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Literature

The slides are based on the following books
= Algebra of Cryptologists, Alko R. Meijer
m  Algebra, Gisbert Wiistholz

= A Mind at Play: How Claude Shannon Invented the Information Age, Jimmy Soni,
Rob Goodman



Rings



Recap from Group Theory

A monoid is a set M together with a binary operation x : M x M — M, where x is
associative and has an identity element.

If every element of a monoid {G, *} has an inverse element, we call it a group.
Examples:

»  {Z,+}and {Z,,+} are abelian groups.

s {Z,-} and {Z,,-} are monoids.
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Rings

Definition (Ring)

A (commutative) ring is a set R together with two binary operations + : R x R -~ Rand
- Rx R — R, such that the following is satisfied:

= {R,+}isanabelian group.
= {R,-} is a (commutative) monoid.

m Vr,s,teR:r(s+t)=rs+rt(distributive).

Note: We write 0 resp. 1 for the identity in {R, +} resp. {R,}.
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Rings: Examples

= Theintegers {Z, +, -} form a commutative ring.
= The set of residue classes modulo a given integer {Z,, +, -} form a ring.

= Let Mbe any set and let R be a ring, then set of all maps from M to R, denoted by
R := {f : M — R} is a ring with the following operations:

+:RY x RM — RY
(f,9) — (f+g):M—R
x> (F+g)(x) = f(x) +g(x)

In analogy to the addition, we define the multiplication.
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Why algebra matters

Say that a certain function in the circuits would allow the current to pass
through—would output a 1, in Shannon’s terms—depending on the state of three
different switches, x, y, and z.

The current would pass through if only z were switched on, or if y and z were switched
on, or if x and z were switched on, or if x and y were switched on, or if all three were
switched on.

Xy'z+x'yz+xy'z+xyz' +xyz

[distributive] = yz(x +x") +y'z(x + x") + xyZ'

[X+x' =1]= yz+y'z+xyZ

[distributive,y +y' = 1] = z+xyZ
] =

[x+x'y=x+y Z+Xy



Units

Definition (Unit)

Let R be aring. An element x € Ris called a unit of R if
dyeR:xy=1.

We denote the set of all units of R by R*, which together with the multiplication is an
abelian group.

= The units of the integers are Z* = {-1,1}.

=  Wealready saw thatZ; = {a +nZ € Z, | gcd(a,n) = 1}.

If R* = R\ {0}, i.e. every element of the ring R except 0 has an multiplicative inverse,
then we call R a field.

/30



Ring Homomorphisms

Recall: Amap ¢ : G - G’ between two groups is called group homomorphism if

o(gh) = #(g)p(h) Vg,heG.

Definition (Ring homomorphism)

A map ¢ : R — S between to rings is called (ring) homomorphism if forallr, s € R:
= O(r+s) = 9(r) +6(s),

= o(rs) = ¢()e(s),

. P(1g) = 1s.

Note: If ¢ is an injective homomorphism, we sometimes call it embedding.
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Ring Homomorphisms: Examples

= The "modulo n map"

¢:7 — 7InZ
a—a+nZ

is a ring homomorphism.

= Let Rand S berings such that R c S. Then we always have the trivial embedding:

¢:R— S

r—r
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Subrings

Recall: A subgroup of {G, x} is a non-empty subset, which is closed under * and taking
inverses.

Definition (Subring)
Asubset R’ c Rof aring Ris called a subring of R if

= {R,+}isasubgroupof {R,+},

= R'isclosed under multiplication.

We denote by IP, the subring generated by the multiplicative identity element 1, i.e.

P={n-1|neNj}.
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Characteristic

For every non-trivial ring R, the subring P is either isomorphic to Z or to Z,,.

Definition (Characteristic)

The characteristic of a ring R is defined as

0 ifPz2Z,

char(R) := {n R
= Lip.

We can also think of the char(R) as the smallestn € Nsuchthatn-1=1+---+1=0.
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Characteristic: Examples

= char(Z)=0.
= char(Z,) =n,because0=n-1.

= There exists infinite rings with a non-zero characteristic (see section about
polynomial rings).
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Frobenius Homomorphism

Proposition (The Freshman’s Dream)

Let p be prime and let R be a ring of characteristic p. Further, let x, y € R, then

(x+y)p=xp+yp.

Thereby, the map

Frob, :R — R
X —> xP

is a ring homomorphism, called the Frobenius homomorphism.

Note: Frob, can be used as indicator for weaknesses of elliptic curves.
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Ideals

Definition (ldeal)
Let Rbe aring. Asubring/ c Ris called an ideal in R if

VreRVael:arel.

