AIKfTU

Android Application Security

Mobile Security 2022

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at

Slides based on those by Johannes Feichtner

Outline

Android application format

App Distribution

Permissions

Data Storage

Application Security

Attacks and Malware
Reverse-Engineering & Analysis

New type of auto-rooting Android adware is
nearly impossible to remove

20,000 samples found impersonating apps from Twitter, Facebook, and others.

by Dan Goodin - Nov 4, 2015 11:15pm CET E

HHHH B
ROOT

APPS
#iHHHH#

KX UCR Today

Researchers have uncovered a new type of Android adware that's virtually impossible to uninstall. The
adware exposes phones to potentially dangerous root exploits and masquerades as one of thousands
of different apps from providers such as Twitter, Facebook, and even Okta, a two-factor authentication
service.

Source: http://goo.gl/bRWWGw

What?

20.000 trojanized apps with various
local root exploits: Memexploit,
Framaroot, ExynosAbuse

How?
e Repackaged > 1000 popular apps
e Distributed on 3rd party markets

Result
System applications with root

- Super-permissions to
break out of sandbox

IAIK T

Grazm

http://goo.gl/bRWWGw

.- bl
r7id=WhatsApp+Inc.
" href="/store/apps/developer?id=WhatsApp+Inc.
|C»

g - .e F & W EITEIIGS S We By W PuElviaines GEwes

itemprop="url

LA B A HLSY 7 2NNTINWQ VT yrvi gaiiacasavn
r7idsWhatsApp+Inc.%C2%A0" itemprop="url
href="/store/apps/developer?id=WhatsApp+Inc.%C2%A0
. == $6

/span

| &)

WhatsApp WhatsApp

s, WhatsApp Messenger s Update WhatsApp 4]
B WhatsApp Inc. Q Messenger
El PEGI3 WhatsApp Inc.
El PEGI3
8.77 MB/18.40 MB 47% X
@ Verified by Play Protect LSt
Contains ads
You Might Also Like MORE @ 0 @
N f ° ﬂ Downloads 6,614 2 Lifestyle Similar
Update WhatsApp Messenger
Messenger ¢ FacebookLite : YouTube ¢ Insta
Lite READ MORE
4.4% FREE 4.2x% FREE 4.3 FREE 4.5%
Call your friends Simple. Personal Share your location
Similar Apps MORE and family for free Real time messaging or nearby places

‘ -4-..m

4 Source: https://q00.ql/3F8JBG

What?

PlayStore listed fake
WhatsApp Messenger

How?

e Author added non-visible

Unicode character to
vendor name

e 1to 5 Mio. downloads

Problem

e Ad-loaded wrapper app to
download whatsapp.apk

e Barely visible in app list:
blank icon, no text

IAIK T

Grazm

https://goo.gl/3F8JBG

Multiple Layers of Defense

Google
Play

“Unknown
Sources /
/ Install

Warning /confirmation

Verify Apps

Consent :
Verify Apps |,

Warning 4

Runtime Secur

ity
/ Checks //\

7.
/

/ Sandbox &
/ / Permissions

|

Source:

http://goo.gl/7xZ4cd

Android Applications

Android App Development

Java Source

Android apps are developed in Java* and compiled to Dalvik Bytecode i

* Or other languages that compile to Java Bytecode (such as Kotlin)

4

|

—/

javac

Advantages:

e Apps compatible with all CPU architectures LEVE EEEEE G
e Use existing tools and libraries
e Convenient high-level language

d8

— Garbage collection
Dalvik
. Bytecode
Disadvantages:

e Slower than native code

)
—

IAIKgfaTU

Android Runtime

Responsible for executing Dalvik bytecode (DEX) on device

e ART Runtime:
— Interpretation: Quick start of newly installed apps
— Ahead-Of-Time compilation
— Just-In-Time compilation

e Parts of apps may also be compiled from C/C++ to native machine code
— Java Native Interface (JNI)

Android App Structure

Applications are packaged into APK files during build

ZIP file containing

File / Folder Purpose

assets/ Raw asset files, e.g. textures for games. Identified by filename

AndroidManifest.xml Meta data about app: Required permissions, app components, ...

