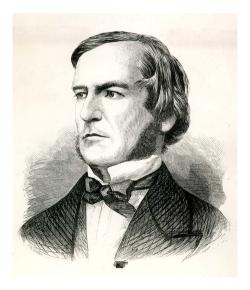
(Vectorial) Boolean Functions

Reinhard Lüftenegger

Mathematical Background of Cryptography - WT 2019/20

SCIENCE PASSION TECHNOLOGY

George Boole



Overview

Boolean Functions

- Preliminaries
- Representation of Boolean Functions
- Möbius Transform

Cryptanalysis of Boolean Functions

- Higher-Order Differential Cryptanalysis
- Mathematics of Higher-Order Differential Cryptanalysis

Motivation

Boolean functions are important because ...

- ... they natively allow to work with binary encoded information.
- ... they are used in many symmetric key primitives (AES, LowMC, MiMC, Prince, ...).

Our goals for today are:

- Discuss different representations of boolean functions.
- Outline a basic concept of **cryptanalysis** on boolean functions.

Boolean Functions

Boolean Functions

Our basic object of study in this lecture is outlined in the following

Definition

Let $n, m \in \mathbb{N}$. A function $\mathbb{F}_2^n \to \mathbb{F}_2$, with

$$(x_1,\ldots,x_n)\mapsto f(x_1,\ldots,x_n),$$

is called a boolean function. Similarly, a vectorial boolean function (or vector valued boolean function) is a function $\mathbb{F}_2^n \to \mathbb{F}_2^m$ with

$$(x_1,\ldots,x_n)\mapsto (f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

The functions $f_i : \mathbb{F}_2^n \to \mathbb{F}_2$ are also called the coordinate functions of f.

Preliminaries I

Question: Which algebraic structure does the *n*-fold Cartesian product \mathbb{F}_2^n admit?

Answer: First of all, it is an \mathbb{F}_2 -vector space. Its elements are tuples of length *n* with coordinates in \mathbb{F}_2 , i.e. we have

$$\mathbb{F}_2^n = \{ (x_1, \ldots, x_n) : x_i \in \mathbb{F}_2 \text{ for all } i \}.$$

Vector addition is defined as

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n):=(x_1+y_1,\ldots,x_n+y_n)$$

and scalar multiplication is given by

$$\lambda \cdot (\mathbf{x}_1,\ldots,\mathbf{x}_n) \coloneqq (\lambda \cdot \mathbf{x}_1,\ldots,\lambda \cdot \mathbf{x}_n),$$

for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{F}_2^n$ and $\lambda \in \mathbb{F}_2$.

Preliminaries II

Question: Is there any connection between \mathbb{F}_2^n and \mathbb{F}_{2^n} ?

Answer: Yes, there is. We can endow \mathbb{F}_2^n with the field structure of \mathbb{F}_{2^n} . Field addition is clear (how?). But what about field multiplication?

Structure of \mathbb{F}_{2^n} : Elements in \mathbb{F}_{2^n} can be represented as polynomials of degree at most n - 1, right? Multiplication in \mathbb{F}_{2^n} is ordinary polynomial multiplication modulo some \mathbb{F}_2 -irreducible polynomial f of degree n (see L3 - Fields and Finite Fields).

Relation between \mathbb{F}_2^n and \mathbb{F}_{2^n} : To define multiplication in \mathbb{F}_2^n , we "encode" binary vectors as polynomials (and vice versa) via

$$x := (x_1, x_2, \dots, x_{n-1}, x_n) \in \mathbb{F}_2^n \longleftrightarrow p_x := x_1 Y^{n-1} + x_2 Y^{n-2} + \dots + x_{n-1} Y + x_n \in \mathbb{F}_{2^n}.$$

Then, in \mathbb{F}_2^n , we have $(x_1, \dots, x_n) \cdot (y_1, \dots, y_n) := (z_1, \dots, z_n)$, where
 $p_z := z_1 Y^{n-1} + \dots + z_n \in \mathbb{F}_{2^n}$ comes from the congruence

 $p_z = p_x \cdot p_y \pmod{f}.$

Preliminaries III

Question: Considering the construction

$$\mathbb{F}_q[X_1,\ldots,X_n]/\left(X_1^q-X_1,\ldots,X_n^q-X\right),$$

how would you put into words the structure of its elements?

Preliminaries IV

Let's discuss some examples that may illuminate the aforementioned construction.

