Foundations of Lattice Cryptography

SCIENCE PASSION TECHNOLOGY

Lukas Helminger

Mathematical Foundations of Cryptography – WT 2020/21

> www.iaik.tugraz.at

Outline

Foundations of Lattice Cryptography

- Shortest Integer Solution (SIS)
- Learning with Errors (LWE)
- Regev's LWE Cryptosystem
- Ring-SIS
- Ring-LWE

Literature

The slides are based on the following sources

• A Decade of Lattice Cryptography, Chris Peikert

Foundations of Lattice Cryptography

Short Integer Solution (SIS)

Definition (SIS)

Given *m* uniformly random vectors $a_i \in \mathbb{Z}_q^n$, forming the columns of a matrix $A \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that

$$Az = 0 \in \mathbb{Z}_q^n.$$

- Without constraint on ||z||, it is easy to find solution via Gaussian elimination.
- Corresponds to SVP in the following lattice

$$L(A) := \{z \in \mathbb{Z}^m : Az = 0 \in \mathbb{Z}_q^n\} \supset q\mathbb{Z}^m.$$

Learning with Errors (LWE)

Definition (LWE Distribution)

For a vector $s \in \mathbb{Z}_q^n$ called the secret, the LWE distribution $A_{s,\chi}$ over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ is sampled by choosing $a \in \mathbb{Z}_q^n$ uniformly at random, choosing $e \leftarrow \chi$, and outputting

 $(a, b = s \cdot a + e \mod q).$

Definition (Search-LWE_{n,q,χ,m})

Given *m* independent samples $(a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ drawn from $A_{s,\chi}$ for a uniformly random $s \in \mathbb{Z}_q^n$ (fixed for all samples), find *s*.

Regev's LWE Cryptosystem

Gen: secret key is a random LWE secret $s \in \mathbb{Z}_q^n$; public key is some $k \approx (n+1) \log q$ samples $(a_i, b_i = s \cdot a_i + e_i) \in \mathbb{Z}_q^{n+1}$ drawn from $A_{s,\chi}$. Set

$$M = \begin{pmatrix} A \\ b^t \end{pmatrix} \in \mathbb{Z}_q^{(n+1) \times k}.$$

Enc: $m \in \{0, 1\}$, choose $x \leftarrow \{0, 1\}^k$, then $c \leftarrow Mx + \left(0, m \left\lfloor \frac{q}{2} \right\rfloor\right) \in \mathbb{Z}_q^{n+1}.$

Dec:

$$(-s,1)^{t} \cdot c = (-s,1)^{t} M x + m \left\lfloor \frac{q}{2} \right\rfloor = e^{t} x + m \left\lfloor \frac{q}{2} \right\rfloor$$
$$\approx m \left\lfloor \frac{q}{2} \right\rfloor$$

LWE and Lattices

Definition (Bounded Distance Decoding Problem (BDD $_{\gamma}$))

Given a basis *B* of an *n*-dimensional lattice *L* and a target point $t \in \mathbb{R}^n$ with the guarantee that dist $(t, L) < d = \lambda_1(L)/2\gamma(n)$, find the unique lattice vector $v \in L$ such that ||t - v|| < d.

Search-LWE can be seen as BDD problem in the lattice

$$L(A) := \{x \in \mathbb{Z}^m : \exists s \in \mathbb{Z}^n, x = As \mod q\} = A\mathbb{Z}_q^n + q\mathbb{Z}^m,$$

with target point t = b and dist $(b, L) = ||s|| \approx \sqrt{m} \cdot \sqrt{\operatorname{Var}(A_{s,\chi})}$.

Harndess of LWE

Definition (Decisional Approximate SVP (GapSVP $_{\gamma}$))

Given a basis *B* of an *n*-dimensional lattice L where either $\lambda_1(L) \le 1$ or $\lambda_1(L) > \gamma(n)$, determine which is the case.

Reduction from search LWE to GapSVP on arbitrary *n*-dimension lattices.

Ring-SIS

 $R = \mathbb{Z}[X]/(X^n - 1)$, i.e. elements of *R* can be represented by integer polynomials of degree less than *n*.

 $R_q := R/qR = \mathbb{Z}_q[X]/(X^n - 1)$

Definition (Ring-SIS)

Given *m* uniformly random elements $a_i \in R_q$, defining a vector $\mathbf{a} \in R_q^m$, find $O \neq \mathbf{z} \in R^m$ of norm $||\mathbf{z}|| \le \beta$ s.t. $\mathbf{a}^{\mathsf{T}} \cdot \mathbf{z} = \mathbf{0} \in R_q$.

R-SIS versus SIS

In R-SIS each random element $a \in R_q$ corresponds to *n* related vectors in $a_i \in \mathbb{Z}_q^n$ in SIS:

$$X^i \in R \longleftrightarrow e_{i+1} \in \mathbb{Z}^n$$

 $X^3 + 2X + 1 \in \mathbb{Z}[X]/(X^4 - 1) \longleftrightarrow (1, 0, 2, 1) \in \mathbb{Z}^4$

Multiplication by $a \in R_q$ is a \mathbb{Z} -linear function from R to R_q

 \Rightarrow circular matrix $A_a \in \mathbb{Z}_q^{n \times n}$.

This yields the correspondence between a R-SIS instance $\mathbf{a} = (a_1, \dots, a_m) \in R_q^m$ and the (structured) SIS instance

$$A = [A_{a_1} | \cdots | A_{a_m}] \in \mathbb{Z}_q^{n \times nm}.$$

Geometry of Rings and Ideal lattices

What is a short vector in R?

- Coefficient embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{Z}^n$ depends on the choice of representatives of R.
- Canonical embedding: $\sigma : \mathbb{Z}[X] \to \mathbb{R}$ independent of representatives of *R*.

An ideal lattice is a lattice corresponding to an ideal in *R* under some embedding. Ideals of *R* are closed under multiplication by *X*. Corresponds to rotation by one

coordinate in the coefficient embedding, i.e.

$$(x_1,\ldots,x_n)\in L\Rightarrow (x_{1+k},\ldots,x_{n+k})\in L.$$

Hardness and Efficiency of R-SIS (compared to SIS)

Hardness:

- Reduction to worst-case problems on ideal lattices.
- SVP appears to be very hard on ideal lattices.

Efficiency:

- Key size of order *n* instead of n^2 .
- In addition, multiplication can be performed in quasi-linear time using FFT-like techniques.

Ring LWE

Definition (Ring-LWE distribution)

For an $s \in R_q$ called the secret, the ring-LWE distribution $A_{s,\chi}$ over $R_q \times R_q$ is sampled by choosing $a \in R_q$ uniformly at random, choosing $e \leftarrow \chi$, and outputting

 $(a, b = s \cdot a + e \mod q).$

Connection to LWE:

Given a R-LWE sample $(a, b = s \cdot a + e) \in R_q \times R_q$, we can transform it to *n* LWE samples

$$(A_a, b^t = s^t A_a + e^t) \in \mathbb{Z}_q^{n \times n} \times \mathbb{Z}_q^n,$$

where A_a correspondence to multiplication by a.