Gröbner Basis Fundamentals

Reinhard Lüftenegger

Mathematical Background of Cryptography - WT 2019/20

SCIENCE PASSION TECHNOLOGY

Overview

Divisibility and Division Algorithms

- Roadmap to Gröbner Bases
- Polynomials and Polynomial Long Division

Gröbner Bases

Buchberger's Algorithm

mqchallenge.org

Why Care About Gröbner Bases in Cryptography?

Gröbner Bases are used as a tool for ...

- ... cryptanalysis of symmetric key primitives such as stream and block ciphers or hash functions.
- ... cryptanalysis of public key primitives, especially for cryptosystems based on multivariate quadratic equations.
- ... a general tool for solving systems of polynomial equations.

"God Made the Integers, all the Rest is the Work of Man"

Many concepts of modern algebra evolved out of a careful study of number sytems like \mathbb{Z} , \mathbb{Q} , \mathbb{R} and polynomials over them. Among others, we have had a look at rings, ideals and quotient rings.

Do you remember the following concepts from the realm of the integers?

- Divisibility and division with remainder
- Greatest common divisors
- (Extended) Euclidean algorithm

In this lecture: We generalise and carry over above concepts to **multivariate** polynomial rings and see how they connect to Gröbner bases.

Divisibility and Division Algorithms

First things first

A Gröbner basis is ...

Definition

... a finite set of generators $\{g_1, \ldots, g_k\}$ for a polynomial ideal *I* in $\mathbb{F}[X_1, \ldots, X_n]$ such that the ideal generated by the leading terms of g_1, \ldots, g_k is equal to the ideal generated by all the leading terms of polynmials in *I*.

It Is All About Ideals

Fundamental task: Find all solutions $(x_1, ..., x_n) \in \mathbb{F}^n$ to a system of polynomial equations

$$f_1(x_1,...,x_n) = f_2(x_1,...,x_n) = ... = f_k(x_1,...,x_n) = 0.$$

In other words: We are looking for the set of all common zeros of f_1, \ldots, f_k

$$V(f_1, ..., f_k) := \{ (x_1, ..., x_n) \in \mathbb{F}^n : f_i(x_1, ..., x_n) = 0, \text{ for all } 1 \le i \le k \}.$$

This is equivalent to asking for the set of all common zeros of polynomials in $Id(f_1, \ldots, f_k)$. I.e. we have

$$V(f_1,\ldots,f_k)=V\left(\mathsf{Id}(f_1,\ldots,f_k)\right).$$

Quintessence: Instead of working with the set of polynomials $\{f_1, \ldots, f_k\}$ from the initial system, we switch to the ideal Id (f_1, \ldots, f_k) generated by these polynomials.

The Generating Set Matters

Observation: A different generating set for $Id(f_1, ..., f_k)$ may make it easier to solve the corresponding equation system.

Example: Consider the equation system

$$\begin{aligned} x^2 + y^2 + 2x + 2y + 2 &= 0 = f_1(x, y, z), \\ -2x^2 + y^2 - z^2 + 2y - 4x - 2z - 2 &= 0 = f_2(x, y, z), \\ 4x^2 + 3y^2 + z^2 + 8x + 6y + 2z + 8 &= 0 = f_3(x, y, z). \end{aligned}$$

Roadmap to Gröbner Bases I

Fact 1

Polynomial equation system \longrightarrow Generated ideal

Consequence: We Need Multivariate Division I

Question: How do we proceed to find another generating set for a multivariate ideal $Id(f_1, \ldots, f_k)$?

Counterquestion: Well, how do we proceed in the univariate case?

Example: Consider the two univariate polynomials $f_1(X) = 3(X+1)(X-2)^2$ and $f_2(X) = 2(X-3)(X+1)(X-2)(X-4)$ over \mathbb{Q} . To find another generating set for $Id(f_1, f_2)$ we apply the Euclidean algorithm and calculate $g := gcd(f_1, f_2) = (X+1)(X-2)$. Then

 $f_1 = q_1 g$ and $f_2 = q_2 g$

and therefore $Id(f_1, f_2) \subseteq Id(g)$. We obtain the reverse inclusion with the Extended Euclidean Algorithm via Bezout's identity

$$g = \gcd(f_1, f_2) = a \cdot f_1 + b \cdot f_2$$

for some $a, b \in \mathbb{Q}[X]$. Hence $Id(g) = Id(f_1, f_2)$.