Examples:

= Consider nZ c Z for a fixed integer n. We already saw that {nZ, +} is a subgroup of
7. To be anideal it is left to check that nZ is closed under multiplication with
integers. Let r € Z and kn € nZ, then

r-kn=(rk)-nenZ.

= Theintegers Z are obviously a subring of the reals R. Since /2 e Rbut /2-3 ¢ Z,
the integers do not form an ideal in R.
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Principal Ideals

We just saw that the ideal nZ c Z is generated by the single integer n. This
construction can be generalized to arbitrary rings.

Definition (Principal Ideal)
Let R be aring. A principal ideal generated by a € R consists of all the multiplies of a

(a):=aR={ar:reR}.
If every ideal in R is a principal ideal, we call R a principal ideal domain (PID).

The integers Z are a principal ideal domain.
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Greatest Common Divisor

Let a, b € R. We say that a divides b (and write a | b) if
dreR:b=ra.

The greatest common divisor of a and b (write gcd(a, b)) is a divisor d of a and b,
which gets divided by every common divisor of a and b.

Let Rbe a PID and let a, b € R. Then there always exists gcd(a, b).
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Sum, Intersection & Multiplication of Ideals

Let Rbe aringand let/,J c R be two ideals of R. Then the following sets are again
ideals of R

= Theintersection/nJ
Example: R=Z and | = mZ,J = nZ for m,n € Z, then

InJ=mZnnZ=lcm(m,n)Z.
= Thesum/+J:={a+b|ael beJ}.
Example: R=Zand | =mZ,J = nZ form,n € Z, then
I+J=mZ+nZ=gcd(m,n)Z.
s Thesum/-J:={Y,aibj|ajel bieJ,neN}.
Example: R=Zand | =mZ,J = nZ form,n € Z, then
I-J=mZ-nZ =mnZ.



Quotient Rings

Recall: Let H c G be a subgroup of G. Then G/H = {gH : g € G} with the operation
(gH,g'H) — (gg’'H) is the corresponding quotient group.

Definition (Quotient Ring)

Let Rbe aringand let/ c R be an ideal of R. The quotient group R/I = {r +/:r e R}
together with the following multiplication

“:R/IxR|/l — R/l
(r+0r"+1)— (rr') +1.

is called a quotient ring.

Consider R = Z and the ideal / := (n) c Z, for some n € Z. Then the corresponding
quotient ring is the ring of all residue classes modulo n

R/I=Z](n)=Z|nZ ={a+nZeZ|nZ|aeZl}.
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Chinese Remainder Theorem

Notation: In analogy to the integers we writer =s mod /,ifr—se .

Theorem (Chinese Remainder Theorem)

LetRbe aring,and letxy,...,x, € R. Further, let/y,...,/, c Rbeideals of R with
li+1; = R, fori # j. Then there exists an element x € R such that

x=x; modl;, forl<i<n.

Theorem (Chinese Remainder Theorem for the Integers)

Letxy,...,X, € Z. Further,letmZ, ... ,myZ c R be ideals of Z with m;Z + m;Z = Z
(i.e. gcd(m;, m;) = 1), fori # j. Then there exists an element x € Z such that

x=x; modm; forl<i<n.
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Decomposition

Corollary

Let/y,...,I, c Rbeideals of Rwith /; + /; = R, fori # j. Then there is a canonical

isomorphism
R/ (lhn---nlp) 2R/ly x - xR/Ip.

Example: R = Z and my, ..., m, € N pairwise co-prime with m = mym,---m,. It follows

that
ZmEZml X"‘XZmn.
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Polynomial rings



Polynomials

Definition (Polynomial)

Let R be aring. We define a polynomial over R as a finite formal sum of the form
n .
f(X)=> aX,
i=0
where a; € R, called the coefficients of f. Further, we assume that a,, # 0 € R, except

all a;’s are zero.

= The leading coefficient of f(X) is ap.
= The constant term of f(X) is ap.
®  Thedegree of f(X)isdegf(X) =n.

The symbol X is called indeterminate or variable.
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Polynomials: Examples
LetR = Z, then

f(X) = -3x20+20X" +4x3 +8
is a polynomial over Z, with

= |eading coefficient -3,
®m  constantterm 8, and
= degf(X) = 10.