classes.dex All classes in Dalvik bytecode

lib/ Compiled natiyg code §C/C++) as shared-objec.t“s (.s0)
Platform-specific versions, e.g. ARM (,armeabi“), ARMv7, x86, MIPS

res/ App resources, e.g. GUI layouts in XML format, graphics, colors, ...

resources.arsc Index of resources + compressed string resources

IAIK T

Grazm

Application Signing
APK files are signed by the application developer

e Self-signed X.509 certificate
e Package update requires same certificate

e Three different signing schemes

— v1: Signed individual uncompressed files, but not ZIP metadata
— v2: Signature over complete compressed data
— v3: Extends v2 with support for key rotation

— v4: Signature in separate file, supports verification during app download

Source: source.android.com IAIKﬂ-Ic:rLa!.

https://source.android.com/security/apksigning

Signing Dilemma
Application Signing != Code Signing

e Android supports code loading at runtime

— Useful for shared frameworks, testing, dynamic addon loading
— Can also be loaded from Internet!

— By loading & executing any other application’s code (createPackageContext API)

Problems

e Malicious app can evade detection by application analysts
e Code injection attacks on benign apps may affect millions of users!

Signing Dilemma

e Code is loaded from external domains via HTTP
— MITM! - Possible for attackers to modify / replace downloaded code
e Code is loaded and stored on device's file system
— E.g. Directories on external storage (SD card)
— Other apps may tamper additional code before loading
e Applications forge package names
— Package name not displayed during installation
— First-come, first serve > malicious app could be installed prior to legitimate one!

Conclusion: Real code signing (as on iOS) would
e ..mitigate many exploits & attack surfaces
e ..ease static application analysis significantly!

IAIKgfaTU

Application Signing: v1 vulnerability (Janus)

APKs signed with v1 signature scheme may be modified without breaking
signature

e Signature scheme v1 only signs file entries in the ZIP

e DEX code can be embedded in the ZIP file
— ZIP file: Trailer at end points to file entries
— DEX file: Header at start points to following data chunks
— A file can be a valid DEX file and ZIP file at the same time

e Android runtime supports running APK or DEX files
— File type confusion can be exploited

Source: guardsguare.com

https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare

App Distribution

App Sources

Android allows installation of apps from

e Google Play
— Trusted by default
— Requires license from Google

e Third-party app stores
— Amazon, F-Droid, Samsung,
— Popular in regions where Google Play is unavailable (China)
— Requires explicit permission to install apps

e From file system
— |If app available as .apk file
— Can be downloaded from anywhere

32 © "¢ 97%09:45

= Security

Encrypt phone

SIM card lock

Set up SIM card lock

Passwords

Make passwords visible

Device administration

Device administrators
View or deactivate device administrators

Unknown sources

Allow installation of apps from unknown
sources

Credential storage

Storage type

IAIK T

Grazm

Google Play

e Pre-installed on (almost) all Android devices
e User needs Google account
— App retrieval limited by customer age and geographic location

e Developer needs Google account
— Personal data validated and exposed publicly
— 20S one-time fee (+30% on all sales / 15% for small developers)

Security mechanisms
e Automated and manual app reviews

IAIKgfaTU

Google Bouncer (2012)

In a nutshell...

e Dynamic & static runtime analysis of every uploaded app

e Emulated Android environment based on gemu

e Runs for 5 minutes

e Uses Google's infrastructure / IP addresses for external network access

Analysis
1. Explore app by emulating Ul input, clicking, etc.
2. Check for known malware

— Malware signatures, heuristics, similarities, source / developer, third-party reports
— If flagged malicious - Manual analysis by human being
— If confirmed malicious - Goodbye Google account ©

Source: googlemobile.blogspot.com
IAIKgfaTU

http://googlemobile.blogspot.com/2012/02/android-and-security.html

2012: Playing with the Bouncer

e Remote connect-back shell by J. Oberheide and C. Miller
— https://www.youtube.com/watch?v=ZEIED2ZLEbQ

e Construct strings at runtime
— If Bouncer statically detects /system/bin/1s: never executed dynamically

e There are various ways to evade detection
— Only load malicious code after 5 minutes

: Automated app analysis is never perfect!