Quintessence: We need a notion of multivariate polynomial long division!

Consequence: We Need Multivariate Division II

Question: Can we identify any requirement for multivariate long division?

Answer: Indeed, we can. It relates to the structure of ideals in $\mathbb{F}[X_1, \ldots, X_n]$.

Remember: The univariate polynomial ring $\mathbb{F}[X]$ over a field \mathbb{F} is a principal ideal domain (as are the integers \mathbb{Z}).

Spoiler: Multivariate polynomial rings do not admit this structure.

Example: Suppose, in $\mathbb{F}[X, Y]$ the ideal generated by $\{X, Y\}$ was principal, i.e., there was a polynomial $f \in \mathbb{F}[X, Y]$ such that Id(X, Y) = Id(f). Then

 $X = g \cdot f$ and $Y = h \cdot f$.

Consequently $\deg_X(f) = \deg_Y(f) = 0$, which means that f was a constant and therefore $Id(X, Y) = Id(f) = \mathbb{F}[X, Y]$. A contradiction.

Consequence for us: To find a generating set for multivariate ideals it is desirable to have a division algorithm which handles **multiple** divisors.

Roadmap to Gröbner Bases II

Fact 1

Polynomial equation system \longrightarrow Generated ideal

Fact 2

Multivariate division algorithm that handles multiple divisors

The Intuition Behind Gröbner Bases

Remember: For any two integers (univariate polynomials) a, b, with $b \neq 0$, there are unique integers (univariate polynomials) q, r such that $a = q \cdot b + r$ and |r| < |b| $(\deg(r) < \deg(b))$. In particular we always have

 $r = 0 \iff a \in Id(b).$

Spoiler: The division algorithm in multivariate polynomial rings doesn't satisfy this property anymore (more precisely, the direction "← "). More on that later.

Intuition behind Gröbner bases: A set $\{g_1, \ldots, g_k\}$ is a Gröbner basis of the ideal $I := Id(g_1, \ldots, g_k)$ if membership in I is equivalent to having a zero remainder r after division by g_1, \ldots, g_k . In other words, for any polynomial a we have

 $r = 0 \iff a \in \mathsf{Id}(g_1, \ldots, g_k).$

Roadmap to Gröbner Bases III

Fact 1

Polynomial equation system \longrightarrow Generated ideal

Fact 2

Multivariate division algorithm that handles multiple divisors

Fact 3

Membership in an ideal equivalent with zero remainder

Long Division of Polynomials in One Variable I

Long division of univariate polynomials is much like long division with integers. Let us tackle the following long division in $\mathbb{Q}[X]$: how would you carry out

 $(3X^4 + X^3 + 1) : (2X^3 + X) = ?$

Long Division of Polynomials in One Variable II

Let us highlight the aim of each step in the long division:

- By asking how often $2X^3$ fits into $3X^4$ we find a factor, $\frac{3}{2}X$, such that "dividend minus factor times divisor" does not contain the term $3X^4$ anymore; we call this a reduction.
- Important fact about reductions: the resulting polynomial has degree strictly less than the initial one (the reason why the algorithm eventually terminates).

As is the case for integers, we have the following

Theorem (Long Division with Univariate Polynomials)

Let \mathbb{F} be a field and $g \in \mathbb{F}[X]$ be a non-zero polynomial. Then every polynomial $f \in \mathbb{F}[X]$ can be written as

$$f=q\cdot g+r,$$

where $q, r \in \mathbb{F}[X]$ are uniquely determined and either r = 0 or deg(r) < deg(g).

Teaser: Long Division with Polynomials in Several Variables?

Question: Can we carry over the concept of long division to multivariate polynomials?

