

Practical Use of Finite Fields and their Performance on Modern CPUs GHASH in AES-GCM

Daniel Kales

October 31st , 2019

> www.laik.tugraz.at

Outline

1 AES-GCM

2 GHASH

3 Finite Field Multiplication on x86 CPUs

4 Performance

AES-GCM

Introduction

- Authenticated Encryption (AE)
 - Very important building block in TLS
 - TLS 1.3: Only AE modes allowed
- AE modes in TLS 1.3
 - AES-{128,256}-GCM
 - ChaCha20-Poly1305
 - AES-128-CCM

AES-GCM

- AES in Galois Counter Mode
- Combination of:
 - AES in Counter Mode
 - GHASH authenticator

www.iaik.tugraz.at ■
GHASH

GHASH

Universal Hash Functions

- Concept by Carter and Wegman in 1977¹
 - Family of hash funtions $H = \{h : U \mapsto [m]\}$ is called universal if

$$\forall x, y \in U, x \neq y : \Pr_{h \in H}[h(x) = h(y)] = \frac{1}{m}$$

- In other words, collision probability is as low as if hash values are truly randomly assigned for each key.
- Cyptographic properties such as preimage resistance not required!

¹Larry Carter and Mark N. Wegman, Universal Classes of Hash Functions, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, 1977

Authenticators from Universal Hash Functions

Building a message authentication code (MAC) from universal hash functions:

- Use universal hash function (selected by secret key) and hash message to short digest
- 2. Encrypt short digest by adding a one-time key

Provably secure in the information theoretic setting!

- one-time key not good for usability
 - replaced by function of nonce and secret key

GHASH

Polynomial based on input message blocks S_i (in AES-GCM this is the ciphertext), evaluated at secret key $H = \mathsf{AES}_k(0^{128})$

$$\mathsf{GHASH}(H, A, C) = X_{m+n+1}$$

$$X_i = \sum_{j=1}^i S_j \cdot H^{i-j+1} = \begin{cases} 0 & \text{for } i = 0 \\ (X_{i-1} + S_i) \cdot H & \text{otherwise.} \end{cases}$$

Second form is iterative and used in most cases.

AES-GCM

- Look at structure of GHASH
 - Iterative form
 - final "one-time" key addition

Finite Field Multiplication on x86 CPUs

Finite Field Multiplication on x86 CPUs

PCLMULQDQ

- Specialized CPU instruction
- Carryless Multiplication
 - 64-bit \times 64-bit \mapsto 128-bit
- Carryless multiplication is equivalent to multiplication of polynomials over field GF(2)
 - $GF(2^n)$ is usually represented as polynomials in GF(2)[X]
 - Finite field multiplication is polynomial multiplication
 - followed by reduction with respect to some irreducible polynomial

PCLMULQDQ (cont.)

Representation of polynomial coefficients as bitstring:

$$a_{n-1}X^{n-1} + \dots + a_1X + a_0 \leftrightarrow a_{n-1}||\dots||a_1||a_0$$

Example:

$$X^7 + X^3 + X + 1 \leftrightarrow 10001011$$

Store one GF(2¹²⁸) element in a 128-bit CPU register

127 64	64 63 0	
$11001100101\cdots 1101010010$	$011111110001 \cdots 1010001001$	

PCLMULQDQ (cont.)

