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The Very Concrete Introduction to Elliptic Curves



What’s Ahead

How and why we can calculate with points on cubic curves.

A hands-on approach to elliptic curves.

Nota Bene: For the sake of vividness, we o�en deal with algebraic curves over the
reals R. But the discussed concepts are valid in arbitrary fields (and thus in finite
fields), if not stated otherwise.
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Exposition: Cubic Plane Algebraic Curves

Definition

A plane cubic algebraic curve C over a field F is the set of points (a,b) ∈ F2 which
satisfy a polynomial equation

f(a,b) = 0,

where f(X, Y) ∈ F[X, Y] is a polynomial of degree three in two unknowns.

Example: Does the real polynomial f(X, Y) = X3 + Y2X + X + 1 define a curve in the
above sense? What about g(X, Y) = X3 + X2Y2 + X + 1?
From now on

The expression "curve" always denotes a cubic plane algebraic curve.

We assume that there is at least one point (a,b) ∈ F2 on the curve.
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To put the cart before the horse...

There is a way to do arithmetic with points on suitable cubic curves.
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Geometric Intuition: "Chord-and-Tangent-Method"
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Steps Towards the Group Structure

"Doing arithmetic" means: endowing algebraic curves with a (additive) group
structure.
Requirements from geometric intuition

◻ The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

◻ Every point on the curve needs to have a unique tangent.

Resolutions

Consider curves in projective space

Non-singular curves
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Example of a Non-Suitable Curve

Consider the real curve defined by f(X, Y) = Y2 − X3 − X2:
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Problem: With which tangent should we operate?
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Tangents we need!
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Taylor Series Expansion

Remember: A polynomial function f ∶ R2 → R in two variables has a Taylor series
expansion around every point (a,b) ∈ R2.
Example: Expansion of f around (a,b) until first order terms yields

f1(X, Y) = f(a,b) + fX(a,b) ⋅ (X − a) + fY(a,b) ⋅ (Y − b).

Interpretations

The function f1 can be regarded as (first-order) approximation of f around (a,b).

The equation f1(x, y) = 0 describes a line in R2, which can also be regarded as the
tangent line at (a,b) to the curve defined by f . If it exists, it is unique.
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Example: Taylor Approximation

Below figure demonstrates the first-order and second-order taylor approximation of
the univariate polynomial function f ∶ R→ R with

f(x) ∶= 0.15x3
+ x2

− 3x

around the point (0,0).
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(Formal) Partial Derivatives

Remember: The (first-order) partial derivative with respect to X of a real bivariate
monomial f(X, Y) = aXnYm is given by

fX(X, Y) ∶=
∂

∂X
aXnYm ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 n = 0.
n ⋅ aXn−1Ym n ≠ 0.

The (first-order) partial derivate of a polynomial is just the sum of the partial
derivatives of its monomials.
Question: Can we “imitate” this formalism to introduce a notion of formal (first-order)
partial derivatives in arbitrary fields?
Answer: Absolutely!
Example: What is the partial derivate of f(X, Y) = Y2 − 3XY2 − X3 over R and F4 with
respect to X and Y?
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Non-Singular Curves and Tangent Lines

Definition

Let F be a field and C be a plane curve over F with defining polynomial f ∈ F[X, Y]. A
point P = (a,b) ∈ C is said to be singular, if

fX(a,b) = fY(a,b) = 0,

otherwise it is called non-singular (or regular or smooth). The curve C is called
non-singular if all points on the curve are non-singular. The set of points (x, y) ∈ F2

satisfying the equation

fX(a,b) ⋅ (x − a) + fY(a,b) ⋅ (y − b) = 0

is called the tangent line to C at a non-singular point P = (a,b).
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Roundup I

What we have achieved so far

◻ The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

✓ Every point on the curve needs to have a unique tangent.
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Complication: Vertical Chord/Tangent Lines I

Example: Consider again the real curve defined by the polynomial
f(X, Y) = Y2 − X3 + X ∈ R[X, Y].
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Question: Do above chord/tangent lines intersect the curve in further points?
Answer: No, not in the real plane R2.
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Complication: Vertical Chord/Tangent Lines II

What is the problem here?
For a moment, let’s regard the upper part (with non-negative y-coordinate) of the real
curve y2 − x3 + x = 0 as the graph of the function

f ∶ R→ R, f(x) =
√
x3 − x,

with derivative

fX(x) =
3x2 − 1

2
√
x3 − x

=
3 − 1

x2

2
√

1
x −

1
x3

, x ∉ {0,1,−1}.

