malware

IAIK

● Android allows apps to display overlays on top of system UI
- Requires special permission (increasingly harder to obtain on modern Android)

● Accessibility Service apps can explore app UIs and inject input events
- Need to be explicitly enabled though system settings

This enabled

● Context-aware clickjacking
- Overlay system UI to trick user e.g. into granting specific permission

● Inferring on-screen keyboard input
- Through ingenious side-channel that exploits the mitigation against clickjacking

No longer possible on modern Android versions (overlays restricted)!

UI Deception

Source: Fratantonio et al.: Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback Loop

https://www.ieee-security.org/TC/SP2017/papers/117.pdf

IAIK

● Android apps may dynamically load code from external files
● It is possible to execute complete APKs in the context of another app

● Malicious app may pretend to be legitimate app
- By executing the original legitimate app in a malicious container
- Can intercept and extract all user data

● Malicious apps can evade detection by Play Store analysis
- Loading malicious components as plugins at runtime

Containerization

Sources: Shi et al: „VAHunt: Warding Off New Repackaged Android Malware in App-Virtualization’s Clothing”.
Luo et al: “Anti-Plugin: Don’t let your app play as an Android plugin” , blog.avast.com

https://dl.acm.org/doi/10.1145/3372297.3423341
https://www.blackhat.com/docs/asia-17/materials/asia-17-Luo-Anti-Plugin-Don't-Let-Your-App-Play-As-An-Android-Plugin-wp.pdf
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials

IAIK

Malicious apps may extract sensitive information using seemingly harmless
permissions

● Motion: Extract passwords from device movements (Cai et al, 2011)

● Sound: Use speaker and microphone as sonar, infer unlock patterns (Cheng et al., 2019)

● Power: Fingerprint websites from device’s power consumption (Quin et al, 2018)

● Time: Detect installed applications by timing API calls (Palfinger et al., 2020)

● Data: Fingerprint accessed websites from network traffic statistics (Spreitzer et al, 2018)

● Electromagnetic emissions: Extract screen content via SDR receiver (Liu et al, 2021)

Side Channels

https://www.usenix.org/legacy/events/hotsec11/tech/final_files/Cai.pdf
https://link.springer.com/article/10.1007/s10207-019-00449-8
https://ieeexplore.ieee.org/abstract/document/8456014
https://ieeexplore.ieee.org/abstract/document/9343137
https://dl.acm.org/doi/abs/10.1145/3212480.3212506
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4B-2_23021_paper.pdf

IAIK

● Benign applications may leak permissions to malicious apps
- E.g. due to exporting components designed for app-internal use

● Example:

Component Hijacking

public class VictimActivity extends Activity {
@Override
protected void onCreate(@Nullable Bundle savedState) {

Intent intent = new Intent(Intent.ACTION_CALL,
getIntent().getData());

startActivity(intent);
}

}

Victim App A (holds android.permission.CALL_PHONE)
public class AttackerActivity extends Activity {

@Override
protected void onCreate(@Nullable Bundle savedState) {

Intent intent = new Intent();
intent.setComponent(new ComponentName(”at.victim",

".VActivity"));
intent.setData(Uri.parse("tel://0800 123123"));
startActivity(intent);

}
}

Attacker App B (holds no permission)

<manifest package=”at.victim">
<uses-permission android:name="android.permission.CALL_PHONE" />
<application>

<activity
android:name=".VictimActivity"
android:exported="true”/>

</application>
</manifest>

VulnerableActivity.java

AndroidManifest.xml

➔ Attacker can initiate phone calls without
holding the corresponding permission

Source: Zhang et al.: AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks in Android Applications

https://www.ndss-symposium.org/wp-content/uploads/2017/09/10_4_1.pdf

Reverse-Engineering & Analysis

IAIK

● DEX code can be disassembled to SMALI IR using apktool
- Process is reversible -> Repackaging with added instrumentation code

● Alternatively, partly decompile the code to Java using JADX
- Usually not reversible (some needed information lost through compilation)
- Easier to analyse

Decompiling DEX Code

.super Ljava/lang/Object;

.method public static main([Ljava/lang/String;)V
.registers 2
sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream;
const-string v1, "Hello World!"
invoke-virtual {v0, v1}, Ljava/io/PrintStream;-

>println(Ljava/lang/String;)V
return-void

.end method

public static void main(String[] args) {
System.out.println(“Hello World!”);

}

IAIK

● Inspect and modify internal state

● Follow and manipulate control flow

● Android OS only allows attaching debugger to apps marked as debuggable
- Usually automatically added by Android Studio for debug builds

● Manifest can be patched to make production builds debuggable!
- Changes signature though

Debugger

IAIK

● Applications may implement some logic in native libraries
- Faster performance
- Use existing C/C++ libraries

● Machine code harder to reverse-engineer than DEX code
- Non-exported symbols stripped
- Control flow difficult to reconstruct

● Tools:
- Ghidra (Open Source)
- HexRays IDA Pro (Commercial $$$)

Native Code Analysis

IAIK

Apps are executed through the ART runtime ➔ opportunity for manipulation

● ART keeps method tables for every class
- Can overwrite pointers to exchange method implementations
- If method JIT/AOT-compiled: Some assembler vodoo required

● Xposed Framework: Embed manipulation primitives in Zygote process
- Make every app process (forked from Zygote) load Xposed modules

● Frida: Either inject into running process (root) or into APK file
- Dynamically manipulate app through Javascript console

Runtime Manipulation

IAIK

● 06.05.2021
- Static and Dynamic Application Analysis

● 20.05.2021
- Mobile Network Security

Outlook

