
IAIK

IAIK

iOS Application Security
Mobile Security 2021

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● App-Level Security on iOS

 (Real) Code Signing

 Sandbox

● App Internals

● App Analysis on iOS

 Case Studies with Real Apps

Outline

IAIKSource: https://goo.gl/8X11Rf

https://goo.gl/8X11Rf

IAIK

What?
Location data of popular apps leaked to
12 known monetarization firms

● Bluetooth LE Beacon Data

● GPS Longitude and Latitude

● Wi-Fi SSID (Network Name) and BSSID
(Network MAC Address)

● Further device data

 Accelerometer, Cell network
MCC/MNC, Battery Charge % and
status (Battery or charged via USB)

Problem?
Users agree on sharing their location for
different purposes, e.g. „Location based
social networking for meeting people
nearby”Source: https://goo.gl/FjCesH

https://goo.gl/FjCesH

IAIK

What?
13 devices enrolled to attacker-controlled
MDM server after physical access or via
social engineering

Problem?
● MDM enrollment brought certificate

Trust to apps signed by third-party

● Inject code into messenger apps

● Upload to attacker server

Source: https://goo.gl/atCYu2

Source: https://goo.gl/d6V67E

https://goo.gl/atCYu2
https://goo.gl/d6V67E

IAIK

How?
1. User visits MDM web frontend

 http://ios-certificate-update.com

 http://www.wpitcher.com

2. Device enrolment with user interaction

 Certificate authority installed

 MDM has full control over device

3. Use BOptions sideloading technique to
inject dynamic lib into legitimate app

 Malware in custom BOptionspro.dylib

 Bundled with original iOS app

 Lib can ask for more permissions,
execute code, steal info from original app

 Backdoor code to read/send data from
WhatsApp, Telegram, … databases to C2 server
http://techwach.com

Source: https://goo.gl/d6V67E

https://goo.gl/d6V67E

IAIK

App-Level
Security

IAIK

Officially…
● Via Apple App Store

 Pre-installed on all iDevices

 Only manually reviewed apps!

 Developer‘s identities are verified by Apple

● Enterprise Mobile Device Management

● Sideloading

 Signing app with developer certificate

 Install / „trust“ developer certificate on device via Xcode

With Jailbreak
● Via file system

● Cydia package manager

Installing iOS Apps

IAIK

Review process
1. Developer uploads app

2. Enter queue for manual review (on re-upload: back to start)

3. Enter review in progress

 On reject: Notification with reason

 On success: App release

● 40 reviewers in 2009, each app with >= 2 reviews

● Focus on bugs, instabilities, privacy violations, censorship, …

● Details about security checks not known

+ Quality control and nearly no evil apps

- Not possible to fix bugs / security issues quickly

Apple App Store

http://goo.gl/NSthWH

http://goo.gl/NSthWH

IAIK

All binaries and libraries must be signed!

● Or phone is specially provisioned

● Main reason why apps have to come from official store

● Signing certificates trusted on every device

● Trust Chain with Intermediate & Root CAs stored in OS

How to verify signatures?
1. Get team ID from certificate

2. Check if used libraries & app binary match signature

3. Linking with same signature as executable always possible

Code Signing

IAIK

When?
● Upon app or binary execution (= at runtime)

● Process may only execute if signed with valid & trusted signature

Security implications
● Ensures that process stays dynamically valid

 No introduction of new executable code

 Existing executable code cannot be changed

● Guarantees that running app == reviewed app

● Prevents code injection

 W^X policy: No memory pages are writable & executable

Code Signing Enforcement

IAIK

How to deploy apps as developer?
1. Generate private keys

2a. Certificate issued by Apple

2b. Specific certificates
 not trusted on devices by default!

How to establish trust?
Using „Provisioning Profiles“:

Set of iOS development certificates,
unique device identifiers, and App ID

Code Signing: Developer

IAIK

How to deploy apps as company?
● Like developer but multiple devices in „Team Provisioning Profile“

● Individually approved by Apple

● Companies can directly deploy anything (no AppStore submission!)

● User implicitly trusting all apps from same enterprise app store

 Needed for MDM!

Code Signing: Enterprise

IAIK

Profiles installed /
acked by user!