Observation: As x →∞, fx(x)→∞ as well.
In other words: In the limiting case, the curve behaves like a vertical line and is
therefore parallel to every other vertical line.
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A�ine Space vs. Projective Space

Idea: Take a space, where parallel lines meet in exactly one point.
Resolution: This idea leads us to Projective Spaces. Roughly speaking, they extend
ordinary euclidean (or a�ine) space with intersection points of parallel lines.

Definition

Let F be a field. The a�ine n-space over F is the set of all n-tuples with coordinates
in F, i.e. the set

An
∶= An

(F) ∶= {(a1, . . . ,an) ∶ ai ∈ F}.

Remark: In light of this definition, curves with points in F2 = A2(F) are also called
a�ine curves.
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Projective Space I

The intuition behind projective space:
Projective Space = A�ine Space + Intersection points of parallel lines

Remember from school: “Coplanar parallel lines intersect at infinity”.
Consequence: All coplanar parallel lines with a given direction supposedly meet in the
same point (at infinity).Ð→ See picture on the next slide.
Twist 1: We associate with every direction of parallel lines an intersection point ( =
point at infinity).
Twist 2: To properly distinguish between a�ine points and points at infinity we need
to “step up” one dimension.Ð→ For constructing projective n-space Pn we need to
resort to An+1.
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Projective Space II

“Quick and dirty”: from A2(F) to P2(F)

A point (a1,a2) ∈ A2(F) from a�ine space is “encoded” as (a1,a2,1).

An intersection point of parallel lines = point at infinity is “encoded” as (a1,a2,0).

Two points at infinity (a1,a2,0), (b1,b2,0) are equal if they represent the same
direction, i.e., if there is an element λ ∈ F ∖ {0} such that ai = λbi for all i.

Nota Bene: Points in P2 have three coordinates. (0,0,0) is not an element of P2!
The formal way to construct projective n-space Pn is made explicit in the next
definition.
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Projective Space III

Definition

Let F be a field. Projective n-space over F, denoted by Pn(F), is defined as the set of
all (n + 1)-tuples (a1, . . . ,an+1), with ai ∈ F and not all ai equal to zero, modulo the
equivalence relation

(a1, . . . ,an+1) ∼ (b1, . . . ,bn+1) ∶⇔ ai = λbi for some λ ∈ F ∖ {0} and all i.

In other words, we have

Pn(F) ∶= {[(a1, . . . ,an,an+1)]∼ ∶ (a1, . . . ,an,an+1) ∈ Fn+1
∖ {0}}.

Instead of [(a1, . . . ,an+1)]∼ one usually writes [a1 ∶ . . . ∶ an+1] and calls this
homogeneous coordinates. All points of the form [a1 ∶ ⋯ ∶ an ∶ 0] are called points
at infinity. Projective 2-space P2 is also called the projective plane.
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Homogeneous Polynomials and Homogenisation I

Observation: If we ask for points on the curve defined by f(X, Y) ∈ F[X, Y] in the
projective plane, we encounter an obstacle:

Two representations of a zero of f in homogeneous coordinates needn’t evaluate
to the same value!

Example: The evaluation of f(X, Y) = Y2 − X3 + 1 ∈ R[X, Y] at the projective point P
given in the form [1 ∶ 0 ∶ 1] and [2 ∶ 0 ∶ 2].
Resolution: We homogenise our defining polynomial f . But why does this help?
Remember: A homogeneous polynomial f(X, Y,Z) ∈ F[X, Y,Z] of degree d has the nice
property that for every λ ∈ F it holds

f(λX, λY, λZ) = λdf(X, Y,Z).

