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Literature

The slides are based on the following books
= Algebra of Cryptologists, Alko R. Meijer

= An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

®  Algebra, Gisbert Wiistholz



Congruences



Congruences 1

Let a,n € N be integers. The set of all multiples of n is denoted by
nZ:={kn:keZ}={...,-2n,-n,0,n,2n,... },in analogy define
a+nZ:={...,a-2n,a-n,a,a+n,a+2n,...}.
The set of congruence or residue classes modulo n is then defined as follows
Zn=7|nZ:={a+nZ|acZ}.
The fact that two congruence classes a + nZ and b + nZ are the same is often denoted

by
a=b modn,

which isitself definedasn |a-b,i.e. 3k e Z:nk=a-b.



Congruences 2

We can equip Z, with two operations induced by the operations on Z

+5, 2 Lp X Lig —> Zip
(a+nZ,b+nZ)— (a+,b) +nZ,

'zn:ZnXZn_’Zn
(a+nZ,b+nZ)— (a-,b) +nZ.

The set of all residue classes modulo n with an inverse w.r.t. to -, are denoted by
Zy:={a+nZ|3b+nZeZy:a+nZ-,, b+nZ=1+nZ}={a+nZ|ged(a,n)=1}.

Notation: By a € Z,,, we actually mean a + nZ.



Groups



Group

Definition (Monoid, Group)

A monoid is a set M together with a binary operation * : M x M — M, such that the
following is satisfied:

" Va,b,ceM:ax(bx*c)=(ax*b)xc(associative).
m JeeMVaeM:exa=a=*e=a(identity element).
A group is a monoid {G, *} such that
YaeGla' eG:axa =ad +a=e (inverses).

We call G commutative/abelianifa x b =b x aforalla, b € G.
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Groups: Examples

= {Z,+}isan abelian group
= {Z,-}isan abelian monoid.

» {Zn,+}and {Z},} are abelian groups.
In particular, {Z,,+} = {{0,1}, +} is an abelian group.

m  The set of n x n matrices with rational entries and nonzero determinate forms a
non-abelian group under matrix multiplication.



Immediate Consequences

Fora € {G, +}, define
a":==ax---%a, ifn>0,
ntimes

a®=eanda” = (a1)"ifn<0.

= Theidentity elementis unique.

= Theinverse element is unique.

m gxb=ax*c= b=c. (cancellation law)
= (axb)t=btxal.

= (axb)"=a"xb".
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Subgroups

Definition (Subgroup)

Let {G, +} be a group and let H c G be a non-empty subset of G such that
" Va,beH:axbeH (closed under *)
= VaeH:a!eH (closed under taking inverses)

Then H is called a subgroup of G.

= {0} isasubgroup.
= {0,1,2} is notasubgroup.
= {0,2,4}isasubgroup.
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Quotient Groups

Notation: Let {G,-} be an abelian group, g € G and let M be a non-empty set, then
gM = {gm:m e M}.

Definition (Quotient group)
Let {G,-} be an abelian group and let H c G be a subgroup of G. The quotient group
{G/H, o} is defined as follows G/H := {gH : g € G}, with the operation
o:G/HxG/H— G/H
(gH,g'H) — (9g")H.

This abstract construction is quite familiar. Consider G = {Z, +} and for some n € N the
subgroup H := nZ c 7. Then the corresponding quotient group is G/H = Z/nZ, with the
operation

(a+nZ,b+nZ)— (a+b)+nZ.
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Direct Sum

Definition (Direct sum)

The direct sum of a set of abelian groups {G;}, is a group G defined as follows. As a

set G is the cartesian product Gy x -+ x G, = {@1,...,0am : a; € G;}. The group
operations given two elements (a3, ...,an), (b1,...,bm) € Gis the component-wise
addition

(a1,...,am) + (b1,....bm) :=(a1+b1,...,am +bpy).

Example: The Klein four-group

7)27 x Z)2Z = {(8,0), (1,0), (0,1), (1,1)}.
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Homomorphisms 1

Definition (Homomorphism)

Amap ¢ : G - G’ between two groups is called (group) homomorphism if

o(gh) = #(g)#(h) Vg,heG.

The kernel and the image of ¢ are defined as the following sets
ker¢:={geG:p(g) =€} im¢:={s(g):9geGC}.

We call ¢ an isomorphism if in addition ¢ is bijective.
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Homomorphisms 2

Let ¢ : G — G’ be a group homomorphism, then the kernel ker ¢ c G and the image
im ¢ c G" are subgroups. Further, ¢ is injective if and only if ker ¢ = {e}.

