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Literature

The slides are based on the following books

Algebra of Cryptologists, Alko R. Meijer

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

Algebra, Gisbert Wüstholz
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Congruences



Congruences 1

Let a,n ∈ N be integers. The set of all multiples of n is denoted by
nZ ∶= {kn ∶ k ∈ Z} = {. . . ,−2n,−n,0,n,2n, . . .}, in analogy define

a + nZ ∶= {. . . ,a − 2n,a − n,a,a + n,a + 2n, . . .}.

The set of congruence or residue classes modulo n is then defined as follows

Zn ∶= Z/nZ ∶= {a + nZ ∣ a ∈ Z}.

The fact that two congruence classes a + nZ and b + nZ are the same is o�en denoted
by

a ≡ b mod n,

which is itself defined as n ∣ a − b, i.e. ∃k ∈ Z ∶ nk = a − b.
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Congruences 2

We can equip Zn with two operations induced by the operations onZ

+Zn ∶ Zn ×Zn Ð→ Zn
(a + nZ,b + nZ)z→ (a +Z b) + nZ,

⋅Zn ∶ Zn ×Zn Ð→ Zn
(a + nZ,b + nZ)z→ (a ⋅Z b) + nZ.

The set of all residue classes modulo nwith an inverse w.r.t. to ⋅Zn are denoted by

Z∗n ∶= {a + nZ ∣ ∃b + nZ ∈ Zn ∶ a + nZ ⋅Zn b + nZ = 1 + nZ} = {a + nZ ∣ gcd(a,n) = 1}.

Notation: By ā ∈ Zn, we actually mean a + nZ.
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Groups



Group

Definition (Monoid, Group)

A monoid is a setM together with a binary operation ∗ ∶ M ×M→ M, such that the
following is satisfied:

∀a,b, c ∈ M ∶ a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative).

∃e ∈ M∀a ∈ M ∶ e ∗ a = a ∗ e = a (identity element).

A group is a monoid {G,∗} such that

∀a ∈ G∃a′ ∈ G ∶ a ∗ a′ = a′ ∗ a = e (inverses).

We call G commutative/abelian if a ∗ b = b ∗ a for all a,b ∈ G.
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Groups: Examples

{Z,+} is an abelian group

{Z, ⋅} is an abelian monoid.

{Zn,+} and {Z∗n , ⋅} are abelian groups.
In particular, {Z2,+} = {{0̄, 1̄},+} is an abelian group.

The set of n × nmatrices with rational entries and nonzero determinate forms a
non-abelian group under matrix multiplication.
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Immediate Consequences

For a ∈ {G,∗}, define
an ∶= a ∗ ⋅ ⋅ ⋅ ∗ a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, if n > 0,

a0 = e and an = (a−1)n if n < 0.

The identity element is unique.

The inverse element is unique.

a ∗ b = a ∗ c⇒ b = c. (cancellation law)

(a ∗ b)−1 = b−1 ∗ a−1.

(a ∗ b)n = an ∗ bn.
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Subgroups

Definition (Subgroup)

Let {G,∗} be a group and let H ⊂ G be a non-empty subset of G such that

∀a,b ∈ H ∶ a ∗ b ∈ H (closed under ∗)

∀a ∈ H ∶ a−1 ∈ H (closed under taking inverses)

Then H is called a subgroup of G.

Example: Consider {Z6,+} = {{0̄, 1̄, 2̄, 3̄, 4̄, 5̄},+}.

{0̄} is a subgroup.

{0̄, 1̄, 2̄} is not a subgroup.

{0̄, 2̄, 4̄} is a subgroup.
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Quotient Groups

Notation: Let {G, ⋅} be an abelian group, g ∈ G and letM be a non-empty set, then
gM ∶= {gm ∶ m ∈ M}.

Definition (Quotient group)

Let {G, ⋅} be an abelian group and let H ⊂ G be a subgroup of G. The quotient group
{G/H, ○} is defined as follows G/H ∶= {gH ∶ g ∈ G}, with the operation

○ ∶ G/H × G/HÐ→ G/H
(gH,g′H)z→ (gg′)H.

This abstract construction is quite familiar. Consider G = {Z,+} and for some n ∈ N the
subgroup H ∶= nZ ⊂ Z. Then the corresponding quotient group is G/H = Z/nZ, with the
operation

(a + nZ,b + nZ)z→ (a + b) + nZ.
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Direct Sum

Definition (Direct sum)

The direct sum of a set of abelian groups {Gi}mi=1 is a group G defined as follows. As a
set G is the cartesian product G1 × ⋅ ⋅ ⋅ × Gm = {a1, . . . ,am ∶ ai ∈ Gi}. The group
operations given two elements (a1, . . . ,am), (b1, . . . ,bm) ∈ G is the component-wise
addition

(a1, . . . ,am) + (b1, . . . ,bm) ∶= (a1 + b1, . . . ,am + bm).

Example: The Klein four-group

Z/2Z ×Z/2Z = {(0̄, 0̄), (1̄, 0̄), (0̄, 1̄), (1̄, 1̄)}.
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Homomorphisms 1

Definition (Homomorphism)

A map φ ∶ G→ G′ between two groups is called (group) homomorphism if

φ(gh) = φ(g)φ(h) ∀g,h ∈ G.

The kernel and the image of φ are defined as the following sets

kerφ ∶= {g ∈ G ∶ φ(g) = e} imφ ∶= {φ(g) ∶ g ∈ G}.

We call φ an isomorphism if in addition φ is bijective.
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Homomorphisms 2

Proposition

Let φ ∶ G→ G′ be a group homomorphism, then the kernel kerφ ⊂ G and the image
imφ ⊂ G′ are subgroups. Further, φ is injective if and only if kerφ = {e}.

