

Fields and Finite Fields

Reinhard Lüftenegger

Mathematical Background of Cryptography – WT 2019/20

Evariste Galois

Overview

Fields

- Homomorphisms
- Subfields and Extension Fields
- Construction of Fields

Finite Fields

- Structure of Finite Fields
- Maps over Finite Fields

Fields

Algebraic Cheat Sheet

Groups
$$+, -$$

Rings
$$+, -, \times$$

Fields
$$+, -, \times, \div$$

"A system with a certain completeness, fullness and self-containedness; a naturally unified organic whole."

"A system of [...] numbers, which is complete and self-contained, such that addition, subtraction, multiplication and division of any two of these numbers bring forth a number of the same system."

Fields

Roughly speaking, the field axioms are a means to enable elementary arithmetic with more general objects (not just \mathbb{Q} , \mathbb{R} , \mathbb{C}).

Definition

A set F together with two functions $+: F \times F \to F$ and $\cdot: F \times F \to F$ is called a field, if

- (F, +) is an abelian group (with identity element 0),
- $(F \setminus \{0\}, \cdot)$ is an abelian group and
- it holds $(a + b) \cdot c = ac + bc$, for every $a, b, c \in F$.

Examples: For which $n \in \mathbb{N}$ is the ring of congruence classes $\mathbb{Z}/n\mathbb{Z}$ a field? What about the set of all real multiples of the identity matrix, i.e. all matrices of the form $a \cdot I_n$ for $a \in \mathbb{R}$?

Homomorphisms

Homomorphisms link algebraic structures (e.g. vector spaces, groups, rings, fields) with "compatible" structure.

Definition

A field homomorphism is a map $\varphi: E \to F$ between two fields E and F such that φ is a homomorphism of rings, i.e. such that

- $\varphi(a+b) = \varphi(a) + \varphi(b)$ and
- $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$, for every $a, b \in E$.

Examples: Complex conjugation $\varphi: \mathbb{C} \to \mathbb{C}$, $\varphi(a+\mathrm{i}b)=a-\mathrm{i}b$, is a field homomorphism (try to check!). Is the function $\varphi: \mathbb{R} \to \mathbb{R}$ with $\varphi(x)=x^2$ a field homomorphism? What about $\varphi(x)=x^d$ (with $d\in\mathbb{N}$)?

Subfields and Extension Fields

Definition

A field *E* is called a subfield of a field *F*, if there is a field homomorphism $\iota : E \to F$. In this case, the field *F* is also called an extension field of *E*.

Remark: We write $F \supseteq E$ (or $E \subseteq F$) to indicate that F is an extension field of E (or E is a subfield of F).

Examples: Let $\mathbb{C} := \mathbb{R} \times \mathbb{R}$ be the set of all real 2-tuples with canonical addition and multiplication that makes it a field. Then the function $\iota : \mathbb{R} \to \mathbb{C}$ with $\iota(a) := (a,0)$ is a field homomorphism (why?). Another example: let p < q be two primes. Is there a field homomorphism from \mathbb{Z}_p to \mathbb{Z}_q ?

Characteristic of a Field

Remember: The smallest subring of a ring is either isomorphic to \mathbb{Z} or \mathbb{Z}_n , for $n \in \mathbb{N}$.

Question: What about the smallest subfield of a field?

Answer: The smallest subfield of a field is either isomorphic to \mathbb{Q} or \mathbb{Z}_p , for p prime.

Proposition (Characteristic of a Field)

The characteristic of a field is either zero or a prime number.

Nota Bene: Knowing about the characteristic (of a ring or field) is important because it tells us how to do arithmetic (see e.g. Freshman's Dream).

Field Theory and Linear Algebra

Remember: Vector spaces are algebraic structures where we can add objects and multiply objects with a scalar from a field.

Lemma (Field Extensions as Vector Spaces)

Every field extension $F \supseteq E$ can be regarded as an E-vector space.

Sketch of the proof

Vector addition is addition in F. Scalar multiplication is multiplication in F (this is meaningful since $F \supseteq E$ is a field extension).

Field of Fractions I

Idea: We have a (certain) ring and want to construct the smallest field in which it can be embedded.

Example: Construction of the rationals $\mathbb Q$ via the integers $\mathbb Z$

- Typically, a rational number is written in the form $\frac{m}{n}$, for $m, n \in \mathbb{Z}$, $n \neq 0$, and thus can be described by the 2-tuple $(m, n) \in \mathbb{Z} \times \mathbb{Z}$.
- Two fractions $\frac{m_1}{n_1}$ and $\frac{m_2}{n_2}$ represent the same rational number, if and only if $m_1 \cdot n_2 = m_2 \cdot n_1$.

Observation: Roughly speaking, by adding multiplicative inverses to the integers we get the rationals.

We abstract these principles and introduce a generalised version of this construction.

Field of Fractions II

Definition

Let $(R, +, \cdot)$ be a commutative ring with identity that doesn't contain zero divisors. Then the following construction on top of $R \times R \setminus \{0\}$

$$Frac(R) := \{ [(m,n)]_{\sim} : m, n \in R, n \neq 0 \},$$

where for $(m_1, n_1), (m_2, n_2) \in R \times R \setminus \{0\}$ we define the equivalence relation

$$(m_1,n_1) \sim (m_2,n_2) :\Leftrightarrow m_1 \cdot n_2 = m_2 \cdot n_1,$$

is called the field of fractions of R. Instead of $[(m,n)]_{\sim}$ we also write $\frac{m}{n}$.

Remark: Together with canonical addition and multiplication this is indeed a field (try to check!).

Finite Fields

Finite Fields

Definition

A finite field is a field that comprises finitely many elements.

Remark: We also write \mathbb{F}_q to denote a finite field with q elements.