Examples:
»  Z[/(mn)Z = Z]mZ x Z|nZ, for the case that gcd(m,n) = 1.
" Z[p*Z ¢ ZIpZ x 7| pZ.
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Cyclic Groups



Order

Definition (Order)

Let G be a group and let a € G. The order of g, denoted by ord(g) is the smallest
positive integer n such that g” = e, if there is no such n, then g has infinite order.
The order (exponent) of the group G is its cardinality and denoted by |G| or #G.

Examples:

= Take the group (Z3,,-), and the residue class 7 := 7 + 30Z. We get that ord(7) = 4,
because

7' =7 (mod30), 72=19 (mod 30), 7°=13 (mod 30), 7*=1 (mod 30).

= Letn = pqg with p,q primes. Consider the order of the group Z;:
#{a+nZ|gcd(a,n) =1} = ¢(n) = ¢(pq) = ¢(p)#(q) = (P - 1)(g - 1).
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Cyclic Group

Definition (Cyclic group)
A group G (and implicitly a subgroup) is called cyclic if

dgeG:(g):={g" |neN} =G.

Note, for a € G, the subgroup (a) is the smallest possible subgroup of G which contains
the element g, and is often referred to as the subgroup generated by a.

Proposition

Every finite cyclic group is isomorphic to Z/nZ for some n € N and every cyclic group
with infinitely many elements is isomorphic to the integers Z.
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Generators of cyclic groups

Let G = (g) be a finite cyclic group. Then g" is a generator of Gif r + 0 and
ged(r,ord(g)) = 1. In particular, the number of generators of G is ¢ (#G).

Example: Take the group (Zj3, +).

From the last proposition we get that this group has ¢(11) = 10 generators, i.e. every
element besides the neutral element is a generator.

In contrast if we look at the larger group (Z14, +), we see that this group has only
¢(14) = 6-1 = 6 generators.
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Discrete Logartihm Problem

Definition (Discrite Logarithm Problem (DLP))

Given a finite cyclic group (G, ), a generator g € G, and a € G arbitrarily, computing
x € Z such that

g =a. (1)

= Forthe DLP to be well-defined, it is necessary that (g) = G.

= Usually, one implicitly looks for the smallest positive x satisfying (1).

16/23



Application of DLP: Zero Knowledge Proof

Secret: x € Z.
Public: Finite cyclic group G with a generator g, and a = g*.

Zero Knowledge Proof:

Alice Bob

—2  befo,1}

Verify: ¢ = ca®
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Lagrange’s Theorem

and its applications



Lagrange’s Theorem

Lemma

Let G be a finite group. Then every element of G has finite order. Further, if a € G has
orderd and if d = e, thend | k.

Proposition (Lagrange’s Theorem)

Let G be a finite group and let a € G. Then the ord(a) | #G.
More precisely, let n = #G and let ord(a) = d. Then

a"=e and d|n.

Further, let H c G be a subgroup then #H | #G.
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Applications from Lagrange 1

Corollary (Euler’s theorem)

LetneNandaeZ;. Then
a®™ =1.

Example: Let n = pq with p, q primes. We choose a public key € € Z;. Further, let
d € Z; be theinverse elementofeinZ;,i.e.
de=1 mod ¢(n).

Thenforalla € Z;, we have:

(@®)? = "M g (a*M) =g.1¥=a mod n.
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Applications from Lagrange 2

Corollary (Fermat’s little theorem)

Let p be prime and @ € Z,. Then
a” =1
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Finitely Generated Abelian Groups



Finitely Generated

Definition (Finitely Generated)

Let (G, +) be an abelian group. We call G finitely generated if there exists a finite set
S={s1,...,5¢} c Gsuch that every a € G can be written as linear combination of
elementsin S

a=n;Sy + -+ + NSy, wWith n; € Z.

We call G finite if #G is finite.

Example:
»  (Z,+)isfinitely generated abelian group with S = {1}.
= (Z/nZ,+) is afinite abelian group.

= Every lattice forms a finitely generated abelian group (more on that later).
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Fundamental theorem of finitely generated abelian groups

Theorem (Invariant factor decomposition)

If G is a finitely generated abelian group then
G2 ZKx (Z)dZ) x --- x (Z/d,Z),
foraunique k > 0,and somed;,...,d, > 0suchthatd;|dj fori=1,...r-1.

Theorem (Primary decomposition)

If G is a finitely generated abelian group then there are unique p7*, ..., p% > 1, where
p1,-..,Ps are primes, and a unique k > 0 such that

Gz ZKx (ZIpIZ) x - x (Z|p™1Z).

In both cases: if G is finite = k = 0.
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Example

Let G be an abelian group of order 100. We want to show that G contains an element of
order 10. Further, if there exists no element of order greater than 10, then
G2 7Z/10Z x Z|]10Z.
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