Answer: Yes, but the generalisation requires some care. Especially, how we achieve reductions.

Let's say, we wanted to perform a long division with the following polynomials in $\mathbb{Q}[X, Y]$ by imitating the procedure over $\mathbb{Q}[X]$:

$$(X^{6} + Y^{7} + X^{3}Y^{4} + 1) : (X + Y^{3}) = ?$$

Then we need to address (at least) two questions:

- Shall we begin with the term *X* or *Y*³ on the divisor side?
- Which term is the "pivot term" on the dividend side?

Another Look at Univariate Polynomial Long division

Observation: Univariate long division uses an implicit notion of "order".

Explanation: In every step of the division algorithm we take the monomial with the highest degree to achieve a reduction.

Consequences: We therefore need the notion of "order" in multivariate rings as well.

Motivating Example: How would you order the following terms in $\mathbb{Q}[X, Y, Z]$?

4*X*, 2*Y*⁵*Z*, *Y*⁵, 1000 and 1

Takeaway: Constant factors do not matter! Hence, we focus on monomials (rather than terms) in $\mathbb{F}[X_1, \ldots, X_n]$.

Intermezzo: Let's have a closer look at how we "order" monomials in the univariate case.

"Let There Be Order": Monomial Order in $\mathbb{F}[X]$

Observation: Monomials in $\mathbb{F}[X]$ are expressions of the form X^n , for $n \in \mathbb{N}_0$ and we have a canonical order on \mathbb{N}_0 .

Consequence: Given the order on \mathbb{N}_0 , it is natural to set

$$X^0 = 1 \le X \le X^2 \le \ldots$$

or more generally for $X^i, X^j \in \mathbb{F}[X]$ and $i, j \in \mathbb{N}_0$

$$X^i \leq X^j : \iff i \leq j.$$

Question: Can we use above order and extend it to monomials in $\mathbb{F}[X_1, \ldots, X_n]$ by setting

$$X_1^{i_1} \dots X_n^{i_n} \leq X_1^{j_1} \dots X_n^{j_n} : \iff \forall 1 \leq k \leq n : i_k \leq j_k?$$

"Let There Be Order": Total Order I

Answer: No, not quite. But the approach is not completely pointless.

Example: Let's say, we wanted to compare and order monomials in $\mathbb{F}[X, Y]$ according to the suggested order above. Then, e.g., how would we relate the monomials X^2Y^2 and X^3Y ?

Conclusion: We need to think a bit more about what we mean by an "order".

"Let There Be Order": Total Order II

As it turns out, there is an order relation available that is useful for our purposes.

Definition (Total Order)

Let *M* be a set and \leq a (binary) relation on *M* satisfying the following properties

- $a \le b$ or $b \le a$ (Comparability),
- $a \le b$ and $b \le c$ implies $a \le c$ (Transitivity),
- a ≤ b and b ≤ a implies a = b (Antisymmetry),

for all $a, b, c \in M$. Then \leq is called a total order on M.

"Let There Be Order": Monomial Order in $\mathbb{F}[X_1, \ldots, X_n]$

Notation: We use the abbreviating notation $X^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}$ for a monomial in $\mathbb{F}[X_1, \dots, X_n]$ with exponent vector $\alpha := (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$.

Our previous observations about order in multivariate polynomial rings are reflected in the following

Definition

A monomial order \leq on $\mathbb{F}[X_1, \ldots, X_n]$ is a (binary) relation on the set of monomials in $\mathbb{F}[X_1, \ldots, X_n]$ satisfying the following properties

- ≤ is a total order,
- $X^{\alpha} \leq X^{\beta} \Longrightarrow X^{\alpha} \cdot X^{\gamma} \leq X^{\beta} \cdot X^{\gamma}$

for every monomial $X^{\alpha}, X^{\beta}, X^{\gamma}$ in $\mathbb{F}[X_1, \ldots, X_n]$.