Note:
1,
gX)==X"-X+1

is a polynomial over Q, but not over the smaller ring Z.
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Binary Operations on Polynomials

Let Rbearingand letf(X) = X7, a;X" and g(X) = %7, biX’ be two polynomials over R.
(Assume w.l.o.gn > m, and setb; = 0 form <i < n)

We define the polynomial addition componentwise:
n .
f(X) + g(X) = Z(G,‘ + b,‘)X’.
i=0
Multiplication is defined as follows
m+n

‘ J
f(X)g(X) = Z CjX/, with G = Za,-bj_i.

j=0 i=0
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Binary Operations on Polynomials: Examples

= Consider polynomials over Z, i.e. all polynomials with integer coefficients. Let
F(X) =1+X2,g(X) =1+X2+X* € Z[X]. Then

fX)+g(X)=2+2X* + x*
FOOVGX) =1+ X2+ X+ X2+ X e X0 =1+ 2% + 2 + X®

= Consider polynomials over Z,, i.e. all polynomials with coefficientsin {0,1}. Let
F(X)=1+X%,g(X) =1+X>+X*eZ,[X]. Then

fFX)+g(X)=2+2X* + X* = x*
FOOVGX) =T +X2+ X 4 X2+ X 4 X0 =T+ X8
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Polynomial Rings

Definition (Polynomial ring)

Let R be aring. The polynomial ring R[X] over R is defined as the set of all
polynomials over R, together with the operations defined above.

Let R be aring.

= The proof that the polynomial ring R[X] actually is a ring, is not difficult but
tedious and messy.

®  The construction of the polynomial in one variable can be generalized to the
polynomial ring in nvariable R[Xi, ..., X,].

= Forelliptic curves the polynomial rings R[X, Y] and R[X, Y, Z] are from importance.
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Polynomial vs. Polynomial function

Given f(X) with coefficients in R, we can view f(X) as either
= apolynomial, if we consider X merely as a placeholder,

= oras a polynomial function, if we allow X to take values in R (or a overring of R).

More formally, let R[X] be a polynomial ring over the ring R and let S > R be a ring. For
every s € S, we introduce the map

n n )
¢5: R[X]—)S, ZG’X"_)ZG’S,’
i=0 i=0

which is called evaluation homomorphism.

Example: Let f(X) = 2X> -3 ¢ Z[X] and s = 7 € Q. Then we can evaluate f(X) at s and
get-2 Q.
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Polynomial rings over fields

Let K be field. Then K[X] is a PID, i.e.
VIc K[X]ideal 3f(X) : 1 = {g(X)f(X) | g(X) € K[X]}.
Note: f(X) in the last theorem is not unique. Therefore one often chooses the unique
monic polynomial (leading coefficient equals 1).
Example: The set of all polynomials that vanish in a givenset S c C, i.e.,
Is:={feC[X]:f(s)=0 VseS}

is an ideal. Since C[X] is a PID, we know that / is generated by a single polynomial.
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Long Division

Let K[X] be a polynomial ring over a field K and let f(X), g(X) € K[X] be two
polynomials. The last theorem implies that there exists a greatest common divisor
d(X) = gcd(f(X),g(X)). Itis computed in analogy to the integers.

Long Division: Letf(X) = X5 +X*+ X2+ 1,g(X) = X* + X2 + X + 1 € Z,[X]:

XX+ X +1=X+D) X+ X2+ X+1) + (X +X?)
X aX e X+1=X+1)XC+X) +(X+1)
XX =xX*(X+1)+0

This shows that
ged(F(X),g(X)) = X + 1 e Zy[X].
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Irreducible Polynomials

Definition (Irreducible Polynomial)
Let K be a field. A non-constant polynomial f(X) € K[X] is called irreducible in K[X] if
it cannot be factored in two non-constant polynomials with coefficients in K.

= X°+X*+1eZ[X]isreducible,since X° +X* + 1= (X2 + X+ 1)(X3 + X +1).

s f(X) =X?+X+1eZy[X]isirreducible. Assume to the contrary f(X) is reducible,
ie. f(X)=(X-a)(X-p3),with «, 5 € Z,. But then f(«) = 0, a contradiction.

= Irreducibility highly depends on the underlying field, e.g. X? + 1is irreducible in
R[X], but reducible in C[X], since X* + 1 = (X —i)(X + /).
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CRT for Polynomials

Theorem (CRT for Polynomials)

Let K be afield and let a; (X), ..., a,(X) € K[X]. Further, let e;(X) € K[X] be distinct
irreducible polynomials, fori = 1,...,n. Then there exists a polynomial f(X) € K[X]
such that

f(X) =ai(X) mod e;(X),

forl1<i<n.
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