Example: What is the evaluation of F(X, Y,Z) = Y2Z − X3 + Z3 at [1 ∶ 0 ∶ 1] and [2 ∶ 0 ∶ 2]?
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Homogeneous Polynomials and Homogenisation II

Definition

The homogenisation (with respect to Z) of a polynomial f ∈ F[X, Y] is the
polynomial F ∈ F[X, Y,Z] given by

F(X, Y,Z) ∶= Zdeg(f) ⋅ f(
X
Z
,
Y
Z
),

which is a homogeneous polynomial of degree deg(f). Moreover, if F ∈ F[X, Y,Z] is
a homogeneous polynomial, then the polynomial f ∈ F[X, Y] with

f(X, Y) ∶= F[X, Y,1]

is called the dehomogenisation (with respect to Z) of F.

Example: Homogenisation (w.r.t. Z) of f(X, Y) = X + Y2 − 2 and g(X, Y) = X3 − Y3?
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Culmination: (Non-singular) Projective Cubic Curves I

With our previous observations, the definition of a projective cubic curve is
straightforward.

Definition

A projective cubic curve over a field F is the set of all points [a ∶ b ∶ c] ∈ P2(F) which
satisfy a polynomial equation

F(x, y, z) = 0,

where F(X, Y,Z) ∈ F[X, Y,Z] is a homogeneous polynomial of degree 3 in three
unknowns.

Example: The polynomial Y2 − X3 + X ∈ R defines an a�ine curve over A2(R). What is
the polynomial defining the corresponding projective curve?
Example: The polynomial F(X, Y,Z) = Y2Z − X3 + XZ2 + XY2 + X2Y defines a projective
cubic, but the polynomial G(X, Y,Z) = Y2Z + XYZ + Y2X2 + Z3 doesn’t (why?).
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Culmination: (Non-singular) Projective Cubic Curves II

The definition of non-singular projective cubics is straightforward as well.

Definition

Let F be a field and C be a projective cubic curve with defining homogeneous
polynomial F ∈ F[X, Y,Z]. A point P = [a ∶ b ∶ c] ∈ C is said to be singular, if

FX(a,b, c) = FY(a,b, c) = FZ(a,b, c) = 0,

otherwise it is called non-singular (or regular or smooth). The curve C is called
non-singular, if all points on the curve are non-singular. The set of points
[x ∶ y ∶ z] ∈ P2(F) satisfying the equation

FX(a,b, c) ⋅ (x − a) + FY(a,b, c) ⋅ (y − b) + FZ(a,b, c) ⋅ (z − c) = 0

is called the projective tangent line to C at P = [a ∶ b ∶ c].
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Weierstrass Normal Form (WNF) I

Observation: The most general equation of an a�ine cubic curve is given by

Ax3
+ Bx2y + Cxy2

+ Dy3
+ Ex2

+ Fxy + Gy2
+ Hx + Iy + J = 0,

where A,B, . . . , J are coe�icients in some field F.
Question: Can we find a “nicer” equation (yielding the “same” curve) if we restrict our
attention to non-singular curves?
Answer: Fortunately, yes!
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Weierstrass Normal Form (WNF) II

Quintessence: The equation of a general a�ine cubic curve admits a normal form if
we use the condition of non-singularity. This normal form is given by

y2
+ A′xy + B′y = x3

+ C′x2
+ D′x + E′,

for some A′,B′, . . .E′ ∈ F, and is called a�ine long Weierstrass (normal) form. We can
even do better: if char(F) ≠ 2,3, we arrive at the so-called a�ine short Weierstrass
(normal) form

y2
= x3

+ A′′x + B′′,

for A′′,B′′ ∈ F.
Nota Bene: We are not working out the details, but the idea behind transforming a
general cubic into normal form is clear: it is just a certain change of coordinates.
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Points at Infinity of Non-singular Cubic Curves