Examples of Monomial Orders I

Remark: Of course the polynomial ring $\mathbb{F}[X_1, \ldots, X_n]$ is the same as, e.g., the polynomial ring $\mathbb{F}[X_n, \ldots, X_1]$. For simplicity, we fix the following succession (X_1, X_2, \ldots, X_n) when writing down the exponent vector $\alpha = (\alpha_1, \ldots, \alpha_n)$ of X^{α} . Some commonly used monomial orders:

Lexicographic Order ("lex")

 \longrightarrow Emphasises the first place of variables in their succession, then higher univariate degree, then 1

Graded Lex Order ("deglex" or "glex")

 \longrightarrow Emphasises higher multivariate degree, then first place in succession, then higher univariate degree, then 1

Graded Reverse Lex Order ("degrevlex" or "grevlex")

 \longrightarrow Emphasises higher multivariate degree, then last place in succession, then lower univariate degree, then 1

Examples of Monomial Orders II

Let's discuss some examples in $\mathbb{Q}[X, Y, Z]$, with the variables arranged in the following succession (X, Y, Z).

lex	first in succ.	higher uni.	
deglex	higher multi.	first in succ.	higher uni.
degrevlex	higher multi.	last in suc.	lower uni.

Example: What is the arrangement of the monomials X^2 , XY^2Z^2 , Y^4Z in descending order with respect to lex, deglex and degrevlex?

Question: What distinguishes one monomial order from another one?

Short Answer: Different monomial orders have different arithmetic and/or algorithmic properties (e.g. number of steps in the divison algorithm).

Leading Monomials and Leading Terms

Definition

Let \leq be a monomial order on the monomials in $\mathbb{F}[X_1, \ldots, X_n]$ and $f \in \mathbb{F}[X_1, \ldots, X_n]$ a polynomial denoted as

$$f(X_1,\ldots,X_n)=\sum_{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^n}c_{\alpha}X_1^{\alpha_1}\cdots X_n^{\alpha_n}=\sum_{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^n}c_{\alpha}X^{\alpha}.$$

The leading monomial of f (with respect to \leq) is the monomial given by

$$\mathsf{LM}(f) \coloneqq \mathsf{LM}_{\leq}(f) \coloneqq \max_{\leq} \{ X^{\alpha} : c_{\alpha} \neq 0 \},\$$

whereas the leading term of f (with respect to \leq) is the product of the leading monomial with its corresponding coefficient, i.e.

$$\mathsf{LT}(f) \coloneqq \mathsf{LT}_{\leq}(f) \coloneqq c_{\alpha} X^{\alpha}, \text{ for } X^{\alpha} = \mathsf{LM}(f).$$

Long Division on Polynomials in Several Variables I

Key ingredients for multivariate long division: A monomial ordering in $\mathbb{F}[X_1, \ldots, X_n]$ and the requirement of multiple divisors.

Outline: With these key ingredients at hand, we sketch the multivariate division algorithm in $\mathbb{F}[X_1, \ldots, X_n]$.¹

	Univariate	Multivariate
Dividend	f = f(X)	$f=f(X_1,\ldots,X_n)$
Divisor	g	f_1,\ldots,f_k
Result	$f = q \cdot g + r$	$f = q_1 \cdot f_1 + \ldots + f_k \cdot g_k + r$

¹For a formal treatment see e.g. Cox, Little, O'Shea: "Ideals, Varieties and Algorithms", 4th ed., p. 64

Long Division on Polynomials in Several Variables II

Input: Dividend f, divisors f_1, \ldots, f_k , monomial order \leq **Output:** Factors q_1, \ldots, q_k and remainder r such that $f = q_1 f_1 + \cdots + q_k f_k + r$

```
q_1 := 0; \ldots; q_k := 0; \quad r := 0; \quad p := f
while p \neq 0 do
     i := 1:
     while i < k do
     \begin{array}{c} q_i := q_i + LT(p)/LT(f_i); \quad p := p - (LT(p)/LT(f_i))f_i \\ \downarrow i := 1 \end{array} 
         else
          \lfloor i := i + 1
  r := r + LT(p); \quad p := p - LT(p)
return q_1, \ldots, q_k, r
                                   Algorithm 1: Multivariate Division
```

