
IAIK

IAIK

Android Application Security
ACN / Mobile Security 2020

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● What happens on app installation?

● What is an Android app actually?

● Permissions?

Outline

IAIK

What?
20.000 trojanized apps with various
local root exploits: Memexploit,
Framaroot, ExynosAbuse

How?
● Repackaged > 1000 popular apps

● Distributed on 3rd party markets

Result
System applications with root

 Super-permissions to
break out of sandbox

Source: http://goo.gl/bRWWGw

http://goo.gl/bRWWGw

IAIK

What?
PlayStore listed fake
WhatsApp Messenger

How?
● Author added non-visible

Unicode character to
vendor name

● 1 to 5 Mio. downloads

Problem
● Ad-loaded wrapper app to

download whatsapp.apk

● Barely visible in app list:
blank icon, no text

Source: https://goo.gl/3F8JBG

https://goo.gl/3F8JBG

IAIK

Application Security

Android Application Security

Install
Confirmation

Google
Play Unknown

Sources
Warning

Verify Apps
Consent

Verify Apps
Warning

Runtime Security
Checks

Sandbox &
Permissions

Multiple Layers of Defense

Source: http://goo.gl/7xZ4cd

http://goo.gl/7xZ4cd

IAIK

1. Google Play or „Unknown Sources“ warning (requiring user confirmation)

2. Install confirmation shows user requested permissions

3. Verify app: check against DB of malware before installation since Android 4.2

Can be disabled by user!

4. Application sandbox and runtime checks

Weakest link in chain: The user!
Note: Google‘s defense layer protects Android, not your data!

App Installation Process

IAIK

● Pre-installed on (almost) all Android devices

● User needs Google account

 App retrieval limited by customer age and geographic location

● Developer needs Google account

 Personal data validated and exposed publicly

 Must not deploy app elsewhere „non-compete clause“ in Distribution Agreement

Security mechanisms
● Control instrument for app distribution (review, stop dist., remove app)

● Google Bouncer: In-house malware detection system

● Applications have to be self-signed

 No modified app can be installed or updated

Google PlayStore

IAIK

In a nutshell…
● Dynamic & static runtime analysis of every uploaded app

● Emulated Android environment based on qemu

● Runs for 5 minutes

● Uses Google‘s infrastructure / IP addresses for external network access

Analysis
1. Explore app by emulating UI input, clicking, etc.

2. Check for known malware bugs

 Malware signatures, heuristics, similarities, source / developer, third-party reports

 If flagged malicious Manual analysis by human being

 If deemed malicious Goodbye Google account

Google Bouncer

IAIK

● Remote connect-back shell by J. Oberheide and C. Miller

 https://www.youtube.com/watch?v=ZEIED2ZLEbQ

● Construct strings at runtime

 E.g. app with call to /system/bin/ls never executed dynamically

● Detect emulation through API calls (http://goo.gl/eAPIHz)

 TelephonyManager.getDeviceId() == 0 emulator!

 Build.HARDWARE == „goldfish“ emulator!

Conclusion: Dynamic app analysis is never perfect!

Playing with the Bouncer

https://www.youtube.com/watch?v=ZEIED2ZLEbQ
http://goo.gl/eAPIHz

IAIK

First visible layer of defense on device

● By default, no apps from 3rd party stores

 Amazon, F-Droid, Samsung

 Security checks?

● From file system

 If app available as .apk file

 Can be downloaded from anywhere

Unknown Sources

IAIK

Second visible layer…

● Apps are verified / categorized prior to install

 Remote database with malware signatures

 Verification agents

With Google Play: Since Android 2.3

 For others: Since android 4.2

● Warn or block potentially harmful apps

Verify Apps

 Backdoors

 Fraudware

 Hostile downloaders

 Phishing apps

 Privilege Escalation apps

 Rooting apps

 Spyware

 Trojans / Trojanized apps

Can be disabled by user!

IAIK

Extended verification since Android 8

● Malware Scanning

 PlayStore service scans and reports apps on device

 Now also for unknown / side-loaded apps

● SafetyNet Verify Apps („Attestation“) API

 „Let developers understand if a device is tampered“

 App can request to be run in certain environment,
e.g. not-rooted, custom ROM, API hooking, etc.

 Send compatibility check request to Attestation API

 Can refuse to run if known „bad“ app or setting is found

Google Play Protect

IAIK

Android App Structure
com.example.app.apk
- assets/
- AndroidManifest.xml
- classes.dex
- resources.arsc
- lib/

- armeabi-v7a/
- libapp.so

- META-INF/
- CERT.RSA
- CERT.SF
- MANIFEST.MF

- res/
- drawable/
- layout/
- xml/

Code and resources (common)

/data/app/com.example.app/
- lib/arm/libapp.so
- oat/arm/base.odex
- base.apk

Data (per user)

/data/user/0/com.example.app/
- files/
- databases/
- shared_prefs/

/data/user/1/com.example.app/
- …

IAIK

Android App Structure
File / Folder Purpose

assets/ Raw asset files, e.g. textures for games. Identified by filename

AndroidManifest.xml Meta data about app: Required permissions, app components, …

classes.dex All classes in Dalvik bytecode

lib/
Compiled native code (C/C++) as shared-objects (.so)
Platform-specific versions, e.g. ARM („armeabi“), ARMv7, x86, MIPS