Example: Consider the quotient ring $Q := \mathbb{F}_2[X, Y, Z]/(X^2 - X, Y^2 - Y, Z^2 - Z)$. What is the reduced representation of

$$X^{2}Y^{5}Z^{4}$$
 and $X^{2}Y^{3}Z + XYZ + X + Z + Z^{6}$

in above quotient ring?

Preliminaries V

Remark: For any field E, every polynomial $f \in E[X]$ induces a polynomial function $f : E \to E, a \mapsto f(a)$.

Theorem (Every Function over a Finite Field is a Polynomial Function)

Every map $f : \mathbb{F}_q \to \mathbb{F}_q$ on a finite field \mathbb{F}_q can be uniquely described as a univariate polynomial over \mathbb{F}_q with maximum degree q - 1.

Proof

For existence, consider the polynomial

$$F(X) \coloneqq \sum_{a \in \mathbb{F}_q} f(a)(1-(X-a)^{q-1}).$$

For uniqueness, observe, if there are two polynomials F, G of degree at most q - 1 with F(x) = f(x) = G(x), for all $x \in \mathbb{F}_q$, then F - G has q roots. Thus, F = G.

Preliminaries VI

There is also a more general version of the preceding result

Theorem

Every map $f : \mathbb{F}_q^n \to \mathbb{F}_q$ can be uniquely described as a multivariate polynomial over \mathbb{F}_q in *n* variables with maximum degree q - 1 in each variable.

Proof

For existence, consider the polynomial

$$F(X_1,...,X_n) := \sum_{(a_1,...,a_n) \in \mathbb{F}_q^n} f(a_1,...,a_n) \prod_{1 \le i \le n} (1 - (X_i - a_i)^{q-1}).$$

Uniqueness follows from a cardinality argument: the two finite sets $S := \mathbb{F}_q[X_1, \dots, X_n]/(X_1^q - X_1, \dots, X_n^q - X_n)$ and $\mathcal{R} := \{f : \mathbb{F}_q^n \to \mathbb{F}_q\}$ have the same cardinality q^{q^n} and the map $\varphi : \mathcal{R} \to S$ with $\varphi(f) := F(X_1, \dots, X_n)$ is injective.

Truth Table I

If we arrange the inputs and outputs of a boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(x_1, \ldots, x_n) \mapsto f(x_1, \ldots, x_n)$, in form of a table

<i>x</i> ₁	<i>x</i> ₂		<i>x</i> _{<i>n</i>-1}	x _n	$f(x_1,\ldots,x_n)$
0	0		0	0	$f(0, 0, \ldots, 0, 0)$
0	0		0	1	$f(0, 0, \ldots, 0, 1)$
0	0		1	0	$f(0, 0, \ldots, 1, 0)$
:	÷	÷	÷	÷	:
1	1		1	0	$f(1, 1, \dots, 1, 0)$
1	1		1	1	$f(1,1,\ldots,1,1)$

we get the truth table representation of *f*.

Truth Table II

Nota Bene: Fixing an order of the input vectors (e.g. lexicographic) and denoting them (e.g. in ascending order) by $x^{(1)}, x^{(2)}, \ldots, x^{(q)}$ we can compress this representation into a single sequence, also called the value vector of f, given by

$$(-f(x^{(1)}) , f(x^{(2)}) , \dots , f(x^{(n)})).$$

Example: Consider the function $f : \mathbb{F}_2^3 \to \mathbb{F}_2$ with $f(x_1, x_2, x_3) := x_1^2 x_2 + (x_2 x_3)^2 + x_3$ (sic!). What is its truth table and value vector?

Algebraic Normal Form (ANF) I

Above theorem about the multivariate representation of functions $\mathbb{F}_q^n \to \mathbb{F}_q$ applies in particular to boolean functions $\mathbb{F}_2^n \to \mathbb{F}_2$. Therefore we can state the following

Theorem (Algebraic Normal Form of Boolean Functions)

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function of n variables. Then there exists a unique polynomial $F(X_1, \ldots, X_n) \in \mathbb{F}_2[X_1, \ldots, X_n]/(X_1^2 - X, \ldots, X_n^2 - X_n)$ such that

$$F(x_1,\ldots,x_n) = f(x_1,\ldots,x_n)$$
, for all $(x_1,\ldots,x_n) \in \mathbb{F}_2^n$.