Source: J. Oberheide, C. Miller: "Dissecting the Android Bouncer” IAIK#TU
Grazm

https://www.youtube.com/watch?v=ZEIED2ZLEbQ
https://jon.oberheide.org/files/summercon12-bouncer.pdf

Verify Apps (2012)

[l o= 15:34

App scans extend to user side B Google Play Store

e Apps are verified / categorized prior to install A
— Remote database with malware signatures

Installing this app may harm
your device

e Sends log data, related URLs and device info to Google

This app is potentially dangerous. Installing it
may harm your device, incur unwanted usage
charges, or expose your personal information.

Google recommends that you do not install this

e Warn or block potentially harmful apps (PHA) o0

App name; "RSRSRRS"

| understand that this app may be
dangerous.

Cancel

©S 3

Source: androidauthority.com

IAIK T

Grazm

https://www.androidauthority.com/android-4-2-verify-apps-security-feature-explained-by-google-131514/

Verify Apps (2014 - 2017)

e Constantly scans installed apps instead of just at installation
— React to threats that only became known after installation

e Monitor device state
— Dead or Insecure: A device stopped checking up with Verify Apps server
— Likely either because malware disabled VA or device had to be reset
— Both indicate a previously installed app was malicious
— DOI app: Many devices DOI after installing this app

e The introduction of machine learning into Google’s app analysis

Sources: android.googleblog.com, android-developers.googleblog.com

https://android.googleblog.com/2014/04/expanding-googles-security-services-for.html
https://android-developers.googleblog.com/2017/01/findingmalware.html

Google Play Protect (2017-)

e Google Bouncer and Verify Apps were rebranded

v No problems found
Apps scanned at 7:40 AM. Play Protect

e ,Advanced similarity detection”
— Google claims to use machine learning algorithms
— No implementation details documented

e Unknown apps can be sent to Google servers
— For further analysis

e 2021: Separate app
— No longer integrated into Play Store

— Still depends on Google Play Services Can still be disabled by user!

Sources: security.gooaleblog.com, android.com, 9to5google.com IAIKﬂTU
Grazm

https://security.googleblog.com/2020/03/how-google-play-protect-kept-users-safe.html
https://www.android.com/intl/en_ie/play-protect/
https://9to5google.com/2017/07/19/google-play-protect-rollout/

Pirated Applications

e (Paid) APK files can be
— Extracted from Android devices
— Modified and resigned
— Redistributed on the Internet

e Pirated applications
— Paid applications for free, removed license checks, ...
— Commonly augmented with malicious components

e Android is prone to “Repackaging Attacks”
— Not possible on (unjailbroken) iOS!

Permissions

Android Permissions

The Android OS controls access to certain resources through Permissions

e OS defines a set of permissions, each with unique name
— E.g. android.permission.INTERNET
— Not all can be granted to third-party apps

e Developers specify needed permissions in AndroidManifest.xml
— Some granted at install, others require runtime user consent

e Enforced at different levels
— Kernel, e.g. INTERNET permission
— Native service level, e.g. READ_EXTERNAL_STORAGE for SD card access

IAIKgfaTU

Install-Time Permissions

12:35 £ A"

¢« DeskDock PRO

App permissions

Version 1.2.1-pro may request access to

|Q Storage

- modify or delete the contents of your
shared storage
« read the contents of your shared storage

Other

- run foreground service

+ This app can appear on top of other apps
» run at startup

+ Google Play license check

+ have full network access

« view network connections

+ view Wi-Fi connections

You can disable access for these permissions in Settings.
Updates to DeskDock PRO may automatically add additional
capabilities within each group.