Long Division on Polynomials in Several Variables III

Theorem (Long Division with Multivariate Polynomials)

Let \mathbb{F} be a field and $\{f_1, \ldots, f_k\} \subseteq \mathbb{F}[X_1, \ldots, X_n]$ be a set of non-zero polynomials. Then every polynomial $f \in \mathbb{F}[X_1, \ldots, X_n]$ can be written as

$$f = q_1 f_1 + \dots + q_k f_k + r,$$

where $q_1, \ldots, q_k, r \in \mathbb{F}[X_1, \ldots, X_n]$, and either r = 0 or no monomial of r is divisible by any of $LT(f_1), \ldots, LT(f_k)$.

Remark: Multivariate division doesn't guarantee uniqueness of factors and remainder.

Example I

Example: Let us divide $f = X^2Y + XY^2 + Y^2$ by $f_1 = Y^2 - 1$ and $f_2 = XY - 1$ with respect to the lex order.

Example II

Example: Let us divide $f = X^2Y + XY^2 + Y^2$ (same dividend) by $f_1 = XY - 1$ and $f_2 = Y^2 - 1$ (same divisors, but in reversed order) with respect to the lex order.

Side Effects of Multivariate Division

Observation: We have

$$X^{2}Y + XY^{2} + Y^{2} = (X + 1)(Y^{2} - 1) + X(XY - 1) + (2X + 1)$$
$$= (Y^{2} - 1) + (X + Y)(XY - 1) + (X + Y + 1).$$

In other words: The outcome of multivariate division is not unique and depends on the order of the divisors!

Bottom line: When testing a polynomial f for membership in the ideal $Id(f_1, \ldots, f_k)$ we only know

Zero remainder after dividing *f* by $f_1, \ldots, f_k \Longrightarrow f \in Id(f_1, \ldots, f_k)$.

But, we desire to have equivalence between these two statements.

Resolution: The notion of Gröbner bases!

Gröbner Bases

Gröbner Bases I

Let's recall the definition from the beginning

Definition

A Gröbner basis for a polynomial ideal I in $\mathbb{F}[X_1, \ldots, X_n]$ is a finite set of generators $\{g_1, \ldots, g_k\}$ for I such that the ideal generated by the leading terms of g_1, \ldots, g_k is equal to the ideal generated by all the leading terms of polynomials in I, i.e., such that

$$\mathsf{Id}(\mathsf{LT}(g_1),\ldots,\mathsf{LT}(g_k))=\mathsf{Id}(\mathsf{LT}(I)),$$

where $LT(I) := \{LT(i) : i \in I\}.$

Observation: The crucial property here is

```
\mathsf{LT}(I) \subseteq \mathsf{Id}(\mathsf{LT}(g_1),\ldots,\mathsf{LT}(g_k)),
```

or in other words: "The leading term LT(i) of every element $i \in I$ is a linear combination of the leading terms $LT(g_1), \ldots, LT(g_k)$ with coefficients in $\mathbb{F}[X_1, \ldots, X_n]$."

Gröbner Bases II

Question: The crucial property of Gröbner bases reads as

$$\mathsf{LT}(i) = p_1 \mathsf{LT}(g_1) + \dots + p_k \mathsf{LT}(g_k),$$

for every $i \in I$ and certain $q_1, \ldots, p_k \in \mathbb{F}[X_1, \ldots, X_n]$. But why is this important?

Intuitive Answer: Multivariate division is all about working with and cancelling leading terms. When testing if $f \in Id(g_1, \ldots, g_k)$, we divide f by g_1, \ldots, g_k and possibly get

$$f = \underbrace{q_1g_1 + \dots + q_kg_k}_{=:q} + r = \underbrace{q'_1g_1 + \dots + q'_kg_k}_{=:q'} + r'.$$

Suppose $r \neq r'$, then $LT(r - r') = LT(q' - q) \in LT(I) \stackrel{!}{\subseteq} Id(LT(g_1), \dots, LT(g_k))$, and therefore

$$\mathsf{LT}(r-r') = p_1 \mathsf{LT}(g_1) + \dots + p_k \mathsf{LT}(g_k).$$

After expanding the RHS, we conclude that $LT(g_i) | LT(r - r')$ for at least one *i*. \checkmark