In other words, we can write *f* as

$$f(X_1,\ldots,X_n)=\sum_{u=(u_1,\ldots,u_n)\in\mathbb{F}_2^n}a_u\cdot X_1^{u_1}\cdots X_n^{u_n}.$$

with coefficients $a_u \in \mathbb{F}_2$.

Example

Problem: Consider the function $f : \mathbb{F}_2^2 \to \mathbb{F}_2$ given by the truth table:

У	0	1	0	1	
х	0	0	1	1	
f(x,y)	1	1	0	1	

Compute the ANF.

Algebraic Normal Form (ANF) II

Theorem (Algebraic Normal Form of Boolean Functions)

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, $(x_1, \ldots, x_n) \mapsto (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))$, be a vectorial Boolean function in n variables and m coordinates. Then, for every $1 \le i \le m$, each coordinate function $f_i : \mathbb{F}_2^n \to \mathbb{F}_2$ can be written as

$$f_i(X_1,\ldots,X_n)=\sum_{u=(u_1,\ldots,u_n)\in\mathbb{F}_2^n}a_u^{(i)}\cdot X_1^{u_1}\cdots X_n^{u_n},$$

yielding

$$f(X_1,\ldots,X_n)=\sum_{u=(u_1,\ldots,u_n)\in\mathbb{F}_2^n} \begin{pmatrix} a_u^{(1)}\\ a_u^{(2)}\\ \vdots\\ a_u^{(m)} \end{pmatrix} \cdot X_1^{u_1}\cdots X_n^{u_n}.$$

with coefficients $a_u^{(i)} \in \mathbb{F}_2$.

Algebraic Degree

The next definition is important because it formalises a property of boolean functions that is used in cryptanalysis (more later).

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a vectorial boolean function and

$$f(X_1,\ldots,X_n)=\sum_{u=(u_1,\ldots,u_n)\in\mathbb{F}_2^n}a_u\cdot X_1^{u_1}\cdots X_n^{u_n}.$$

the corresponding ANF with coefficients $a_u \mathbb{F}_2^m$. The multivariate degree (sometimes total degree or just degree) of f is also called the algebraic degree of f and denoted by $\delta(f)$; in other words

$$\delta \coloneqq \delta(f) = \max\{u_1 + \dots + u_n : u = (u_1, \dots, u_n) \in \mathbb{F}_2^n \text{ with } a_u \neq 0\}.$$

Möbius Transform

Question: Other ways to compute the ANF?

Answer: Indeed. Let's cast it into the following

Proposition (Binary Möbius Transform)

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a boolean function and

$$f(X_1,\ldots,X_n)=\sum_{u=(u_1,\ldots,u_n)\in\mathbb{F}_2^n}a_u\cdot X_1^{u_1}\cdots X_n^{u_n}.$$

be the ANF with coefficients $a_u \in \mathbb{F}_2$. Then we have the following relation between evaluations f(x) of f and coefficients a_u of the ANF $(x, u \in \mathbb{F}_2^n)$:

$$a_u = \sum_{x \in \mathbb{F}_2^n, x \le u} f(x)$$
 and $f(x) = \sum_{u \in \mathbb{F}_2^n, u \le x} a_u$

where $u = (u_1, \ldots, u_n) \le (v_1, \ldots, v_n) = v$ if and only if $u_i \le v_i$ for all $1 \le i \le n$.

Example

Problem: Consider the boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ given by the truth table:

<i>X</i> 3	0	1	0	1	0	1	0	1
<i>x</i> ₂	0	0	1	1	0	0	1	1
<i>x</i> ₁	0	0	0	0	1	1	1	1
$f(x_1,x_2,x_3)$	0	1	0	0	0	1	1	1

Compute the ANF using the Möbius transform.

Cryptanalysis of Boolean Functions

Boolean Functions and Block Ciphers

Nota Bene: An important criterion for boolean functions used in block ciphers is the algebraic degree.

Question: Why?

Answer: The algebraic degree is one measure of the "algebraic complexity" of a boolean function. Another measure is the number of non-vanishing monomials in its ANF (sometimes called weight).

Rule of Thumb: We can state

"Security against algebraic attacks \Rightarrow High algebraic degree + High weight"

Disclaimer: High algebraic degree and high weight might not be sufficient for security against algebraic attacks (see e.g. an attack on the block cipher proposal JARVIS¹)

¹https://eprint.iacr.org/2019/419

Primer on Higher-Order Differential Cryptanalysis

Starting point: A boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$, e.g. describing (part of) a cryptographic primitive.

