

From SPDZ to SPDZ_{2^k}

Fabian Schmid, IAIK

28th November 2019

www.iaik.tugraz.at/

Contents

- 1. An Introduction to MPC and secret sharing
- 2. An Introduction to SPDZ
- 3. The benefits and challenges of SPD \mathbb{Z}_{2^k}

A brief history

- The Millionaires' Problem (two-party)
 - First proposed by Andrew Yao (1982) for Boolean circuits
- Secret sharing based (multi-party)
 - Further introduction of new protocols since then

An intuition on secret sharing

 P_i wants to share secret $\mathbf{s} \in \mathbb{F}_q$ among n parties.

- Additive sharing:
 - Distribute random shares s_i such that $\sum_{i=0}^{n} s_i = s$
 - Not robust in the general case, sufficient for MPC

Arithmetic on secret shares

Suppose we have the shared secrets *x* and *y*

- Performing addition:
 - Every party P_i has the shares x_i and y_i
 - Everyone adds their shares together $z_i = x_i + y_i$

$$\mathbf{z} = \sum^{n} \mathbf{z}_{j} = \sum^{n} \mathbf{x}_{j} + \sum^{n} \mathbf{y}_{j} = \mathbf{x} + \mathbf{y}$$

Arithmetic on secret shares

Suppose we have the shared secrets *x* and *y*

- Performing multiplication:
 - Does $z_i = x_i \cdot y_i$ also hold?

Arithmetic on secret shares

- Introduction of beaver triples a_i, b_i, c_i
 - Only $c = a \cdot b$ is known
 - We now create and open $\alpha_i = (\mathbf{x}_i \mathbf{a}_i)$ and $\beta_i = (\mathbf{y}_i \mathbf{b}_i)$
 - Everyone computes $z_i = c_i + \alpha b_i + \beta a_i$, one party also adds $\alpha \cdot \beta$
 - Hence $\sum_{j=1}^{n} \mathbf{z}_{j} = \mathbf{c} + \alpha \mathbf{b} + \beta \mathbf{a} + \alpha \beta = \mathbf{x} \mathbf{y}$

What is SPDZ?

- Preprocessing based MPC protocol
 - Sacrificing
 - Zero-Knowledge Proofs of Plaintext Knowledge
 - MACs

The many faces of SPDZ

- SPDZ2 earlier MAC checks possible and better performance
- MASCOT Oblivious Transfer based preprocessing
- Overdrive Making SPDZ Great Again

Challenges of SPD \mathbb{Z}_{2^k}

- Information theoretically secure MAC
- MASCOT variant in \mathbb{Z}_{2^k}
- Adaptation of online phase

Protocol	Message space	Stat. security	$\begin{array}{c} \text{Input cost} \\ \text{(kbit)} \end{array}$	Triple cost (kbit)
Ours	$\mathbb{Z}_{2^{32}}$	26	3.17	79.87
	$\mathbb{Z}_{2^{64}}$	57	12.48	319.49
	$\mathbb{Z}_{2^{128}}$	57	16.64	557.06
MASCOT	32-bit field	32	1.06	51.20
	64-bit field	64	4.16	139.26
	128-bit field	64	16.51	360.44

Improving the online phase

- SPDZ works in a finite field
- The integers modulo $2^k \mathbb{Z}_{2^k}$ form a Ring
- Modern CPUs also work with integers mod 2^k
 - Many tricks and advantages in this domain.
- Significant speedup for secure comparison and bit decomposition