Discrete Logarithm

Lukas Helminger

Mathematical Foundations of Cryptography – WT 2020/21

SCIENCE PASSION TECHNOLOGY

> www.iaik.tugraz.at

Outline

Elliptic Curve Cryptography

- Elliptic Curves Recap
- Elliptic Curve Cryptography
- ECDLP

Dlog Algorithms

- Babystep-Giantstep
- Pohlig-Hellman
- Pollard *ρ*-Method
- Index-Calculus

Dlog Algorithms (EC)

- MOV Algorithm
- SSSA-Algorithm

Literature

The slides are based on the following books

- The Arithmetic of Elliptic Curves, Joseph H. Silverman
- An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill, Silverman, J.H.
- Elliptic Curves: Number Theory and Cryptography, Lawrence C. Washington
- Elliptische Kurven in der Kryptographie., Annette Werner

Motivation

- Suggested by Miller, Koblitz in 1980's
- Smaller key size compared to RSA
- Recommended cryptographic primitive (standard)

Elliptic Curve Cryptography

Elliptic Curves

Definition

An elliptic curve *E* over the field \mathbb{F} is the set of solutions of an equation of the form

 $Y^2 Z = X^3 + a X Z^2 + b Z^3$

where $a, b \in \mathbb{F}$, with the discriminant $\Delta := -16(4a^3 + 27b^2) \neq 0$, i.e.

$$E = \{ (x : y : z) \in \mathbb{P}^2(\overline{\mathbb{F}}) \mid y^2 z = x^3 + axz^2 + bz^3 \}.$$

Affine plane: $E : y^2 = x^3 + ax + b$ Rational points:

$$E(\mathbb{F}) \coloneqq \{0\} \cup \{(x,y) \in \mathbb{F} \times \mathbb{F} \mid y^2 = x^3 + ax + b\}$$

The Group Law

The Group Law

The Group Law

Mulitplicatio-by-m map

Let *E* be an elliptic curve over \mathbb{F} , and let *m* be an integer. The multiplication-by-*m* map $[m] : E \to E$ is defined for $P \in E$ as follows

$$[m]P := \begin{cases} \underbrace{m \text{ terms}}_{P + \dots + P} & m > 0\\ O & m = 0 \\ \underbrace{-P - \dots - P}_{-m \text{ terms}} & m < 0 \end{cases}$$

Elliptic Curve Diffie-Hellman Key Agreement

Alice and Bob agree on an elliptic curve *E* over a finite field \mathbb{F}_q and a point $P \in E(\mathbb{F}_q)$. Then Alice chooses a secret integer *m*, and Bob chooses a secret integer *n*.

DH Example

(Elliptic Curve) Discrete Logarithm Problem

Definition (ECDLP)

Given an elliptic curve *E* over \mathbb{F}_q , a point $P \in E(\mathbb{F}_q)$ and point $Q \in \langle P \rangle$. Find:

[x]P = Q

Definition (DLP)

Let (G, \cdot) be a finite cyclic group and $g \in G$ a generator of G. Further, let $a \in G$ be arbitrarily. The challenge is to find an $x \in \mathbb{Z}$ such that

$$g^{x} = a$$
.

Examples

Let $G = (\mathbb{Z}/31\mathbb{Z})^{\times}$. One can show that $\overline{3}$ is a generator of the cyclic group. Further, let $a = \overline{14}$. Then the DLP is to find $x \in \mathbb{Z}$ such that

$$\overline{3}^{x} = \overline{14}$$

Elliptic curve $E: y^2 = x^3 + x$ over \mathbb{F}_7 and generator $P = (3,3) \in E(\mathbb{F}_7)$. m = 5, n = 3.

 $K = [5 \cdot 3](3,3) = (3,4)$ Would have to solve:

[x](3,3) = (3,4).