Most basic example: Ring of congruence classes \mathbb{Z}_p (or \mathbb{F}_p) modulo a prime number p.

Application: Finite fields are a fundamental algebraic structure to do calculations within a block cipher (e.g. the AES operates in \mathbb{F}_{2^8} or one instance of MiMC in $\mathbb{F}_{2^{129}}$), to define elliptic curves (e.g. Curve25519 over \mathbb{F}_p with $p=2^255-19$) or to implement Shamir's Secret Sharing (e.g. over $\mathbb{F}_{2^{128}}$).

Structure of Finite Fields

Nota Bene: For finite fields, the smallest subfield is isomorphic to \mathbb{Z}_p for some prime p.

Theorem (Existence and Uniqueness of Finite Fields)

The number of elements in a finite field \mathbb{F}_q is a prime power, i.e. $q=p^n$, for some $n \in \mathbb{N}$ and some prime p. Conversely, for every $n \in \mathbb{N}$ and every prime p there is a finite field with p^n elements, which is unique up to isomorphism.

Lagrange's theorem helps us to classify all subfields of a finite field.

Theorem (Subfield Criterion for Finite Fields)

A field \mathbb{F}_{p^m} is a subfield of \mathbb{F}_{q^n} if and only if p = q and m divides n.

Prime vs. Irreducible I

Remember: A natural number p greater than one and whose only divisors are 1 and p itself is called a prime number. In other words

$$p = a \cdot b \Rightarrow a = 1 \text{ or } b = 1.$$

This aspect of primality leads us to the concept of irreducibility.

Definition

Let R be a commutative ring with identity that doesn't contain zero divisors. An element $r \in R$ which is not a unit is called irreducible, if

$$r = a \cdot b \Rightarrow a \sim 1 \text{ or } b \sim 1.$$

Prime vs. Irreducible II

Remember: A fundamental property of a prime number $p \in \mathbb{N}$ is

$$p \mid a \cdot b \Rightarrow p \mid a \text{ or } p \mid b$$

This aspect of being prime motivates a more general definition of primality.

Definition

Let R be a commutative ring with identity that doesn't contain zero divisors. An element $r \in R$ which is not a unit is called prime, if

$$r \mid a \cdot b \Rightarrow r \mid a \text{ or } r \mid b.$$

Note: In general, being prime is **not** equivalent to being irreducible, but in the polynomial ring F[X] over a field F it is!

Construction of Finite Fields I

Remark: There are two different types of finite fields, prime fields (\mathbb{F}_p) and extension fields (\mathbb{F}_{p^n}).

Observation: Prime fields are constructed by taking the integers modulo a prime number *p*.

Question: Can we imitate this construction to get extension fields?

Answer: Yeah!

	Prime Fields	Extension Fields
Base structure	${\mathbb Z}$	$\mathbb{F}_{ ho}[X]$
Modulus	prime number p	prime polynomial f
Resulting model	$\mathbb{Z}/(p)=\mathbb{F}_p$	$\mathbb{F}_p[X]/(f)=\mathbb{F}_{p^n}$

Construction of Finite Fields II

In \mathbb{Z}_p elements are congruence classes (of integers) modulo some prime p. This is the reason why we write

$$\mathbb{F}_p = \{0, 1, \ldots, p-1\},\$$

whereas on a technical level in \mathbb{Z}_p the element *i* represents the set

$$i = \{i + kp : k \in \mathbb{Z}\} = \{\ldots, i - 2p, i - p, i, i + p, i + 2p, \ldots\}.$$

In \mathbb{F}_{p^n} elements are congruence classes (of polynomials over \mathbb{F}_p) modulo some prime polynomial f of degree n, hence we write

$$\mathbb{F}_{p^n} = \{a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_1X + a_0 : a_i \in \mathbb{F}_p\},\$$

again with the technicality that

$$a_{n-1}X^{n-1} + \dots + a_0 = \{(a_{n-1}X^{n-1} + \dots + a_0) + kf : k \in \mathbb{F}_p[X]\}.$$

Construction of Finite Fields III

More formally we have

Theorem (Construction of Extension Fields)

Let \mathbb{F}_p be a field with p elements. If $f \in \mathbb{F}_p[X]$ is a prime polynomial of degree n, then the quotient ring $\mathbb{F}_p[X]/(f)$ is a finite field with p^n elements.

The justification is straightforward and mimics the proof for \mathbb{F}_p over \mathbb{Z} . In essence, the only prerequisite is the following

Theorem (Extended Euclidean Algorithm)

For every two elements a,b in $\mathbb Z$ (or $\mathbb F_p[X]$) we can compute elements x,y in $\mathbb Z$ (or $\mathbb F_p[X]$) such that

$$a \cdot x + b \cdot y = \gcd(a, b).$$

Maps over Finite Fields

Remark: Every polynomial $f \in E[X]$ induces a polynomial function $f : E \to E$, $a \mapsto f(a)$.

Remember: Over the real numbers, for a data set of m points $(x_1, y_1), \ldots, (x_m, y_m)$ there is a unique polynomial p with degree at most m-1 that interpolates between these points, i.e. $p(x_i) = y_i$ for all i.

Theorem (Every Function over a Finite Field is a Polynomial Function)

Every map $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ can be uniquely described as a univariate polynomial with maximum degree $p^n - 1$.

Questions?

Questions for Self-Control

- 1. What are the main differences between a commutative ring (with identity) and a field?
- 2. Is there a field homomorphism between \mathbb{F}_p and \mathbb{F}_q for $p \neq q$?
- 3. Describe the construction of prime and extension fields and discuss the similarities/differences in the construction process.
- 4. Can every map over a finite field be described as a polynomial? Justify your answer.
- 5. What is the connection between linear algebra and field theory? Why is it beneficial?