Assumptions

- We know the algebraic degree δ of f and it holds $\delta \ll n$.
- We know how to "differentiate" functions on \mathbb{F}_2^n .

Idea: Since f can be written as a polynomial, the $(\delta + 1)$ -th order derivative of f is zero.

Consequences: By taking the $(\delta + 1)$ order derivative we can distinguish f from randomly sampled values. This allows us to build a zero-sum distinguisher, with which we potentially can set up a key-recovery attack for some of the key bits.

Spoiler: In practice, we don't know the algebraic degree of a real-world cipher!

Mathematics of Higher-Order Differential Cryptanalysis I

We need: A notion of derivation on \mathbb{F}_2^n !

Remember: In calculus, the derivative of a function $f : \mathbb{R} \to \mathbb{R}$ at the point $x \in \mathbb{R}$ is defined as

$$\partial f(x) \coloneqq \lim_{a\to 0} \frac{f(x+a)-f(x)}{a},$$

presuming the limit exists at all.

Transfer to finite fields: Discard the limit-part of the definition and just keep the difference-part!

Definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, $x = (x_1, \dots, x_n) \mapsto f(x)$, be a boolean function. The (first-order) derivative of f in direction of $a \in \mathbb{F}_2^n$ at the point $x \in \mathbb{F}_2^n$ is defined as

 $\Delta_a f(x) \coloneqq f(x+a) + f(x).$

Mathematics of Higher-Order Differential Cryptanalysis II

The main reason for introducing above notion of derivation is made explicit in the following

Proposition (Derivation Strictly Reduces the Algebraic Degree)

Let $h : \mathbb{F}_2^n \to \mathbb{F}_2$ be a boolean function. Then, for any $a \in \mathbb{F}_2^n$ it holds

 $\delta(\Delta_a h) \leq \delta(h) - 1.$

Lemma (Properties of Δ_a)

- $\Delta_a(f+g) = \Delta_a f + \Delta_a g$ ("homomorphic with respect to addition"),
- $\Delta_a(f \cdot g)(x) = f(x + a) \cdot \Delta_a g(x) + \Delta_a f(x) \cdot g(x), \text{ for } x \in \mathbb{F}_2^n \text{ ("Almost Leibniz")}.$

Mathematics of Higher-Order Differential Cryptanalysis III

With these properties of Δ_a at hand, the proof of the aforementioned proposition becomes a lot more pleasant.

Proof sketch (for Propostion "Derivation Strictly Reduces the Algebraic Degree")

Because of Δ_a being homomorphic with respect to addition, it suffices to consider only one monomial X_1, \ldots, X_k of the ANF of h. We proof this special case by induction. For k = 1, we get for any $a = (a_1, \ldots, a_n) \in \mathbb{F}_2^n$

$$\Delta_a X_1 = (X_1 + a_1) + X_1 = a_1.$$

The induction step from k - 1 to k. "Almost Leibniz" yields

$$\Delta_{a}(\underbrace{X_{1}X_{2}\cdots X_{k-1}}_{=:f}\underbrace{X_{k}}_{=:g}) = \underbrace{(X_{1}+a_{1})\cdots (X_{k-1}+a_{k-1})}_{=f(x+a)} \underbrace{a_{k}}_{=\Delta_{a}g} + \underbrace{\Delta_{a}(X_{1}\cdots X_{k-1})}_{=\Delta_{a}f}\underbrace{X_{k}}_{=g}$$

Now we apply the induction hypothesis.

Let's reflect on the goals from the beginning of this lecture.

- Discuss **different representations** of boolean functions → Multivariate, univariate polynomial representation
- Outline a basic concept of **cryptanalysis** on boolean functions → Higher-order differential cryptanalysis

Many more aspects of boolean functions, especially in the context of stream ciphers and linear/differential cryptanalysis. **Standard readings** on boolean functions:

- Anne Canteaut, Lecture Notes on Cryptographic Boolean Functions,
- Claude Carlet, *Boolean Functions for Cryptography and Error Correcting Codes* and *Vectorial Boolean Functions for Cryptography*.

Questions?

Questions for Self-Control

- 1. What is a (vectorial) boolean function?
- 2. Discuss polynomial representations of boolean functions. Why is it possible to represent boolean functions as polynomials after all?
- 3. How is the Möbius transform connected to the ANF of a boolean function?
- 4. What is the algebraic degree and why is it important in cryptography?
- 5. Outline the basic idea of higher-order differential cryptanalysis and describe the involved notion of derivation.