App

Sig

App Store

App

Sig

Developer

Developer iPhone (D1 or D2)

Apple Store
Sig CA

Standard iPhone

Trust

Apple Store
Sig CA

Trust

Dev Cert

Dev Cert
D1 ID
D2 ID

Enterprise
Cert

*

Apple Store
Sig CA

App

Sig

App

Sig

Enterprise

App

Sig

App

Sig

Dev Cert
Enterprise

Cert
Contract

with Apple

Dev CA
Enterprise

CA

Apple Store
Cert

Apple CAs

Sig Sig

IAIK

Interaction
1. App tells how it wants to interact

 System grants (only) minimal rights to app

2. User action requires access to system APIs granted transparently

 E.g., open / save dialogs, drag & drop, paste

Protected access (only with entitlement)

● Hardware (Camera, Microphone, …)

● Network Connections

● App Data (Calendar, Location, Contacts)

● User Files (Downloads, Music, Pictures, …)

Unprotected access (always possible): World-readable system files, invoke services

Sandbox

IAIK

In Practice
● Most apps run under same user mobile

 Only few system apps & services as root

● Separate container for each app

 Custom implementation of syscalls mmap and mprotect

 Apps cannot set memory pages executable

 Stop processes from executing
dynamically generated code

 App process restricted to own
directory via chroot-like process

● Hardware driver access
only via Apple frameworks

Sandbox

Source: https://goo.gl/SL4BCs

https://goo.gl/SL4BCs

IAIK

● No permission granting at installation

 Only during runtime!

● Can be revoked in app settings

● Workflow

 First API access: Request user

 Further API access:
Refer to saved permission state

Note: Only way to remove internet access for app
 Turn off your WiFi / LTE connection…

iOS Permissions

IAIK

● Apps do not directly request permissions

 Developers do not have to specify which they want to use

 Depending on use of sensitive APIs

● Example: App wants to access user‘s contacts

 App calls method from CNContactStore class

 Since iOS 10: Apps must present description
how requested data is used

 API access blocked until permission granted / denied

● Sensitive APIs
Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,

Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

iOS Permissions

IAIK

● Reduced attack surface stripped down OS

 Lots of useful binaries missing, e.g. no /bin/sh no „shell“ code

 Even if shell no ls, rm, ps, etc.

 With code execution, what could you do?

● Not many applications to attack

 No Flash, Java

 Mobile Safari does not render same files as desktop Safari (QT)

● Privilege separation

 Most processes run as user „mobile“

Mobile Safari, Mobile Mail, Springboard, etc

 Many resources require root privileges

Malware?

IAIK

● Maiyadi App Store

 3rd Party Mac AppStore in China

 Hosts „free“ apps

● Code signatures can be disabled on macOS

Attack scenario
1. macOS infection

2. App installed via cable on iPhone,
signed with enterprise app store cert
(User has to trust Provisioning profile!)

3. On normal (not profile trusting) phones:
Not malicious but botnet contact

Wirelurker Malware

Source: https://goo.gl/tirnTD

https://goo.gl/tirnTD

IAIK

Solution
Apple has to revoke enterprise certificate
 If certificate revoked, apps cannot be started anymore

Detailed info: https://www.zdziarski.com/blog/?p=4140

Inferred problems
● Protect iTunes pairing better!

● Code Signature Certificate Pinning

● Accept enterprise provisioning profiles with one-click

 Why are they needed for standard devices in the first place?

Wirelurker Malware

https://www.zdziarski.com/blog/?p=4140

IAIK

App Internals

IAIK

From Apple
● Compiled into kernel, less restrictive

● Can: open SMS database but can not: send SMS, fork()

● Also run in sandbox: Mobile Safari, Mobile Mail, Mobile SMS

 As user mobile

From App Store
● More restrictive sandbox

● Cannot access most of file system

 Generally restricted to app’s home directory

● Further restrictions on API usage by Apple

 Data Protection for files and databases

App Types

IAIK

● Distributed in IPA format (“iOS App Store Package”)

● ZIP archive with all code + resources

App Files

$ unzip SuperPassword.ipa –d acndemo

$ ls -R acndemo/

/Payload/SuperPassword.ipa/ App itself + static resources

-> SuperPassword “Fat Binary” executable (ARM-compiled code)

-> Info.plist Bundle ID, version number, app name to display

-> MainWindow.nib Default interface to load when app is started

-> Settings.bundle App-specific preferences for system settings

-> further resources Language files, images, sounds, more GUI layouts (nib)

/iTunesArtwork 512x512 pixel PNG image -> app icon

/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.