META-INF/

MANIFEST.MF Enumeration of all files in app package + SHA-1 checksums

CERT.SF Signature file. Digest of manifest file + individual digests per app file

CERT.RSA Digital signature over CERT.SF + developer‘s signing certificate

res/ App resources, e.g. GUI layouts in XML format, graphics, colors, …

resources.arsc Resource meta data (binary format). Listing of all uses resources

IAIK

Package Directories
ls –l /data/user/0/

drwxr-x--x bluetooth bluetooth com.android.bluetooth
drwxr-x--x system system com.android.keychain
drwxr-x--x u0_a4 u0_a4u com.android.providers.calendar
drwxr-x--x system system com.android.providers.settings
drwxr-x--x radio radio com.android.providers.telephony
drwxr-x--x u0_a5 u0_a5u com.android.providers.userdictionary
drwxr-x--x u0_a27 u0_a27u com.android.proxyhandler

● Updating system apps /system partition usually not writable!

 /system/app/ /data/app/

● “Forward locking” = copy protection of apps. Default: world-readable .apk files

 World-readable resources (/data/app/) and code separate (/data/app-private/)

 Mainly for paid apps (DRM)

IAIK

Permission = Ability to perform particular operation

● Assignment
 Typically at install time (AndroidManifest.xml)

 Also at runtime since Android 6.0

● Enforced at different levels

 Kernel, e.g. INTERNET permission

 Native service level, e.g. READ_EXTERNAL_STORAGE for SD card access

 Framework level

 Dynamic: Check for permission in app while executing

 Static: Intents, Content Providers

Android Permissions

<uses-permission android:name=“android.permission.CAMERA” />

IAIK

Normal permissions
Automatically granted, no user confirmation needed

For ex.: BLUETOOTH, CHANGE_NETWORK_STATE, DISABLE_KEYGUARD, FLASHLIGHT, INTERNET,
NFC, USE_FINGERPRINT, SET_ALARM, INSTALL_SHORTCUT, VIBRATE

Dangerous permissions
Require explicit user approval at install or runtime

CALENDAR, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SENSORS, SMS, STORAGE

Problem due to grouping
E.g. PHONE = { READ_PHONE_STATE, CALL_PHONE, … }

 You always grant entire group, e.g. allow reading phone ID + making calls!

Permissions Groups

IAIK

● All permissions granted at install time

● With Android 4.2+
Only dangerous permissions require confirmation

● No runtime checks required

● Once granted, cannot be revoked

● Fine-grained

● Granted for all users on device

Install-Time Permissions

IAIK

● Need to prompt for dangerous permissions

● Can be revoked at any time

● Granted / revoked with entire group

 Accept „PHONE“ Grant reading phone ID + calling

● Managed individually per app and user

● Managable by device owner

 Useful for MDM

Runtime Permissions

IAIK

For all .apk files
 Self-signed X.509 certificate

 Not using PKI no certificate chain of trust!

 Individual signature for each file included in APK

Attacker cannot simply exchange file in app package!

 Signing certificate == Package & developer identity

 Package update requires same certificate

For update packages (OTAs)
 Modified ZIP format

 Signature in ZIP comment over whole file

 Verified by OS and recovery

Application Signing

IAIK

Application Signing != Code Signing

 Android supports code loading at runtime

 Useful for shared frameworks, testing, dynamic addon loading

 Can also be loaded from Internet!

 Using various class loaders (APK, JAR, pure dex files, optimized dex files)

 By loading & executing any other application‘s code (createPackageContext API)

Problems
● Malicious app can evade detection by Google Bouncer & app analysis

 Some remedy provided with Google PlayProtect (since Android 8)

● Code injection attacks on benign apps may affect millions of users!

Signing Dilemma

IAIK

What if…
● Code is loaded from external domains via HTTP

 MITM! Possible for attackers to modify / replace downloaded code

● Code is loaded and stored on device‘s file system

 E.g. Directories on external storage (SD card)

 Other apps may tamper additional code before loading

● Applications forge package names

 Name not displayed during installation

 First-come, first serve malicious app could be installed prior to legitimate one!

Conclusion: Real code signing (as on iOS) would

● …mitigate many exploits & attack surfaces

● …ease application analysis significantly!

Signing Dilemma

IAIK

● Developed by „Equus Technologies“ (Israel)

● 20 apps in Play Store, installed on 100 devices

 „Backup, Cleaner, Recorder, Notepad, …“

Two-stage approach
1. Clean app in PlayStore (stage 1)

 After install, „License Verification“ loads stage 2

 Check device properties (platform, version, etc.) and abort criteria

2. If all clear, stage 2 uses root exploits to gain system permissions

Result
Attacker has full control over device and sensors via C&C servers

Source: https://goo.gl/K7Ea3a

Case Study: Lipizzan

https://goo.gl/K7Ea3a

Case Study: WhatsApp

IAIK

● 14.05.2020

 Static and Dynamic Application Analysis

● 04.06.2020

 Mobile Network Security

Outlook