PCLMULQDQ takes two 128-bit registers and a selection value imm

Multiplication of $GF(2^{128})$ elements

Combine the result of 4 sub-multiplications

127	64 63	0
xmm1 11001100101 · · · 1	101010010 01111111000	$1 \cdots 1010001001$
127	64 63	0
xmm2 01001011101 · · · 0	101011111 0110110001	$1 \cdots 01011111101$

Modular Reduction

- Result needs to be reduced modulo the irreducible polynomial
 - No specialized instruction
- Option 1: Standard long division
 - Slow and tedious to implement
- Option 2: efficient reduction algorithm
 - Realizes division using only 2 multiplications
 - Special form of Barret reduction algorithm²

²P. Barrett, Implementing the Rivest, Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor, Master's Thesis, University of Oxford, UK, 1986

Efficient Modular Reduction

• We have a 256-bit polynomial a(X) and want to reduce it modulo g(X):

$$r(X) = a(X) \bmod g(X)$$
.

use linearity to split calculation in two halves:

$$\begin{split} r(X) &= \left(c(X) \cdot X^{128} + b(X)\right) \bmod p(X) = c(X) \cdot X^{128} \bmod p(X) + b(X) \bmod p(X) \\ &= c(X) \cdot X^{128} \bmod p(X) + b(X) \,. \end{split}$$

- Focus on effcient calculation of $p(X) = c(X) \cdot X^{128} \mod p(X)$
 - "Reduce upper half of 256-bit register and xor result with lower half"

Efficient Modular Reduction (cont.)

$$p(X) = c(X) \cdot X^{128} \bmod g(X) = g(X) \cdot q(X) \bmod X^{128} \,,$$

where q(X) is the result of the division of $c(X) \cdot X^{128}$ by g(X):

$$c(X) \cdot X^{128} = g(X) \cdot q(X) + p(X)$$
.

Why does the first equality hold?

Since the 128 least significant terms of $c(X) \cdot X^{128}$ are zero, the least significant 128 bits of $g(X) \cdot q(X)$ and p(X) must be equal, so they cancel to zero in the addition. This reduces the modular reduction to finding the quotient q(X) and a finite field multiplication (the final reduction modulo X^{128} is equivalent to taking the lower 128 bit of the result).

Efficient Modular Reduction (cont.)

$$p(X) = c(X) \cdot X^{128} \mod g(X) = g(X) \cdot q(X) \mod X^{128}$$

where q(X) is the result of the division of $c(X) \cdot X^{128}$ by g(X):

$$c(X) \cdot X^{128} = g(X) \cdot q(X) + p(X)$$
.

Why does the first equality hold?

Since the 128 least significant terms of $c(X) \cdot X^{128}$ are zero, the least significant 128 bits of $g(X) \cdot q(X)$ and p(X) must be equal, so they cancel to zero in the addition. This reduces the modular reduction to finding the quotient q(X) and a finite field multiplication (the final reduction modulo X^{128} is equivalent to taking the lower 128 bit of the result).

Efficient Modular Reduction (cont.)

How to find q(X)?

$$q(X) = MSB(c(X) \cdot q^{+}(X)),$$

where $q^+(X)$ is the result of the division of X^{256} by g(X) (precompute once):

$$X^{256} = g(X) \cdot q^{+}(X) + p^{+}(X).$$

This is similar to the calculation of the quotient in the Barrett reduction algorithm. For more details on this step, refer to the Intel White Paper³.

 $^{^3} https://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-20.pdf$

Efficient Modular Reduction Algorithm

- Precompute $q^+(X)$ for the given irreducible polynomial g(X) Modular reduction algorithm:
- 1. Multiply c(X), the upper half of the input, with $q^+(X)$
- 2. Take the upper 128-bit half of the result and multiply it with $g(\boldsymbol{X})$
- 3. Add b(X), the lower half of the input to the result of the calculation
- 4. Return the 128 least significant bits as the reduced result

Performance

Performance of AES-GCM

Features	Throughput [MB/s]
(CT) Software only	67.24
AES-NI	224.20
PCLMULQDQ	87.73
Both	1013.63

Table: Performance of AES-128-GCM on Intel Xeon E3-1220 @ 3.1GHz4

Without specialized instructions for PCLMULQDQ, the calculation of GHASH bottlenecks the AES computations with AES-NI.

⁴Based on Thomas Pornin's BearSSL benchmarks: https://www.bearssl.org/speed.html

Questions?

Questions?