Recap

- When trying to solve a system of polynomial equations, represented by the polynomials f_1, \ldots, f_k , it is convenient to switch to the **generated ideal** $Id(f_1, \ldots, f_k)$
- Another generating set for $Id(f_1, ..., f_k)$ may be more practical for determining the solutions $x_1, ..., x_n \in \mathbb{F}$ of $f_1(x_1, ..., x_n) = ... = f_k(x_1, ..., x_n) = 0$
- A Gröbner basis $\{g_1, \ldots, g_l\}$ is a special kind of generating set
- The crucial property of a Gröbner basis is the relation

$$\mathsf{LT}(i) = p_1 \mathsf{LT}(g_1) + \dots + p_l \mathsf{LT}(g_l),$$

for every $i \in I$ and certain $q_1, \ldots, p_k \in \mathbb{F}[X_1, \ldots, X_n]$. It allows us to "control" the division algorithm such that we have a **unique remainder** when dividing by g_1, \ldots, g_l .

Computing Gröbner Bases: The Buchberger Criterion

Remark: Our definition of a Gröbner basis is of little help for checking if a set $\{g_1, \ldots, g_l\}$ is a Gröbner basis for the ideal $I := Id(g_1, \ldots, g_l)$. We need a more practical criterion.

The "main theorem" of Gröbner basis theory is the following criterion, introduced by Bruno Buchberger in his Phd thesis (1965).

Theorem (Buchberger's criterion)

Let $G := g_1, \ldots, g_k$ be a set of generators for the ideal $I := \{g_1, \ldots, g_k\}$. Then G is a Gröbner basis of I if and only if for all pairs $i \neq j$ the remainder of

$$s(g_i,g_j) \coloneqq \frac{u}{\mathsf{LT}(g_i)}g_i - \frac{u}{\mathsf{LT}(g_j)}g_j,$$

with $u(g_i, g_j) \coloneqq \text{lcm}(\text{LT}(g_i), \text{LT}(g_j))$, after division by *G* (in some order) is zero.

Computing Gröbner Bases: The Buchberger Algorithm in $\mathbb{F}[X_1, \ldots, X_n]$

```
Input: A set of polynomials F := \{f_1, \ldots, f_k\}
Output: A Gröbner basis G := \{g_1, \ldots, g_l\} for the ideal Id(f_1, \ldots, f_k)
```

```
G := F; H := \{0\}
while G \neq H do
     H := G
    foreach p, q \in G, p \neq q do
  u := lcm(LM(p), LM(q))
s := \frac{u}{LT(p)}p - \frac{u}{LT(q)}q
r := remainder of S after division by H
    return G
```

Algorithm 2: Buchberger

Computing Gröbner Bases: Efficiency Considerations

Observation: In Buchberger's Algorithm, only polynomials s which have **non-zero remainder** after division by elements in the intermediate set *H* contribute to the final Gröbner basis.

Basic strategy for improvements: Reduce the number of polynomials *s* that need to be considerd. That means, finding other criteria that tell us **in advance** when a given polynomial *s* has zero remainder.

Approaches

- Preprocessing the input (→ homogeneous polynomials)
- Batch processing of several *s*-polynomials at once $(\longrightarrow \text{linear-algebra-based algorithms}, F_4)$
- Exploit certain relations between the input elements (→ "signature"-based algorithms, F₅)

Questions?

Questions for Self-Control

- 1. What is the fundamental difference of ideals in univariate and multivariate polynomial rings (with coefficients in a field) and how does this difference influence multivariate polynomial long division?
- 2. What is a monomial ordering and why is it important for polynomial long division?
- 3. Explain the similarities/differences of univariate and multivariate polynomial long division.
- 4. What is a Gröbner basis? Discuss the underlying idea and the connection to multivariate long division.
- 5. Discuss Buchberger's Algorithm and identify the most expensive steps. Highlight the main idea for improvements.