IAIK

App Installation
● Until iOS 8

 Unpacking to /var/mobile/applications/<APP_UUID>

 APP_UUID = 128-bit number to uniquely identify app

● Since iOS 10

 /private/var/mobile/Containers/Bundle/Application/<APP_UUID>/

 App bundle (ARM binary, static resources)

 Content of this folder used to validate code signature of app

 /private/var/mobile/Containers/Data/Application/<APP_UUID>/

 User-generated app data

 Subfolder „Library“: Cookies, caches, preferences, configuration files (plist)

 Subfolder „tmp“: Temp files for current app launch only (not persisted)

 /private/var/mobile/Containers/Shared/AppGroup/<APP_UUID>/

 To share with other apps & extensions of same app group

IAIK

● „Fat Binary“ Includes bins for ARMv7, ARMv8, …

● Each binary is in Mach-O format

 Header

 Identification

 Architecture

 Load commands

 Virtual Memory Layout

 Libraries

 Code signature

 Encryption

 Data

 Executable code

 Read / write data

 Objective C runtime information

iOS Executable

IAIK

iOS App Analysis

IAIK

 Traditionally two approaches

 Dynamic Analysis: Monitor live file access using jailbroken device

 Static Analysis: Look for file API calls + parameters in binary dump

Challenge?

● iOS apps are compiled down to native code

 Analysis on disassembly, e.g. using Ghidra or Hopper

 Hard to find the needle in the haystack

● How do you get apps for analysis?

 All binaries encrypted by Apple decryptable but anyway…

 Need jailbroken device but jailbreaking is no „feature by design“

Application Analysis

IAIK

Encryption appears to be custom
C++ implementation

Case Study: Viber

IAIK

Case Study: Viber

IAIK

Case Study: WhatsApp
$ cd /private/var/mobile/Containers/Shared/AppGroup

$ ls -l 332A098D-368C-4378-A503-91BF33284D4B/

-> Axolotl.sqlite

-> ChatSearch.sqlite

-> ChatStorage.sqlite

-> Contacts.sqlite

-> StatusList.plist

-> SyncHistory.plist

-> calls.backup.log

...

● Deleting messages from WhatsApp message still in SQLite DB

 Deleting SQLite records sets them free but does not clear them

 Can be recovered as long as not overwritten
See: https://goo.gl/nce4jo

https://goo.gl/nce4jo

IAIK

Case Study: WhatsApp

● Messages - ZWAMESSAGE

 Also in file ChatSearch.sqlite

● Open chats - ZWACHATSESSION

 Single user & group chats

● Media location - ZWAMEDIAITEM

● …

$ sqlite3 ChatStorage.sqlite

SQLite version 3.8.4.3 2014-04-03 16:53:12

Enter ".help" for usage hints.

sqlite> .tables

ZWABLACKLISTITEM ZWAGROUPINFO ZWAMESSAGE Z_METADATA ZWACHATPROPERTIES

ZWAGROUPMEMBER ZWAMESSAGEINFO Z_PRIMARYKEY ZWACHATSESSION ZWAMEDIAITEM

ZWAMESSAGEWORD See: https://goo.gl/bfXqGd

https://goo.gl/bfXqGd

IAIK

Case Study: Telegram

sqlite> SELECT * FROM encrypted_cids_29;

encrypted_id = 1824030108

cid = -2147483648

encrypted_id = ...

cid = ...

● Lots of data also stored in Shared directory

● Documents folder contains tgdata.db

 Contains all information about contacts, conversations, files exchanged, etc.

 SQLite db recovery of deleted chats possible as with WhatsApp

 Tables

messages_v29: List of all exchanged messages

 conversations_v29: List of active chats

 encrypted_cids_v29: Conversation IDs of secret chats

sqlite> SELECT * FROM messages_v29;

cid = -2147483648

message = Once I was a secret chat...

from_id = 243610671

to_id = -2147483648

...

