Ty,

SCIENCE

PASSION
TECHNOLOGY

Practical Use of Finite Fields and
their Performance on Modern CPUs
GHASH in AES-GCM

Daniel Kales

> www.iaik.tugraz.at

1/18

GHASH in AES-GCM

Outline

AES-GCM

GHASH

Finite Field Multiplication on x86 CPUs

Performance

www.iaik.tugraz.at m

www.iaik.tugraz.at m

AES-GCM

AES-GCM

www.iaik.tugraz.at m
AES-GCM

Introduction

= Authenticated Encryption (AE)
= Very important building block in TLS
= TLS 1.3: Only AE modes allowed
= AE modesin TLS 1.3
= AES-{128,256}-GCM
m ChaCha20-Poly1305
= AES-128-CCM

www.iaik.tugraz.at m

AES-GCM

AES-GCM

Plaintext; M@
= AES in Galois Counter Mode -

Ciphertext; Ciphertext,

= Combination of:
. Auth Data; (—{ multy —& multy;
= AES in Counter Mode (o)-rons) —

m GHASH authenticator

=

len(A)]flen(C) |5

Auth Tag

www.iaik.tugraz.at m

GHASH

GHASH

www.iaik.tugraz.at m

GHASH

Universal Hash Functions

= Concept by Carter and Wegman in 1977

» Family of hash funtions H = {h : U — [m]} is called universal if

Ve,ye Uyx #y: Pr[h(z) =h(y)] =

1
heH m

= |n other words, collision probability is as low as if hash values are truly
randomly assigned for each key.

= Cyptographic properties such as preimage resistance not required!

1Larry Carter and Mark N. Wegman, Universal Classes of Hash Functions, Proceedings of the
9th Annual ACM Symposium on Theory of Computing, 1977

www.iaik.tugraz.at m

GHASH

Authenticators from Universal Hash Functions

Building a message authentication code (MAC) from universal hash functions:

1. Use universal hash function (selected by secret key) and hash message to
short digest

2. Encrypt short digest by adding a one-time key
Provably secure in the information theoretic setting!
= one-time key not good for usability

= replaced by function of nonce and secret key

www.iaik.tugraz.at m

GHASH

GHASH

Polynomial based on input message blocks S; (in AES-GCM this is the
ciphertext), evaluated at secret key H = AES;,(0'%®)

GHASH(H, A, C) = Xpini1

: - 0 fort =0
X;=)» S -H 77t =
Z J {(Xi_l +S;)- H otherwise.

=1

Second form is iterative and used in most cases.

www.iaik.tugraz.at m

GHASH
AES-GCM

ENCy, ENCy
e
= Look at structure of GHASH et

m |terative form @M & (it

= final "one-time" key addition

=

len(A)]flen(C) |5

Auth Tag

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Finite Field Multiplication on x86 CPUs

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

PCLMULQDQ

= Specialized CPU instruction
= Carryless Multiplication
® 64-bit x 64-bit — 128-bit

= Carryless multiplication is equivalent to multiplication of polynomials over
field GF(2)

m GF(2") is usually represented as polynomials in GF(2)[X]
= Finite field multiplication is polynomial multiplication

= followed by reduction with respect to some irreducible polynomial

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs
PCLMULQDQ (cont.)
= Representation of polynomial coefficients as bitstring:

an1 X"+t e X +ag ¢ an—1l] -+ ||asl]ao

= Example:
X"+ X34+ X +1+ 10001011

= Store one GF(2!?8) element in a 128-bit CPU register

127 64 63 0
’ 11001100101 - -- 1101010010 I 01111110001 - --1010001001

10/18

Finite Field Multiplication on x86 CPUs

PCLMULQDQ (cont.)

= PCLMULQDAQ takes two 128-bit registers and a selection value imm
127 64 63 0
xmm1 11001100101 - - - 1101010010 [01111110001 - - - 1010001001 |