Learn more

Granted at install time

Not even displayed to the user by default
— Hidden away in Play Store app details

No runtime checks required
Once granted, cannot be revoked
Fine-grained

Granted for all users on device

IAIK T

Grazm

Runtime Permissions

T 4 20:53

e Need to prompt for dangerous permissions

e Can be revoked by user at any time
— Android 13: Revocation also by app

Allow Translate to take . .
B ires and record e Granted / revoked with entire group

video?
— Accept ,PHONE" - Grant reading phone ID + calling

DENY ALLOW

e Managed individually per app and user

e Managable by device owner
— Useful for MDM

IAIKgfaTU

Permissions Groups

Normal permissions
Automatically granted at install, no user confirmation needed
For ex.: BLUETOOTH, CHANGE_ NETWORK_STATE, INTERNET, NFC, INSTALL_ SHORTCUT

Require explicit user approval at install or runtime
CALENDAR, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SENSORS, SMS, STORAGE

These permissions are grouped, e.g. PHONE = { READ_PHONE_STATE, CALL_PHONE, .. }
- You always grant entire group, e.g. allow reading phone ID + making calls!

Special permissions
Require manual activation through system settings
SYSTEM_ALERT_WINDOW, WRITE_SETTINGS, REQUEST INSTALL_ PACKAGES

IAIK T

Grazm

Custom Permissions

e Applications can define custom permissions

e Can be used for protecting access to app components
— ContentProviders, Services

e Developers can specify protection level

— Signature: Grant at install time only to apps signed with same certificate as the
app that defined the permission

— Dangerous: Show a dialog at runtime

Custom Permission Vulnerabilities (2021)

Stealthily obtain dangerous system permissions by misusing custom permissions

1. Install App A that defines a normal custom permission
2. Install App B that uses this custom permission
3. Uninstall App A and reinstall updated version

Redefines custom permission as dangerous, assigns it to known permission group

<permission android:name="com.test.cp"
android:protectionLevel="dangerous"
android:permissionGroup="android.permission-group.PHONE" />

4. App B now holds any permission in group android.permission-group.PHONE

— Can now initiate phone calls (system permission CALL_PHONE is in PHONE group)
— User was never asked

Source: Li et al.: Android Custom Permissions Demystified: From Privilege Escalation to Design Shortcomings

IAIK T

Grazm

https://ieeexplore.ieee.org/document/9519385

Data Storage

Data Storage on Android

File Scopes

App-Specific Files Public Files
e Private to the application e Not linked to a particular app
e Sharing must be initiated by the app ® Media, Documents, Downloads, ...

File Locations

Internal Storage

e Always available e Might be removable (SD, USB)
e Very limited capacity

IAIKgfaTU

Data Storage

On the first versions of Android, apps had
e Private folder(s) they could access without permissions

e Option to access (almost) full public file system by requesting permission
— Simply use Java File APIs

Today:
e Private folder(s) mostly staid the same

— Though additionally encrypted on Android 10+ to ward off root attackers
e Full public file system access no longer possible

e All public file access routed through system ContentProviders
— Fine-grained per-path access control

ContentProvider

e Android-specific component for sharing data across processes

e Every dataitem is addressed through a content:// URI

Your application

e Some implemented by the system

Your content o
E prOVider . ’
. . . ! implementation
e Others by third-party applications | ;

v

Your data
storage

e Optionally protected by permissions

Picture: developer.android.com / Apache 2.0

Source: developer.android.com
IAIK T

Grazm

https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/providers/images/content-provider-overview.png

ContentProviders for Data Storage

e App-Specific Files
— FileProvider: Implemented by apps to expose their files to other apps

e Media: Pictures, Audio, Videos
— MediaStore: Local centralised store, modifiable by apps
— CloudMediaProvider: Read-only media from cloud (Android 13)

e Documents: Editable files (+ anything that's not media)
— DocumentProviders: Central component of the Storage Access Framework
— May be organised in a nested hierarchy

Sources: developer.android.com, mediurm.com/androiddevelopers IAIKﬂTU
Grazm

https://developer.android.com/training/data-storage
https://medium.com/androiddevelopers/scope-storage-myths-ca6a97d7ff37

Storage Access Framework

An abstraction layer for file systems implemented on top of ContentProviders

e Several DocumentsProviders implement different data sources
— Have a concept of nested document trees (~ folders)
— External Storage
— Media Store (videos, photos, audio)
— Cloud Providers (Dropbox, Google Drive, ...)

