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Literature

The slides are based on the following books

The Arithmetic of Elliptic Curves, Joseph H. Silverman

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

Elliptic Curves: Number Theory and Cryptography, Lawrence C. Washington

Elliptische Kurven in der Kryptographie., Annette Werner
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Motivation

Suggested by Miller, Koblitz in 1980’s

Smaller key size compared to RSA

Recommended cryptographic primitive (standard)
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Elliptic Curve Cryptography



Elliptic Curves

Definition

An elliptic curve E over the field F is the set of solutions of an equation of the form

Y2Z = X3 + aXZ2 + bZ3

where a,b ∈ F, with the discriminant∆ ∶= −16(4a3 + 27b2) ≠ 0, i.e.

E = {(x ∶ y ∶ z) ∈ P2(F̄) ∣ y2z = x3 + axz2 + bz3}.

A�ine plane: E ∶ y2 = x3 + ax + b
Rational points:

E(F) ∶= {O} ∪ {(x, y) ∈ F × F ∣ y2 = x3 + ax + b}
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The Group Law
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The Group Law
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The Group Law
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Mulitplicatio-by-mmap

Let E be an elliptic curve over F, and letm be an integer. The multiplication-by-mmap
[m] ∶ E → E is defined for P ∈ E as follows

[m]P ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P + ⋅ ⋅ ⋅ + P m > 0
O m = 0
−P − ⋅ ⋅ ⋅ − P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−m terms

m < 0
.
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Elliptic Curve Di�ie-Hellman Key Agreement

Alice and Bob agree on an elliptic curve E over a finite field Fq and a point P ∈ E(Fq).
Then Alice chooses a secret integerm, and Bob chooses a secret integer n.

Alice Bob

A = [m]P

B = [n]P

Their shared key is
K = [mn]P = [m]B = [n]A
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DH Example

Elliptic curve E ∶ y2 = x3 + x over F7 and generator P = (3,3) ∈ E(F7).m = 5, n = 3.

n 0 1 2 3 4 5 6 7
nP O (3,3) (1,4) (5,5) (0,0) (5,2) (1,3) (3,4)

Alice Bob

A = [5](3,3) = (5,2)

B = [3](3,3) = (5,5)

K = [5 ⋅ 3](3,3)=(3,4)
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(Elliptic Curve) Discrete Logarithm Problem

Definition (ECDLP)

Given an elliptic curve E over Fq, a point P ∈ E(Fq) and point Q ∈ ⟨P⟩.
Find:

[x]P = Q

Definition (DLP)

Let (G, ⋅) be a finite cyclic group and g ∈ G a generator of G. Further, let a ∈ G be
arbitrarily. The challenge is to find an x ∈ Z such that

gx = a.
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Examples

Let G = (Z/31Z)×. One can show that 3 is a generator of the cyclic group. Further,
let a = 14. Then the DLP is to find x ∈ Z such that

3x = 14.

Elliptic curve E ∶ y2 = x3 + x over F7 and generator P = (3,3) ∈ E(F7).m = 5, n = 3.

n 0 1 2 3 4 5 6 7
nP O (3,3) (1,4) (5,5) (0,0) (5,2) (1,3) (3,4)

K = [5 ⋅ 3](3,3)=(3,4)Would have to solve:

[x](3,3) = (3,4).

12 / 34



Dlog Algorithms



Subsection 1

Babystep-Giantstep
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Shanks’s Babystep-Giantstep Algorithm

1. m← ⌈
√
n ⌉

2. Create two lists:

BS: 1,g,g2, . . . ,gm−1

GS: a,a (g−m) ,a (g−m)2 , . . . ,a (g−m)m−1

3. Find a match between the list BS and GS,
say gi = a ⋅ (g−m)j.

4. x′ ← i + jm
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BSGS Example

G = (Z/31Z)×, thenm = ⌈
√
30 ⌉ = 6. We want to solve the following DLP

3x = 14

The baby steps are:

q 0 1 2 3 4 5

3i 1 3 9 27 19 26

The giant steps are:

r 0 1 2 3 4 5

14 ⋅ 3−6j 14 28 25 19 7 14

Therefore the solution to the DLP is x = 3 ⋅ 6 + 4 = 22.
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BSGS Analyses

Runtime:

1. m← ⌈
√
n ⌉

2. BS: 1,g,g2, . . . ,gm−1 O (m)
GS: a,a (g−m) ,a (g−m)2 , . . . ,a (g−m)m−1 O (m)

3. Finding a match O (m logm)

O (
√
n)

Space Complexity:
The lists in step (2) have lengthm, so we getO (

√
n).
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Pohlig-Hellman

Let ∣G∣ = n =∏m
i=1 p

ei
i . Assume we have some oracle O(g,a,pe)which outputs the DL of

aw.r.t. g in a group of order pe.