IAIK

Case Study:
Crypto Misuse

in iOS Applications

Paper: Automated Binary Analysis on iOS - A Case Study on Cryptographic Misuse in iOS Applications.
Feichtner, J., Missmann, D. & Spreitzer, R. 2018 Proceedings of the 11th ACM Conference on Security & Privacy
in Wireless and Mobile Networks. New York: ACM, New York, p. 236-247 12 p.

IAIK

● Decompiling machine code

 No(?) ARMv8 64-bit decompiler to LLVM IR available

● Language pecularities

 Dynamic control-flow decisions during runtime information flow?

 Information about types lost during compilation (but still in binary!)

● Pointer analysis

 Where do different variables point to during execution?

 How to deal with aliasing?

 Potential trade-off: accuracy of slides <-> runtime overhead of points-to analysis

Challenges

IAIK

● Framework to automatically track definable method invocations in iOS apps

● General design but study focus on misconceptions in crypto API usage

Features
● Generic decompiler for ARMv8 64-bit LLVM IR code

 Also handles language pecularities of iOS binaries

● Pointer Analysis

 Handle Aliasing, reconstruct original call graph

● Static Slicing

 Extract individual execution paths for parameter backtracking

● Evaluates „security rules“

Our Solution

Source Code: https://github.com/IAIK/ios-analysis

https://github.com/IAIK/ios-analysis

IAIK

1. No ECB mode for encryption

2. No non-random IV for CBC encryption

3. No constant encryption keys

4. No constant passwords or salts for PBE

5. Not fewer than 1000 iterations for PBE

6. Do not use static seeds to seed SecureRandom

Goals
● Transform these “common sense” rules for iOS

 Different defaults (CBC instead of ECB), Rule 6 cannot be violated on iOS

 Adapted for system crypto provider CommonCrypto

● Automatically check these issues in arbitrary apps

Security Rules

Proposed by
Egele et al.:
CryptoLint

IAIK

Problem
● IV constant or predictable deterministic / stateless encryption scheme

● Susceptible to Chosen-Plaintext Attack

Our „Security Rule“
● Precondition: Cipher uses CBC mode

● Slicing criteria

● IV should be “random” / generated by cryptographically secure RNG, e.g. using

 CCRandomGenerateBytes() in CommonCrypto or

 SecRandomCopyBytes() in Security library

„No non-random IV for CBC encryption“

CCrypt(...,X5,...), CCCryptorCreate(...,X5,...), CCCryptorCreateWithMode(...,X4,...)

IAIK

Motivation
● „Does our framework also perform with real-world applications?“
● „What are our security rules able to cover?“
● „Do iOS developers know how to apply crypto APIs correctly?“ :-)

Method & Dataset
● Manual analysis

 15 open-source apps from Github using CommonCrypto
 Refined framework / security rules where necessary

 Validated execution paths manually using source codes

● Automated analysis

 634 free applications from official iOS App Store (> 10.000 installations each)

 Only apps where crypto usage seemed obvious, e.g. password managers

Evaluation Scenario

IAIK

Framework

Security rules Origin of constant secrets

Evaluation Results

IAIK

Framework
● Context- and field-insensitive approach

 Parameter backtracking might also track spurious execution paths

● UI elements

 E.g. backtracking password input might end at externally defined UITextField object

Security Rules
● Not aware of custom implementations / 3rd party crypto libs

● Only evaluate what you specify…

 „Home-brew“ encryption keys fly below the radar…

 Passwords padded with NULL bytes / truncated to key length count as „non-constant“ input

Limitations

IAIK

● Novel approach to tackle automated analysis of iOS applications

 ARMv8 64-bit decompiler

 Pointer Analysis

 Static Slicing

 Parameter Backtracking

● Case Study on 417 applications using crypto APIs

 Security rules targeting common crypto misuse

 Iteratively refined approach using open-source applications

 343 / 417 (82%) apps violate at least one security rule
Mostly: Use of non-random IV (69%), constant keys (64%), ECB mode (27%)

Conclusion

IAIK

● 22.04.2021

 Android Platform Security

● 29.04.2021

 Application Security on Android

Outlook