e Data source transparent to consuming applications

e User grants access to individual document or document trees

Source: developer.android.com

https://developer.android.com/training/data-storage/shared/documents-files

Scoped Storage

In Android 11, SAF was made mandatory for accessing public files

e Apps may write to MediaStore without requiring extra permission
e Permission still needed to access items created by other apps

e File APl is transparently rerouted to MediaStore provider

e Exemption: A// files access permission
— Requires special approval for distribution through Google Play

Sources: developer.android.com, support.google.com

https://developer.android.com/about/versions/11/privacy/storage
https://support.google.com/googleplay/android-developer/answer/10467955

Application Security

Android Cryptography APIs

Java Cryptography Architecture: Consumer abstracted from Implementor

e Cipher: Encryption and Decryption

e SecureRandom: Random Number Generation

e MessageDigest: Calculating hash values

e SecretKeyFactory: Deriving keys from passwords
o

Java Secure Socket Extension:

e SSLSocket: Provides TLS and SSL communication

HTTPS on Android

e Use Android's HttpsURLConnection class

— By default: Secure TrustManager and HostnameVerifier
(Details depend on Android version)

— Possibility to use custom TrustManager and HostnameVerifier

e Use a third-party library such as OkHttp (built on top of SSLSocket)
— Usually secure custom TrustManager and HostnameVerifier
— Support self-signed certificates, certificate pinning, ...

e Implement a custom HTTP stack on top of SSLSocket
— Secure system-default TrustManager
— HostnameVerifier up to developer!

Network Security Configuration (Android 7)

e XML-based system for configuring self-signed certificates and pinning
e These use cases no longer require custom validation code
e Default NSC: Don't trust user-installed CA certificates

However

e Even the NSC can be misconfigured
— Trust user-installed CAs

e Some applications still use custom TrustManagers or HostnameVerifiers
— Overrides the NSC system altogether

e NSC only works on Android 7 or later
— Silently ignored when app is run on older OS

Source: developer.android.com

https://developer.android.com/training/articles/security-config

Crypto Misuse on Android

Apps commonly make mistakes in their use of cryptographic primitives

e Cipher: Using ECB mode, Re-using IV and key combination
e SecureRandom: Re-using seed value

e MessageDigest: Using MD5 algorithm

e SecretKeyFactory: Too low iteration count, salt re-use

e SSLSocket: Insecure TrustManager

2020 study found that > 99% of apps using crypto APls make some mistake

Source: Piccolboni et al: CRYLOGGER: Detecting Crypto Misuses Dynamicall IAIK#TU
Grazm

https://arxiv.org/abs/2007.01061

Avoiding Crypto APl misuse

e Use trusted high-level libraries instead of re-inventing the wheel

— Crypto: Google Tink
— HTTPS: OkHttp

e Follow best practices from official developer documentation

e Do not trust random code snippets from StackOverflow

Attacks and Malware

Ul Deception

e Android allows apps to display overlays on top of system Ul

— Requires special permission (increasingly harder to obtain on modern Android)
e Accessibility Service apps can explore app Uls and inject input events

— Need to be explicitly enabled though system settings

This enabled

e Context-aware clickjacking
— Overlay system Ul to trick user e.g. into granting specific permission
e Inferring on-screen keyboard input
— Through ingenious side-channel that exploits the mitigation against clickjacking

No longer possible on modern Android versions (overlays restricted)!

Source: Fratantonio et al.: Cloak and Dagger: From Two Permissions to Complete Control of the Ul Feedback Loop IAIKﬂ-I;U
razm

https://www.ieee-security.org/TC/SP2017/papers/117.pdf

Containerization

e Android apps may dynamically load code from external files
e |[tis possible to execute complete APKs in the context of another app

e Malicious app may pretend to be legitimate app
— By executing the original legitimate app in a malicious container
— Can intercept and extract all user data

e Malicious apps can evade detection by Play Store analysis
— Loading malicious components as plugins at runtime

Sources: Shi et al: ,VAHuUNt: Warding Off New Repackaged Android Malware in App-Virtualization's Clothing’. IAIK T
Luo et al: "Anti-Plugin: Don't let vour app play as an Android plugin”, blog.avast.com