Then for i = 1, . . . ,m do:

1. g′ ← gN/p
ei

2. a′ ← aN/p
ei

3. yi ← O(g′,a′,pei)

Use the CRT to solve

x ≡ y1 (mod pe11 ) , . . . , x ≡ ym (mod pemm ).

Running time:O ((∑m
i=1 (ei (log n +√

pi))))
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Subsection 3

Pollard ρ-Method
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Definition and Notation

Definition

Let S be a finite set, let f ∶ S → S and let x ∈ S. The sequence

x0 = x, x1 = f(x0), x2 = f(x1), x3 = f(x2), . . .

is called the (forward) orbit of x by the map f and is denoted by O+f (x).

x0

x1

x2
x3

xT−1
xT

xT+1

xT+2

xT+3xT+M−2
xT+M−1

xT+M

T... Tail Length
M... Loop Length 19 / 34



Theorem (Cycle Detection)

Let S be a finite set containing n elements, let f ∶ S → S, and x ∈ S be an initial point.

a Suppose that the forward orbit O+f (x) = {x0, x1, x2, . . .} of x has a tail of length T
and a loop length ofM. Then

x2i = xi for some 1 ≤ i < T +M.

In particular we only needO (1)memory to find a collision.

b If f is su�iciently random, then the expected value of T +M is

E (T +M) ≈ 1.25
√
n.

Hence, we are likely to find a collision inO (
√
n) steps.
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Pollard’s ρ for the DLP

Partition G into S1,S2,S3, where 1 ∉ S2. Let xi ∈ G, then we define f ∶ G→ G in the
following way

f(xi) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gxi xi ∈ S1
x2i xi ∈ S2
axi xi ∈ S3.

Note, if we start with x0 = 1, every xi can be written as xi = gαiaβi , where

αi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αi−1 + 1 (mod n) xi ∈ S1
2αi−1 (mod n) xi ∈ S2
αi−1 xi ∈ S3

βi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βi−1 xi ∈ S1
2βi−1 (mod n) xi ∈ S2
βi−1 + 1 (mod n) xi ∈ S3.
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Pollard’s ρ for the DLP (cont.)

Compute ((xi, αi, βi), (x2i, α2i, β2i)) until there is a collision xi = x2i, i.e.
gαiaβi = gα2iaβ2i . Hence,

gαi−α2i = aβ2i−βi = gx(β2i−βi).

Therefore a solution to the given DLP is a solution of the congruence relation

x(β2i − βi) ≡ αi − α2i (mod n).

Apply the Eucledian algorithm to find the smallest positive integer solution s.

Set d = gcd(β2i − βi,n), then basic theory about congruence relations tells x is one
of the values

s, s + n
d
, . . . , s + (d − 1)n

d
.

Try all possible values (usually d is small).

22 / 34



Pollard’s ρ Example

Consider the subgroup G of F∗607 of order n = 101 generated by the element g = 64 and
the DLP

64x = 122.
Define

S1 = {x ∈ F∗607 ∶ x ≤ 201},
S2 = {x ∈ F∗607 ∶ 202 ≤ x ≤ 403},
S3 = {x ∈ F∗607 ∶ 404 ≤ x ≤ 606}.

Apply Pollard’s Rhomethod:
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Pollard’s ρ Example (cont.)

i xi αi βi x2i α2i β2i
0 1 0 0 1 0 0
1 122 0 1 316 0 2
2 316 0 2 172 0 8
3 308 0 4 137 0 18
⋮ ⋮ ⋮
11 182 0 55 7 8 12
12 352 0 56 309 16 26
13 76 0 11 352 32 53
14 167 0 12 167 64 6

i.e. collision, when i = 14.

x(6−12) ≡ 0−64 (mod 101)
−6x ≡ −64 (mod 101)
95x ≡ 37 (mod 101)

Since gcd(95,101) = 1, there is
only one solution smaller than n.

x = 78.
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Index-Calculus

Only works for the multiplicative group of a finite field, i.e. F∗q .
Setting of the DLP g,a ∈ Z∗p :

gx = a.
The algorithm has twomajor steps:

1. Choose a bound B ∈ N and compute the discrete logarithm for all elements q in
the factor base F(B): gxq = q

2. Look for an exponent y ∈ {1,2, . . . ,p − 1} such that the integer agy modulo p is
B-smooth.
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Dlog Algorithms (EC)



Subsection 1

MOV Algorithm
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Torsion Group

Definition

Torsion Points Let n ∈ N. The set of n-torsion points of the group E is denoted by

E[n] = {P ∈ E ∶ [n]P = O}.