Question: By extending an a�ine non-singular cubic curve to projective space, how
many points at infinity do we add to the curve?
Answer: There is exactly one! The justification is very easy, if we work with the
Weierstrass form we’ve just discussed.
Sketch of the proof: We start with the homogeneous version of the long Weierstrass
form

y2z + A′xyz + B′yz2
= x3

+ C′x2z + D′xz2
+ E′z3

and set z = 0 to obtain all intersection points at infinity. The only solution is [0 ∶ 1 ∶ 0].
Teaser: Usually this unique point at infinity is used as the zero element for introducing
the group law via the “chord-and-tangent-method” on a cubic curve.
Exercise: Check that the point at infinity [0 ∶ 1 ∶ 0] we add to an a�ine non-singular
cubic (in Weierstrass normal form) by extending it to projective space is non-singular
as well.
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Summary: A�ine Curves vs. Projective Curves

A�ine space A2(F)
projective completion

⇄
intersection

Projective space P2(F)

↑ ↑

A�ine curve over F Projective curve over F

↕ ↕

f(X, Y) = 0
homogenisation

⇄
dehomogenisation

F(X, Y,Z) = 0

↕ ↕

A�ine WNF Projective WNF

27 / 35



Roundup II

What we have achieved so far

∼ The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

✓ Every point on the curve needs to have a unique tangent.
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Retardation: Intersection Points in Projective Space

Question: Can we be sure a line through two points on a curve always produces a
unique third point of intersection on the curve?
Answer: Yes. But a rigorous proof involves some more concepts (like intersection
multiplicity, algebraic closure, ...).
Intuitive justification: Let C be a projective curve over the field F with defining
polynomial F ∈ F[X, Y,Z]. The projective line through two points on C is described by
an equation of the form

ax + by + cz = 0 (a,b, c ∈ F),

which we use to eliminate one variable in the curve equation F(x, y, z) = 0. Setting
z = 1 (for a�ine intersections) or z = 0 (for intersections at infinity) yields a cubic
equation in either x or y. Since we already know that two solutions lie in F, the third
one must lie in F (and not in the algebraic closure of F) as well.
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Roundup III

What we have achieved so far

✓ The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

✓ Every point on the curve needs to have a unique tangent.
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“Chord-and-Tangent-Method": Revisited

All our preceding observations culminate in the following - and finally well-defined -
group law on non-singular projective cubic curves.
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Remark: We don’t prove the group law formally, but just to let you know: proving
associativity via Weierstrass normal form is a real pain!
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What’s Behind

How and why we can calculate with points on cubic curves.

A hands-on approach to elliptic curves.
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Lysis: Elliptic Curves

Finally we state the following

Definition

An elliptic curve over F is a non-singular projective cubic curve with at least one
point in P2(F) on it.

Remarks
We have discussed that every elliptic curve over F admits a long Weierstrass
normal form

y2
+ Axy + By = x3

+ Cx2
+ Dx + E,

with coe�icients in F.
Conversely, every such long Weierstrass normal form defines an elliptic curve if
the coe�icients A,B,C,D,E satisfy a certain condition (→ discriminant of the
equation).
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Questions?
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Questions for Self-Control

1. Explain the idea behind projective spaces. What is the main di�erence between
a�ine space and projective space?

2. How is the tangent line to a point on an algebraic curve defined? How do tangent
lines of real curves correlate with the taylor series expansion?

3. Sketch the group law on elliptic curves via the “chord-and-tangent-method”.

4. Which properties must hold for an algebraic curve to describe an elliptic curve?
Discuss and motivate each property.

5. What is a (long) Weierstrass normal form and how is it related to elliptic curves?

35 / 35


	The Very Concrete Introduction to Elliptic Curves
	
	Plane Cubic Algebraic Curves
	Non-Singular Curves
	Projective Space
	(Non-Singular) Projective Curves
	Group Law on Non-Singular Projective Cubics