Dlog Algorithms

Subsection 1

Babystep-Giantstep

Shanks's Babystep-Giantstep Algorithm

- 1. $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. Create two lists:

BS: 1,
$$g, g^2, \dots, g^{m-1}$$

GS: $a, a (g^{-m}), a (g^{-m})^2, \dots, a (g^{-m})^{m-1}$

- 3. Find a match between the list BS and GS, say $g^i = a \cdot (g^{-m})^j$.
- 4. $x' \leftarrow i + jm$

BSGS Example

 $G = (\mathbb{Z}/31\mathbb{Z})^{\times}$, then $m = \lceil \sqrt{30} \rceil = 6$. We want to solve the following DLP $\overline{3}^{\times} = \overline{14}$

The baby steps are:

The giant steps are:

r
 0
 1
 2
 3
 4
 5

$$\overline{14} \cdot \overline{3}^{-6j}$$
 $\overline{14}$
 $\overline{28}$
 $\overline{25}$
 $\overline{19}$
 $\overline{7}$
 $\overline{14}$

Therefore the solution to the DLP is $x = 3 \cdot 6 + 4 = 22$.

BSGS Analyses

Runtime:

- 1. $m \leftarrow \lceil \sqrt{n} \rceil$
- 2. BS: $1, g, g^2, \dots, g^{m-1}$ $\mathcal{O}(m)$ GS: $a, a (g^{-m}), a (g^{-m})^2, \dots, a (g^{-m})^{m-1}$ $\mathcal{O}(m)$
- 3. Finding a match

 $\mathcal{O}\left(m\log m\right)$

$$\mathcal{O}\left(\sqrt{n}\right)$$

Space Complexity:

The lists in step (2) have length *m*, so we get $\mathcal{O}(\sqrt{n})$.

Pohlig-Hellman

Let $|G| = n = \prod_{i=1}^{m} p_i^{e_i}$. Assume we have some oracle $O(g, a, p^e)$ which outputs the DL of a w.r.t. g in a group of order p^e .

Then for i = 1, ..., m do:

- 1. $g' \leftarrow g^{N/p^{e_i}}$
- 2. $a' \leftarrow a^{N/p^{e_i}}$
- 3. $y_i \leftarrow O(g', a', p^{e_i})$

Use the CRT to solve

 $x \equiv y_1 \pmod{p_1^{e_1}} \quad , \dots, \quad x \equiv y_m \pmod{p_m^{e_m}}.$ Running time: $\mathcal{O}\left(\left(\sum_{i=1}^m \left(e_i \left(\log n + \sqrt{p_i}\right)\right)\right)\right)$

Subsection 3

Pollard ρ -Method

Definition and Notation

Definition

Let *S* be a finite set, let $f : S \rightarrow S$ and let $x \in S$. The sequence

$$x_0 = x$$
, $x_1 = f(x_0)$, $x_2 = f(x_1)$, $x_3 = f(x_2)$, ...

is called the (forward) orbit of x by the map f and is denoted by $O_f^+(x)$.

Theorem (Cycle Detection)

Let *S* be a finite set containing *n* elements, let $f : S \rightarrow S$, and $x \in S$ be an initial point.

Suppose that the forward orbit $O_f^+(x) = \{x_0, x_1, x_2, ...\}$ of x has a tail of length T and a loop length of M. Then

 $x_{2i} = x_i$ for some $1 \le i < T + M$.

In particular we only need $\mathcal{O}(1)$ memory to find a collision.

b If f is sufficiently random, then the expected value of T + M is

 $\mathbb{E}\left(T+M\right)\approx 1.25\sqrt{n}.$

Hence, we are likely to find a collision in $\mathcal{O}(\sqrt{n})$ steps.

Pollard's ρ for the DLP

Partition *G* into S_1, S_2, S_3 , where $1 \notin S_2$. Let $x_i \in G$, then we define $f : G \to G$ in the following way

$$f(x_i) = \begin{cases} gx_i & x_i \in S_1 \\ x_i^2 & x_i \in S_2 \\ ax_i & x_i \in S_3. \end{cases}$$

Note, if we start with $x_0 = 1$, every x_i can be written as $x_i = g^{\alpha_i} a^{\beta_i}$, where

$$\alpha_{i} = \begin{cases} \alpha_{i-1} + 1 \pmod{n} & x_{i} \in S_{1} \\ 2\alpha_{i-1} \pmod{n} & x_{i} \in S_{2} \\ \alpha_{i-1} & x_{i} \in S_{3} \end{cases} \qquad \beta_{i} = \begin{cases} \beta_{i-1} & x_{i} \in S_{1} \\ 2\beta_{i-1} \pmod{n} & x_{i} \in S_{2} \\ \beta_{i-1} + 1 \pmod{n} & x_{i} \in S_{3}. \end{cases}$$

Pollard's ρ for the DLP (cont.)