Examples:

Z/(mn)Z ≅ Z/mZ ×Z/nZ, for the case that gcd(m,n) = 1.

Z/p2Z /≅ Z/pZ ×Z/pZ.
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Cyclic Groups



Order

Definition (Order)

Let G be a group and let a ∈ G. The order of g, denoted by ord(g) is the smallest
positive integer n such that gn = e, if there is no such n, then g has infinite order.
The order (exponent) of the group G is its cardinality and denoted by ∣G∣ or#G.

Examples:

Take the group (Z∗30, ⋅), and the residue class 7 ∶= 7 + 30Z. We get that ord(7) = 4,
because

71 ≡ 7 (mod 30), 72 ≡ 19 (mod 30), 73 ≡ 13 (mod 30), 74 ≡ 1 (mod 30).

Let n = pqwith p,q primes. Consider the order of the group Z∗n :

#{a + nZ ∣ gcd(a,n) = 1} = φ(n) = φ(pq) = φ(p)φ(q) = (p − 1)(q − 1).
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Cyclic Group

Definition (Cyclic group)

A group G (and implicitly a subgroup) is called cyclic if

∃g ∈ G ∶ ⟨g⟩ ∶= {gn ∣ n ∈ N} = G.

Note, for a ∈ G, the subgroup ⟨a⟩ is the smallest possible subgroup of Gwhich contains
the element a, and is o�en referred to as the subgroup generated by a.

Proposition

Every finite cyclic group is isomorphic toZ/nZ for some n ∈ N and every cyclic group
with infinitely many elements is isomorphic to the integers Z.
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Generators of cyclic groups

Proposition

Let G = ⟨g⟩ be a finite cyclic group. Then gr is a generator of G if r ≠ 0 and
gcd(r,ord(g)) = 1. In particular, the number of generators of G is φ(#G).

Example: Take the group (Z11,+).
From the last proposition we get that this group has φ(11) = 10 generators, i.e. every
element besides the neutral element is a generator.
In contrast if we look at the larger group (Z14,+), we see that this group has only
φ(14) = 6 ⋅ 1 = 6 generators.
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Discrete Logartihm Problem

Definition (Discrite Logarithm Problem (DLP))

Given a finite cyclic group (G, ⋅), a generator g ∈ G, and a ∈ G arbitrarily, computing
x ∈ Z such that

gx = a. (1)

For the DLP to be well-defined, it is necessary that ⟨g⟩ = G.

Usually, one implicitly looks for the smallest positive x satisfying (1).
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Application of DLP: Zero Knowledge Proof

Secret: x ∈ Z.
Public: Finite cyclic group Gwith a generator g, and a = gx.

Zero Knowledge Proof:

Alice Bob
r ← Z,
c← gr

c
ÐÐÐÐÐ→

b
←ÐÐÐÐÐ b ∈ {0,1}

y ← xb + r
y

ÐÐÐÐÐ→

Verify: gy = cab
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Lagrange’s Theorem

and its applications



Lagrange’s Theorem

Lemma

Let G be a finite group. Then every element of G has finite order. Further, if a ∈ G has
order d and if ak = e, then d ∣ k.

Proposition (Lagrange’s Theorem)

Let G be a finite group and let a ∈ G. Then the ord(a) ∣#G.
More precisely, let n = #G and let ord(a) = d. Then

an = e and d ∣ n.

Further, let H ⊂ G be a subgroup then#H ∣#G.
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Applications from Lagrange 1

Corollary (Euler’s theorem)

Let n ∈ N and ā ∈ Z∗n . Then
āφ(n) = 1̄.

Example: Let n = pqwith p,q primes. We choose a public key ē ∈ Z∗n . Further, let
d̄ ∈ Z∗n be the inverse element of ē in Z∗n , i.e.

de ≡ 1 mod φ(n).

Then for all ā ∈ Z∗n , we have:

(ae)d = a1+kφ(n) = a ⋅ (aφ(n))k ≡ a ⋅ 1k ≡ a mod n.
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Applications from Lagrange 2

Corollary (Fermat’s little theorem)

Let p be prime and ā ∈ Z∗p . Then
āp−1 = 1̄.
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Finitely Generated Abelian Groups



Finitely Generated

Definition (Finitely Generated)

Let (G,+) be an abelian group. We call G finitely generated if there exists a finite set
S = {s1, . . . , sk} ⊂ G such that every a ∈ G can be written as linear combination of
elements in S

a = n1s1 + ⋅ ⋅ ⋅ + nksk, with ni ∈ Z.

We call G finite if#G is finite.

Example:

(Z,+) is finitely generated abelian group with S = {1}.

(Z/nZ,+) is a finite abelian group.

Every lattice forms a finitely generated abelian group (more on that later).
21 / 23



Fundamental theorem of finitely generated abelian groups

Theorem (Invariant factor decomposition)

If G is a finitely generated abelian group then

G ≅ Zk × (Z/d1Z) × ⋅ ⋅ ⋅ × (Z/drZ),

for a unique k ≥ 0, and some d1, . . . ,dr > 0 such that di ∣ di+1 for i = 1, . . . r − 1.

Theorem (Primary decomposition)

If G is a finitely generated abelian group then there are unique pn11 , . . . ,p
ns
s > 1, where

p1, . . . ,ps are primes, and a unique k ≥ 0 such that

G ≅ Zk × (Z/pn11 Z) × ⋅ ⋅ ⋅ × (Z/p
ns
s Z).

In both cases: if G is finite⇒ k = 0.
22 / 23



Example

Let G be an abelian group of order 100. We want to show that G contains an element of
order 10. Further, if there exists no element of order greater than 10, then
G ≅ Z/10Z ×Z/10Z.
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