127 64 63 0
xmm2 [01001011101 - -- 0101011111] 01101100011 - - - 0101111101 |

imm res = xmm1[0:63] x xmm2[127:64]
127 64 63 0

res 01011100110 - - - 0000110110 [11000000001 - - - 1101001111

www.iaik.tugraz.at m

11/18

Finite Field Multiplication

on x86 CPUs

Multiplication of GF(2!?%) elements

www.iaik.tugraz.at m

Combine the result of 4 sub-multiplications

127 64 63 0
xmm1 11001100101 - - - 1101010010 01111110001 - - - 010001001 |
127 64 63 0
xmm2 [01001011101 - -- 0101011111 | 01101100011 - - - 0101111101 |
01011100110~ - - 0000110110 | 11000000001 - - - 1101001111 |
[01011100110---0000110110 [11000000001 - - - 1101001111]
[01011100110- - - 0000110110 [11000000001 - - - 1101001111]
[01011100110---0000110110 | 11000000001 - - - 1101001111
255 192191 128127 64 63 0
11000000001 - - - 1101001111 | 11000000001 - - - 1101001111 | 11000000001 - - - 1101001111 | 11000000001 - - - 1101001111 |

12/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Modular Reduction

= Result needs to be reduced modulo the irreducible polynomial
= No specialized instruction

= Option 1: Standard long division
= Slow and tedious to implement

= Option 2: efficient reduction algorithm
= Realizes division using only 2 multiplications

= Special form of Barret reduction algorithm?

2P, Barrett, Implementing the Rivest, Shamir and Adleman Public Key Encryption Algorithm on
a Standard Digital Signal Processor, Master’s Thesis, University of Oxford, UK, 1986

13/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Efficient Modular Reduction

= We have a 256-bit polynomial a(X) and want to reduce it modulo g(X):
r(X) = a(X) mod g(X).

= use linearity to split calculation in two halves:

r(X) = (c(X) - X' +b(X)) mod p(X) = c¢(X) - X'** mod p(X) + b(X) mod p(X)
=¢(X) - X' mod p(X) + b(X) .

= Focus on effcient calculation of p(X) = ¢(X) - X'2® mod p(X)

= “Reduce upper half of 256-bit register and xor result with lower half”

14/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Efficient Modular Reduction (cont.)

p(X) = ¢(X) - X2 mod g(X) = g(X) - ¢(X) mod X'
where ¢(X) is the result of the division of ¢(X) - X8 by g(X):

o(X)- X =g(X) - q(X) +p(X).

Why does the first equality hold?

15/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Efficient Modular Reduction (cont.)

p(X) = ¢(X) - X2 mod g(X) = g(X) - ¢(X) mod X'
where ¢(X) is the result of the division of ¢(X) - X8 by g(X):

o(X)- X =g(X) - q(X) +p(X).

Why does the first equality hold?

Since the 128 least significant terms of ¢(X) - X'?8 are zero, the least significant
128 bits of g(X) - ¢(X) and p(X) must be equal, so they cancel to zero in the
addition. This reduces the modular reduction to finding the quotient ¢(X) and a
finite field multiplication (the final reduction modulo X'%® is equivalent to taking
the lower 128 bit of the result).

15/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Efficient Modular Reduction (cont.)

How to find ¢(X)?
¢(X) = MSB(c(X) - ¢" (X)),

where ¢*(X) is the result of the division of X2 by ¢(X) (precompute once):
X*0 = g(X) - ¢t (X) +p"(X).

This is similar to the calculation of the quotient in the Barrett reduction algorithm.
For more details on this step, refer to the Intel White Paper®.

Shttps://software.intel.com/sites/default/files/managed/72/cc/clmul-wp-rev-2.02-2014-04-
20.pdf

16/18

www.iaik.tugraz.at m

Finite Field Multiplication on x86 CPUs

Efficient Modular Reduction Algorithm

= Precompute ¢ (X) for the given irreducible polynomial g(X)
Modular reduction algorithm:

1. Multiply ¢(X), the upper half of the input, with ¢*(X)

2. Take the upper 128-bit half of the result and multiply it with g(X)
3. Add b(X), the lower half of the input to the result of the calculation

4. Return the 128 least significant bits as the reduced result

www.iaik.tugraz.at m
Performance

Performance

www.iaik.tugraz.at m
Performance

Performance of AES-GCM

Features Throughput [MB/s]
(CT) Software only 67.24
AES-NI 224.20
PCLMULQDQ 87.73
Both 1013.63

Table: Performance of AES-128-GCM on Intel Xeon E3-1220 @ 3.1GHz*

Without specialized instructions for PCLMULQDQ, the calculation of GHASH
bottlenecks the AES computations with AES-NI.

“Based on Thomas Pornin’s BearSSL benchmarks: https://www.bearssl.org/speed.html
18/18

www.iaik.tugraz.at m
Questions?

Questions?

	AES-GCM
	GHASH
	Finite Field Multiplication on x86 CPUs
	Performance
	Questions?