• Compute $((x_i, \alpha_i, \beta_i), (x_{2i}, \alpha_{2i}, \beta_{2i}))$ until there is a collision $x_i = x_{2i}$, i.e. $g^{\alpha_i} a^{\beta_i} = g^{\alpha_{2i}} a^{\beta_{2i}}$. Hence,

$$g^{\alpha_i-\alpha_{2i}}=a^{\beta_{2i}-\beta_i}=g^{x(\beta_{2i}-\beta_i)}.$$

Therefore a solution to the given DLP is a solution of the congruence relation

$$x(\beta_{2i}-\beta_i)\equiv \alpha_i-\alpha_{2i} \pmod{n}.$$

- Apply the Eucledian algorithm to find the smallest positive integer solution *s*.
- Set $d = gcd(\beta_{2i} \beta_i, n)$, then basic theory about congruence relations tells x is one of the values

$$s,s+\frac{n}{d},\ldots,s+(d-1)\frac{n}{d}$$

Try all possible values (usually *d* is small).

Pollard's ρ Example

Consider the subgroup *G* of \mathbb{F}_{607}^* of order n = 101 generated by the element $g = \overline{64}$ and the DLP

$$\overline{64}^{x} = \overline{122}.$$

Define

$$\begin{split} S_1 &= \big\{ \overline{x} \in \mathbb{F}_{607}^* : x \leq 201 \big\}, \\ S_2 &= \big\{ \overline{x} \in \mathbb{F}_{607}^* : 202 \leq x \leq 403 \big\}, \\ S_3 &= \big\{ \overline{x} \in \mathbb{F}_{607}^* : 404 \leq x \leq 606 \big\}. \end{split}$$

Apply Pollard's Rho method:

Pollard's ρ Example (cont.)

i	Xi	α_i	β_i	X _{2i}	$lpha_{2i}$	eta_{2i}
0	ī	0	0	ī	0	0
1	122	0	1	316	0	2
2	316	0	2	172	0	8
3	308	0	4	137	0	18
÷		÷			÷	
11	182	0	55	7	8	12
12	352	0	56	309	16	26
13	76	0	11	352	32	53
14	167	0	12	167	64	6

i.e. collision, when i = 14.

$$x(6-12) \equiv 0-64 \pmod{101}$$

 $-6x \equiv -64 \pmod{101}$
 $95x \equiv 37 \pmod{101}$

Since gcd(95, 101) = 1, there is only one solution smaller than *n*.

Index-Calculus

Only works for the multiplicative group of a finite field, i.e. \mathbb{F}_q^* . Setting of the DLP $\overline{g}, \overline{a} \in \mathbb{Z}_p^*$:

$$\overline{g}^{x} = \overline{a}.$$

The algorithm has two major steps:

- 1. Choose a bound $B \in \mathbb{N}$ and compute the discrete logarithm for all elements q in the factor base F(B): $\overline{g}^{x_q} = \overline{q}$
- 2. Look for an exponent $y \in \{1, 2, ..., p-1\}$ such that the integer ag^{y} modulo p is *B*-smooth.

Dlog Algorithms (EC)

Subsection 1

MOV Algorithm

Torsion Group

Definition

Torsion Points Let $n \in \mathbb{N}$. The set of *n*-torsion points of the group *E* is denoted by

 $E[n] = \{P \in E : [n]P = O\}.$

Note that this set is the kernel of the multiplication-by-*n* map.

