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Introduction

= Core procedure:
1. Represent the cipher (or components of it) as a set of equations

2. Solve the resulting system for the unknown variables (e.g., key
variables)

= Many attack strategies (as for other attacks: one has to be “creative”)
= Different solving techniques
= Complexities sometimes hard to estimate

= Strength of attacks greatly dependent on the structure of a cipher
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What is a Grobner Basis? - Mathematical Background

Given a set of equations F = {f, f,, ..., f,}, we convert it to a set of
polynomials P = {p1,pa, ..., P} (€8, X1 + X2 = X3 — X1 + X — X3)

The set of solutions for F is precisely the set of solutions for P such that
p1=0,p, =0,...,p, = 0(this set of solutions is called an algebraic
variety)

Crucial point: the varieties of P and Ideal(P) are the same, which means
they have the same solutions

= ... butideals are too large to use them efficiently



What is a Grobner Basis? - Mathematical Background cont.

Definition (Grobner Basis)

A Grobner basis of an ideal is a polynomial equation system with the same
variety and which is easier to solve.

= Computing a Grobner basis for an ideal can be computationally expensive

= Algorithms involve polynomial divisions

Use the leading terms of the polynomials

The term order describes how the terms in a polynomial are ordered
and what the leading term is

Huge impact on the efficiency of the computation
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What is a Grobner Basis? - Mathematical Background cont.
Lemma (Triangular Shape)

The reduced Grobner basis G = {g1, 9>, - - ., ga} (in a specific term order)
generating the zero-dimensional ideal / is of the form

g1 = de + h1(x1),
g = Xz + hz(Xl),

dn = Xn + hn(Xl)7
where h; is a polynomial in x; of degree at most d — 1.

= Note that g; is now a univariate equation and we can solve it by
factorization!

m  Use the result to solve for the other variables
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First Target: The PURE Block Cipher

= Variant of the KLV Feistel cipher proposed in 1995 [NK95] to be provably
resistant against differential and linear attacks

= 64-bit blocks, 192-bit key k = (k,-),6:1 with k; € Fyz

= Simplified round function (6 rounds in total):
XL k; XR

= Computation of x3 in Fy»



Grobner Basis Attack on the 3-Round PURE Cipher

pL kl Pr
(xe + k1)?

b Em—

Our key variables are ki, ky, ks

We introduce an additional intermediate variable x;
for our equations

The system of equations describing the cipher is
then

X1+(pR+k1)3+pL =0,
o+ (q+k)+pr=0,
Grt(c+k)P+x=0

(PL, PR €1, Cr @re known)
But there is a problem...
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Grobner Basis Attack on the 3-Round PURE Cipher cont.

= We have 3 equations in 4 variables (our system is underdetermined)
= Simple solution: Use a second (plaintext, ciphertext) pair
®  Introduce a new variable x, for the second pair (ki k», ks stay the same)
= Add equations:
X+ (Pr? + k)P +p.@ =,
a® + (6 + k) + pr? =0,
? + (@ + k) +x =0

= Now we have 6 equations in 5 variables and we can solve it!

= Result: 96-bit key k = (ki, ks, k3) found in under 1 second on a normal
laptop



Second Target: The JArvis Block Cipher

= Block cipher proposed in 2018 for “algebraic” use cases [AD18]
= n-bit blocks and keys

= Simple round function:

Si— S

v

B! > C |—b> Sit1

= Scomputes theinverse,i.e, S(x) = x7*

= Band C are low-degree affine polynomials



Rewriting the Inverse Function

Example (3-bit S-Box)

X 0x0 | 0x1 | 0x2 | Ox3 | 0x4 | Ox5 | Ox6 | Ox7
S(x) | 0x0 | 0x1 | 0x5 | 0x6 | 0x7 | 0x2 | 0x3 | Ox4
Over Fy3, this S-box computes:
n 0 X = 0
Sx) =x""?2=x°= ,
x~1  otherwise

Since S computes the inverse of x in [F»: for all x # 0, we can also write
Vx #0:x-y =1(now adegree-2 equation instead of a degree-6 one!)

For sufficiently large block sizes, we can assume that x # 0 with high

probability
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Attack Idea

= Rewrite the inverse function as a low-degree function
= Band C have only low degree
= Introduce intermediate variables

= Avoid forward computation of the inverse

= Avoid forward computation of (high-degree) B!
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Introducing the Variables

New variables x;:

ki
'
B! > C | Si+1

Si— S

Y

New equation for two consecutive rounds:
(C(X,') + k,) : B(X,'_H_) =1
for1 < i < r— 1(recall that S computes the inverse)

Two more equations for plaintext and ciphertext, and equations for round
keys

At the end: 2r + 1 equationsin 2r + 1 variables
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Complexity of the Attack

= There exist complexity estimations for the case in which the number of
equations equals the number of variables

= Unfortunately, complexities are too high when using this approach

= Forexample, 6 of 12 rounds of 128-bit JARvIS already need around 2%
computations

= So... what can we do?
m  Reduce the number of variables!
m  Describe every round key in terms of the master key

m  Skip every second intermediate variables
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Relate Round Keys to the Master Key
= Two consecutive round keys are related by

1
kiig == +¢
i+1 ki i

= Therefore, each round key is a rational function of the master key kg in

degree 1:
;- ko + 5;

ki1 = :
T ko + 0

=« (3,7, and §; are constants, and can be precomputed
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Skipping Intermediate Variables

= For each intermediate variable x;, note that:

1 C(X~) B 1
C(xi—1) + ki—1’ I B(Xit1)

= We find low-degree affine polynomials D and E such that

B(X,') = + k,‘

= Applying these yields

D(m)zf(@”’)

= Now we can remove every second variable!
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Complexity of Improved Attack

= Equations for the plaintext and ciphertext have to be added
= In total, we have 7 + 1 equations and the same number of variables
= New equations have slightly higher degrees (applications of D and E)

= Complexity estimates for JARVIS instances:

r n, Complexity in bits
10 (JARVIS-128) 6 100
12 (JARVIS-192) 7 119
14 (JARVIS-256) 8 138
16 9 156
18 10 175

20 11 194




There’s more to it...

Same strategy works for FRIDAY, a hash function based on JARviS

m By exploiting the internals of the hash function, the attacks becomes
even better

= Full details given in the paper [ACG+19]
= Maybe the strategies are applicable to other similar designs as well?
= Different perspectives

= Designer: Make one step of the attack sufficiently expensive

m  Attacker: Evaluate complexities of all necessary steps

m .. both are not trivial (active research, see e.g. [ST19])
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Grobner Bases - Complexity

Reminder: Computing a Grobner basis only one of the steps in the attack
= |In most cases, we expect it to be the most expensive one

= Complexity difficult to estimate (depends on number of variables,
number of equations, degrees, ...)

m Last step (factorization) might also be a bottleneck
Most theoretic results apply to “random” systems
= However, cryptographic schemes tend to be well-structured

Advantage: The attack does not need many (plaintext, ciphertext) pairs
(sometimes, even one pair is enough!)

Protection (simplified): Force attacker to use many variables, increase
degrees of equations
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Grobner Basis Attacks - Summary

= Inshort: simplify an equation system and solve it

®  Recently, they gain importance due to new ciphers which exhibit a “nice”
algebraic structure

= Design of such algorithms is motivated by new use cases
m  Grobner bases can provide strong attacks against such ciphers

= In general: difficult to apply Grobner bases to bit-based schemes (i.e.,
working in IF,)

= Many variables
m  Approaches based on SAT solvers also efficient

m  Seee.g. MQ challenge (https://www.mgchallenge.org/)
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