Grazm

https://dl.acm.org/doi/10.1145/3372297.3423341
https://www.blackhat.com/docs/asia-17/materials/asia-17-Luo-Anti-Plugin-Don't-Let-Your-App-Play-As-An-Android-Plugin-wp.pdf
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials

Side Channels

Malicious apps may extract sensitive information using seemingly harmless
permissions

e Motion: Extract passwords from device movements ..o

e Sound: Use speaker and microphone as sonar, infer unlock patternso

e Power: Fingerprint websites from device’s power consumption ... o5

e Time: Detect installed applications by timing APl calls oo o0 00

e Data: Fingerprint accessed websites from network traffic statistics ..o 00

e Electromagnetic emissions: Extract screen content via SDR receiver ...

IAIK T

Grazm

https://www.usenix.org/legacy/events/hotsec11/tech/final_files/Cai.pdf
https://link.springer.com/article/10.1007/s10207-019-00449-8
https://ieeexplore.ieee.org/abstract/document/8456014
https://ieeexplore.ieee.org/abstract/document/9343137
https://dl.acm.org/doi/abs/10.1145/3212480.3212506
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4B-2_23021_paper.pdf

Component Hijacking

e Benign applications may leak permissions to malicious apps
— E.g. due to exporting components designed for app-internal use
e Example:

Victim App A (holds android.permission.CALL_PHONE) Attacker App B (holds no permission)

public class VictimActivity extends Activity { public class AttackerActivity extends Activity {
@Override @Override
protected void onCreate(@Nullable Bundle savedState) { protected void onCreate(@Nullable Bundle savedState) {
Intent intent = new Intent(Intent.ACTION_CALL, Intent intent = new Intent();
getIntent().getData()); intent.setComponent(new ComponentName(”at.victim",
startActivity(intent); ".VActivity"));
} intent.setData(Uri.parse("tel://0800 123123"));
} startActivity(intent);
}
<manifest package="at.victim"> ¥
<uses-permission android:name="android.permission.CALL_PHONE" />
<application>
N R T et et - Attacker can initiate phone calls without
U G s holding the corresponding permission
</application>
</manifest>

Source: Zhang et al.: AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks in Android Applications IAIK 1(:
razm

https://www.ndss-symposium.org/wp-content/uploads/2017/09/10_4_1.pdf

Reverse-Engineering & Analysis

Decompiling DEX Code

e DEX code can be disassembled to SMALI IR using apktoo/
— Process is reversible -> Repackaging with added instrumentation code

.super Ljava/lang/Object;

.method public static main([Ljava/lang/String;)V

.registers 2 public static void main(String[] args) {
sget-object vO, Ljava/lang/System;->out:Ljava/io/PrintStream; System.out.println(“Hello World!”);
const-string v1, "Hello World!" }

invoke-virtual {v@, v1}, Ljava/io/PrintStream;-
>println(Ljava/lang/String;)V

return-void
.end method

e Alternatively, partly decompile the code to Java using JADX
— Usually not reversible (some needed information lost through compilation)
— Easier to analyse

IAIK T

Grazm

Debugger

e Inspect and modify internal state
e Follow and manipulate control flow

e Android OS only allows attaching debugger to apps marked as debuggable
— Usually automatically added by Android Studio for debug builds

e Manifest can be patched to make production builds debuggable!
— Changes signature though

Native Code Analysis

e Applications may implement some logic in native libraries
— Faster performance
— Use existing C/C++ libraries

e Machine code harder to reverse-engineer than DEX code
— Non-exported symbols stripped
— Control flow difficult to reconstruct

e Tools:
— Ghidra (Open Source)
— HexRays IDA Pro (Commercial $SSS)

Runtime Manipulation

Apps are executed through the ART runtime = opportunity for manipulation

e ART keeps method tables for every class
— Can overwrite pointers to exchange method implementations
— |If method JIT/AOT-compiled: Some assembler vodoo required

e Xposed Framework: Embed manipulation primitives in Zygote process
— Make every app process (forked from Zygote) load Xposed modules

e Frida: Either inject into running process (root) or into APK file
— Dynamically manipulate app through Javascript console

e 06.05.2021
— Static and Dynamic Application Analysis

e 20.05.2021
— Mobile Network Security

