Fields and Finite Fields

Reinhard Lüftenegger

Mathematical Foundations of Cryptography – WT 2020/21 – IAIK, TU Graz

SCIENCE PASSION TECHNOLOGY

> www.iaik.tugraz.at

Evariste Galois

Overview

Fields

- Homomorphisms
- Subfields and Extension Fields
- Construction of Fields

Finite Fields

- Structure of Finite Fields
- Maps over Finite Fields

Fields

Algebraic Cheat Sheet

Groups +, -

Rings $+, -, \times$

Fields $+, -, \times, \div$

"A system with a certain completeness, fullness and self-containedness; a naturally unified organic whole."

"A system of [...] numbers, which is complete and self-contained, such that addition, subtraction, multiplication and division of any two of these numbers bring forth a number of the same system."

Fields

Roughly speaking, the field axioms are a means to enable elementary arithmetic with more general objects (not just in \mathbb{Q} , \mathbb{R} , \mathbb{C}).

Definition			
A set <i>F</i> together with two functions $+: F \times F \rightarrow F$ and $\cdot: F \times F \rightarrow F$ is called a field, if			
•	(F, +) is an abelian group (with identity element 0),		
	$(F \setminus \{0\}, \cdot)$ is an abelian group and		
	it holds $(a + b) \cdot c = ac + bc$ for every $a, b, c \in F$.		

Examples: For which $n \in \mathbb{N}$ is the ring of congruence classes $\mathbb{Z}/n\mathbb{Z}$ a field? What about the set of all real multiples of the identity matrix, i.e. all matrices of the form $a \cdot I_n$ for $a \in \mathbb{R}$?

Homomorphisms

Homomorphisms link algebraic structures (e.g. vector spaces, groups, rings, fields) with "compatible" structure. They are VERY important!

Definition

A field homomorphism is a map $\varphi : E \to F$ between two fields E and F such that φ is a homomorphism of rings, i.e. such that for every $a, b \in E$

- $\varphi(a+b) = \varphi(a) + \varphi(b)$ and
- $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b).$

Examples: Complex conjugation $\varphi : \mathbb{C} \to \mathbb{C}$, $\varphi(a + ib) = a - ib$, is a field homomorphism (try to check!). Is the function $\varphi : \mathbb{R} \to \mathbb{R}$ with $\varphi(x) = x^2$ a field homomorphism? What about $\varphi(x) = x^d$ (with $d \in \mathbb{N}$)?

Subfields and Extension Fields

Subfields (and extension fields) help us to better understand the base field.

Definition

A field *E* is called a subfield of a field *F*, if there is a field homomorphism $\iota : E \to F$. In this case, the field *F* is also called an extension field of *E*.

Remark: We write $F \supseteq E$ (or $E \subseteq F$) to indicate that F is an extension field of E (or E is a subfield of F).

Examples: Let $\mathbb{C} := \mathbb{R} \times \mathbb{R}$ be the set of all real 2-tuples with canonical addition and multiplication that makes it a field. Then the function $\iota : \mathbb{R} \to \mathbb{C}$ with $\iota(a) := (a, 0)$ is a field homomorphism (why?). Thus \mathbb{R} is a subfield of \mathbb{C} . Another example: let p < q be two primes. Is \mathbb{Z}_p a subfield of \mathbb{Z}_q ?

Characteristic of a Field I

Important: The characteristic of a field gives us a first hint with what kind of arithmetic we are dealing. E.g.,

1+1=2 in \mathbb{Z} but 1+1=0 in $\mathbb{Z}/2\mathbb{Z}$.

Remember: The characteristic of a ring is either 0 or a positive integer *n*.

Question: What about the characteristic of a field *E*?

Let $char(E) =: n \ge 2$ and suppose *n* is composite, i.e., $n = k \cdot m$. Then

$$0 = n \cdot 1 = (k \cdot m) \cdot 1 = (k \cdot 1) \cdot (m \cdot 1).$$

Therefore $k \cdot 1 = 0$ or $m \cdot 1 = 0$ (why?). A contradiction, since *n* is the smallest such integer. Thus *n* is prime.

Characteristic of a Field II

Proposition (Characteristic of a Field)

The characteristic of a field is either zero or a prime number.

Nota Bene:

- Knowing about the characteristic (of a ring or field) is important because it tells us how to do arithmetic (see e.g. Freshman's Dream).
- Furthermore, the characteristic helps us classify finite fields (see "Structure of Finite Fields").

Field Theory and Linear Algebra

Remember: Vector spaces are algebraic structures where we can add objects and multiply objects with a scalar from a field.

Lemma (Field Extensions as Vector Spaces)

Every field extension $F \supseteq E$ can be regarded as an *E*-vector space.