Let $E: y^2 = x^3 - 7x + 6$ be an elliptic curve over \mathbb{R} . E[2] = ?. $O \in E[2]$. So, let $P \in E[2] \setminus \{O\}$ be arbitrary. From [2]P = O, we know that O lies on the tangent of E at P. Let aX + bY + cZ = 0 be the equation defining the tangent. Since O is on this projective line, we get b = 0 and therefore the tangent is is vertical in the affine plane. This implies that the *y*-coordinate of P must be 0. To get the remaining points in E[2], we now have to solve the cubic equation $0 = x^3 - 7x + 6$. By doing this we obtain

 $E[2] = \{O, (-3, 0), (1, 0), (2, 0)\}.$

Pairings

Definition (Pairing)

Let $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T be three groups of prime order p. A (bilinear) pairing is a map $e : G_1 \times G_2 \to G_T$, with the following properties:

Bilinearity: $e(g_1, g_2)^{ab} = e(g_1^b, g_2^a) \quad \forall a, b \in \mathbb{Z}_p$

Non-degeneracy: $e(g_1, g_2) \neq 1_{G_7}$, i.e. $e(g_1, g_2)$ generates G_7 .

Definition (Weil-Pairing)

Let *E* be an elliptic curve over \mathbb{F} and $n \in \mathbb{N}$, then there exists a map

$$e_n: E[n] \times E[n] \longrightarrow \mu_n(\bar{\mathbb{F}}) := \{x \in \bar{\mathbb{F}}^* : x^n = 1\}$$

which is bilinear, called the Weil-pairing.

Digression: Roots of unity

Definition (Root of Unity)

Let \mathbb{F} be a field and $n \in \mathbb{N}$. An element $x \in \mathbb{F}$ is called *n*-th root of unity in \mathbb{F} if

 $x^n = 1.$

The set of *n*-th roots of unity in \mathbb{F} is denoted by $\mu_n(\mathbb{F})$.

- $\mu_n(\mathbb{F})$ is a cyclic subgroup of (\mathbb{F}^*, \cdot)
- The generators of $\mu_n(\mathbb{F})$ are called primitive *n*-th roots of unity.

Pairings (cont.)

Corollary

Let *E* be an elliptic curve over a finite field \mathbb{F} and let $P \in E$ be a point of order *n*. Then there exists a point $Q \in E[n]$ such that $e_n(P,Q)$ is a primitive *n*-th root of unity. In particular, if $E[n] \subset E(\mathbb{F})$, then $\mu_n(\overline{\mathbb{F}}) \subset \mathbb{F}^*$.

MOV Algorithm

Given: Elliptic curve *E* over \mathbb{F}_q ($q = p^r$), with $Q \in \langle P \rangle$ and $\# \langle P \rangle = n$. Find: $k \in \mathbb{Z}$:

$$[k]P = Q$$

- 1. Determine a number *l* with $E[n] \subset E(\mathbb{F}_{q^l})$.
- 2. Compute a point $R \in E[n]$ such that $a = e_n(P, R)$ is a primitive *n*-th root of unity, i.e. *a* has order *n* in $\mu_n(\overline{\mathbb{F}}_q)$.
- 3. Compute $b = e_n(Q, R)$.
- 4. Solve the DLP: $b = a^k \text{ in } \mathbb{F}_{q^l}^*$.

Suprersingular Curves

Definition (Supersingular)

An elliptic curve *E* over a finite field \mathbb{F}_q is called supersingular, if $char(\mathbb{F}_q)$ divides $t = q + 1 - \#E(\mathbb{F}_q)$.

Proposition

Let *E* be a supersingular elliptic curve over \mathbb{F}_q and $t = q + 1 - \#E(\mathbb{F}_q)$. Then $E[n] \subset E(\mathbb{F}_{q'})$, if *l* is chosen according to the table below. The number *d* to the corresponding *l* is the exponent of the group $E(\mathbb{F}_{q'})$, i.e. the smallest natural number *d* such that [d]R = O for all $R \in E(\mathbb{F}_{q'})$.

Anomalous Curves

Definition

An elliptic curve *E* over \mathbb{F}_p is called anomalous if $\#E(\mathbb{F}_p) = p$.

The SSSA algorithm computes the discrete logarithm in anomalous curves in $O(\log(p)^3)$ steps.

Implication for key sizes

Fastest generic algorithms: $\mathcal{O}(\sqrt{n})$ Fastest algorithm for \mathbb{F}_p^* : $L_p[\frac{1}{2}, \sqrt{2}] = \exp((\sqrt{2} + o(1)) \ln p)^{1/2} (\ln \ln p)^{1/2})$

Security	RSA	DH/DSA	ECDH/ECDSA
128	3072	3072	256
256	15360	15360	512