ZKBoo / ZKB++

Preliminaries

Multi-Party Computation (MPC)

- Consider function: $f(\mathbf{x}) = \mathbf{y}$
 - $\bullet \quad \mathbf{x} = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}\}$
- Consider *n* players: $P_1, P_2, ..., P_n$
 - P_i holds secret value $\mathbf{x_i}$
- Players jointly compute f(x)
 - without revealing secret value x_i

Zero-Knowledge Proofs

- Let L be a NP-language, with witness relation R, s.t.
 L = {x | ∃w : R(x, w) = 1}
- Let P be the prover and V be the verifier
- *P* wants to convince *V* that $x \in L$ and even more that *P* knows *w*
 - Completeness
 - Soundness
 - Zero-Knowledge

Preliminaries

Sigma Protocols

- Interactive 3-move protocol
- Properties:
 - Complete
 - Special Soundness
 - Special honest-verifier ZK
- Can be made non-interactive: Fiat-Shamir heruistics [FS]

ZKBoo [GMO]

Introduction

- Zero-Knowledge proof system
 - Tailored for boolean circuits
- "MPC-in-the-head"-pardigm [lsh+]

- (2,3)-decomposition
- Considering $y = \phi(x)$
 - Share
 - $\bigcup_{j=1}^{N} \{\phi_1^{(j)}, \phi_2^{(j)}, \phi_3^{(j)}\}$
 - $Output_1, Output_2, Output_3$
 - Rec
- Correctness
- (2)-Privacy

The protocol Π_{ϕ}^{*} to evaluate ϕ

- 1. Sample random tapes $\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3$
- 2. $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \leftarrow \text{Share}(\mathbf{x}, \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$
- 3. Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ be vector with N + 1 entries
- 4. Initialize $\mathbf{w}_i[0]$ with \mathbf{x}_i for all $i \in [3]$

- 6. For j = 1...N compute: For i = 1, 2, 3 compute: $\mathbf{w}_i[j] = \phi_i^{(j)}((\mathbf{w}_m[0..j-1], \mathbf{k}_m)_{m \in \{i,i+1\}})$
- 7. Compute $\mathbf{y}_i = \text{Output}_i(\mathbf{w}_i, \mathbf{k}_i)$ for $i \in \{1, 2, 3\}$
- 8. Compute $\mathbf{y} = \text{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$

The Linear Decomposition

- Share(x; k₁, k₂, k₃) samples random
 x₁, x₂, x₃ s.t. x = x₁ + x₂ + x₃
- $\bigcup_{j=1}^{N} \{\phi_1^{(j)}, \phi_2^{(j)}, \phi_3^{(j)}\}$:

 - unary "mult α ": • $\mathbf{w}_i[\mathbf{c}] = \alpha \cdot \mathbf{w}_i[\mathbf{a}]$

- binary addition:
 w_i[c] = (w_i[a] + w_i[b])
- binary multiplication: $\mathbf{w}_i[c] = \mathbf{w}_i[a] \cdot \mathbf{w}_i[b] + \mathbf{w}_{i+1}[a] \cdot \mathbf{w}_i[b] + \mathbf{w}_i[a] \cdot \mathbf{w}_{i+1}[b] + R_i(c) - R_{i+1}(c)$
- Output_i(**w**_i, **k**_i) selects shares of the output wires
- Rec(y₁, y₂, y₃) outputs
 y = y₁ + y₂ + y₃

The ZKBoo Protocol

- 1. Prover runs Π_{ϕ}^* and obtain \mathbf{w}_i and \mathbf{y}_i for all i
- 2. Commit to $\mathbf{c}_i = \operatorname{Com}(\mathbf{k}_i, \mathbf{w}_i)$ for all i
- **3**. Send $\mathbf{a} = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$
- 4. Verifier chooses $\mathbf{e} \in [3]$ and sends to prover
- 5. Prover opens $\mathbf{c}_{e}, \mathbf{c}_{e+1}$ revealing $\mathbf{z} = (\mathbf{k}_{e}, \mathbf{w}_{e}, \mathbf{k}_{e+1}, \mathbf{w}_{e+1})$

Kevin Pretterhofer Graz, January 16, 2020

- 6. Verifier checks: $\text{Rec}(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) \neq \mathbf{y}$, reject
- 7. If $\exists i \in \{e, e+1\}$ s.t. $\mathbf{y}_i \neq \text{Output}_i(\mathbf{w}_i)$, reject
- 8. If $\exists j \text{ s.t.}$ $\mathbf{w}_{e}[j] \neq \phi_{e}^{(j)}(\mathbf{w}_{e}, \mathbf{w}_{e+1}, \mathbf{k}_{e}, \mathbf{k}_{e+1}),$ reject

9. Accept

$\mathsf{ZKB}{++}\;[\mathsf{Cha+}]$

Optimizations

- Not including input shares
- Not including commitments
- No additional randomness for commitments
- Not including the output shares
- Not including View_e

Thank you for your attention!

Bibliography I

- [Cha+] Melissa Chase et al. Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.
- [FS] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. Advances in Cryptology - CRYPTO '86, Santa Barbara, California, USA, 1986, Proceedings.

Bibliography II

- [GMO] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-Knowledge for Boolean Circuits. 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
- [Ish+] Yuval Ishai et al. Zero-knowledge from secure multiparty computation. Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007.