Note that this set is the kernel of the multiplication-by-nmap.

Let E ∶ y2 = x3 − 7x + 6 be an elliptic curve overR. E[2] =?.
O ∈ E[2]. So, let P ∈ E[2]∖{O} be arbitrary. From [2]P = O, we know that O lies on the
tangent of E at P. Let aX + bY + cZ = 0 be the equation defining the tangent. Since O is
on this projective line, we get b = 0 and therefore the tangent is is vertical in the a�ine
plane. This implies that the y-coordinate of Pmust be 0. To get the remaining points in
E[2], we now have to solve the cubic equation 0 = x3 − 7x + 6. By doing this we obtain

E[2] = {O, (−3,0), (1,0), (2,0)}.
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Pairings

Definition (Pairing)

Let G1 = ⟨g1⟩,G2 = ⟨g2⟩ and GT be three groups of prime order p. A (bilinear) pairing
is a map e ∶ G1 × G2 → GT , with the following properties:

Bilinearity: e(g1,g2)ab = e(gb1,ga2) ∀a,b ∈ Zp

Non-degeneracy: e(g1,g2) ≠ 1GT , i.e. e(g1,g2) generates GT .

Definition (Weil-Pairing)

Let E be an elliptic curve over F and n ∈ N, then there exists a map

en ∶ E[n] × E[n]Ð→ µn (F̄) ∶= {x ∈ F̄∗ ∶ xn = 1}

which is bilinear, called the Weil-pairing. 28 / 34



Digression: Roots of unity

Definition (Root of Unity)

Let F be a field and n ∈ N. An element x ∈ F is called n-th root of unity in F if

xn = 1.

The set of n-th roots of unity in F is denoted by µn(F).

µn(F) is a cyclic subgroup of (F∗, ⋅)

The generators of µn(F) are called primitive n-th roots of unity.
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Pairings (cont.)

Corollary

Let E be an elliptic curve over a finite field F and let P ∈ E be a point of order n. Then
there exists a point Q ∈ E[n] such that en(P,Q) is a primitive n-th root of unity. In
particular, if E[n] ⊂ E(F), then µn(F̄) ⊂ F∗.
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MOV Algorithm

Given: Elliptic curve E over Fq (q = pr), with Q ∈ ⟨P⟩ and#⟨P⟩ = n.
Find: k ∈ Z:

[k]P = Q

1. Determine a number lwith E[n] ⊂ E(Fql).

2. Compute a point R ∈ E[n] such that a = en(P,R) is a primitive n-th root of unity, i.e.
a has order n in µn(Fq).

3. Compute b = en(Q,R).

4. Solve the DLP: b = ak in F∗ql .
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Suprersingular Curves

Definition (Supersingular)

An elliptic curve E over a finite field Fq is called supersingular, if char(Fq) divides
t = q + 1 −#E(Fq).

Proposition

Let E be a supersingular elliptic curve over Fq and t = q + 1 −#E(Fq). Then
E[n] ⊂ E(Fql), if l is chosen according to the table below. The number d to the
corresponding l is the exponent of the group E(Fql), i.e. the smallest natural
number d such that [d]R = O for all R ∈ E(Fql).

t 0 ±√q ±√2q ±√3q ±2√q
l 2 3 4 6 1
d q + 1

√
q3 ± 1 q2 + 1 q3 + 1 √

q ∓ 1
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Anomalous Curves

Definition

An elliptic curve E over Fp is called anomalous if#E(Fp) = p.

The SSSA algorithm computes the discrete logarithm in anomalous curves in
O(log(p)3) steps.
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Implication for key sizes

Fastest generic algorithms:O (
√
n)

Fastest algorithm for F∗p : Lp[ 12 ,
√
2] = exp((

√
2 + o(1)) lnp)1/2(ln lnp)1/2)

Security RSA DH/DSA ECDH/ECDSA
128 3072 3072 256
256 15360 15360 512
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