Sketch of the Proof

Vector addition is addition in F. Scalar multiplication is multiplication in F (this is meaningful since $F \supseteq E$ is a field extension).

Field of Fractions I

Idea: We have a (certain) ring and want to construct the smallest field in which it can be embedded.

Example: Construction of the rationals \mathbb{Q} via the integers \mathbb{Z}

- Typically, a rational number is written in the form $\frac{m}{n}$, for $m, n \in \mathbb{Z}$, $n \neq 0$, and thus can be described by the 2-tuple $(m, n) \in \mathbb{Z} \times \mathbb{Z}$.
- Two fractions $\frac{m_1}{n_1}$ and $\frac{m_2}{n_2}$ represent the same rational number, if and only if $m_1 \cdot n_2 = m_2 \cdot n_1$.

Observation: Roughly speaking, by adding multiplicative inverses to the integers we get the rationals.

We abstract these principles and introduce a generalised version of this construction!

Field of Fractions II

Definition

Let $(R, +, \cdot)$ be a commutative ring with identity that doesn't contain zero divisors. Then the following construction on top of $R \times R \setminus \{0\}$

 $\operatorname{Frac}(R) \coloneqq \{ [(m,n)]_{\sim} : m, n \in R, n \neq 0 \},\$

where for $(m_1, n_1), (m_2, n_2) \in R \times R \setminus \{0\}$ we define the equivalence relation

 $(m_1,n_1) \sim (m_2,n_2) :\Leftrightarrow m_1 \cdot n_2 = m_2 \cdot n_1,$

is called the field of fractions of R. Instead of $[(m,n)]_{\sim}$ we also write $\frac{m}{n}$.

Remark: Together with canonical addition and multiplication this is indeed a field (try to check!).

Finite Fields

Importance of Finite Fields in Crypto

- Fundamental finite algebraic structure to do calculations
- Used in block ciphers or cryptographic permutations (e.g. the AES operates in \mathbb{F}_{2^8} or one instance of MiMC in $\mathbb{F}_{2^{129}}$)
- Used to define elliptic curves (e.g. Curve25519 over \mathbb{F}_p with $p = 2^{255} 19$)
- Used to implement Shamir's Secret Sharing (e.g. over $\mathbb{F}_{2^{128}}$)

Finite Fields

Definition

A finite field is a field that comprises finitely many elements.

Remark: We also write \mathbb{F}_q to denote a finite field with q elements.

Most basic example: Ring of congruence classes \mathbb{Z}_p (or \mathbb{F}_p) modulo a prime number p.

Structure of Finite Fields

Theorem (Existence and Uniqueness of Finite Fields)

The number of elements in a finite field \mathbb{F}_q is a prime power, i.e. $q = p^n$, for some $n \in \mathbb{N}$ and some prime p. Conversely, for every $n \in \mathbb{N}$ and every prime p there is a finite field with p^n elements, which is unique up to isomorphism.

Lagrange's theorem helps us to classify all subfields of a finite field.

Theorem (Subfield Criterion for Finite Fields)

A field \mathbb{F}_{p^m} is a subfield of \mathbb{F}_{q^n} if and only if p = q and m divides n.

Prime vs. Irreducible I

Remember: A natural number *p* greater than one and whose only divisors are 1 and *p* itself is called a prime number. In other words

 $p = a \cdot b \Rightarrow a = 1 \text{ or } b = 1.$

This aspect of primality leads us to the concept of irreducibility.

Definition

Let *R* be a commutative ring with identity that doesn't contain zero divisors. An element $r \in R$ which is not a unit is called irreducible, if

 $r = a \cdot b \Rightarrow a \sim 1 \text{ or } b \sim 1.$

Prime vs. Irreducible II

Remember: A fundamental property of a prime number $p \in \mathbb{N}$ is

```
p \mid a \cdot b \Rightarrow p \mid a \text{ or } p \mid b
```

This aspect of being prime motivates a more general definition of primality.

Definition

Let *R* be a commutative ring with identity that doesn't contain zero divisors. An element $r \in R$ which is not a unit is called prime, if

 $r \mid a \cdot b \Rightarrow r \mid a \text{ or } r \mid b.$

Note: In general, being prime is **not** equivalent to being irreducible, but in the polynomial ring F[X] over a field F it is!

Construction of Finite Fields I

Remark: There are two different types of finite fields, prime fields (\mathbb{F}_p) and extension fields (\mathbb{F}_{p^n}).

Observation: Prime fields are constructed by taking the integers modulo a prime number *p*.

1

Question: What about extension fields?

Answer: Same principle!

	Prime Fields	Extension Fields
Base structure	\mathbb{Z}	$\mathbb{F}_{\rho}[X]$
Modulus	prime number p	prime polynomial f
Resulting model	$\mathbb{Z}/(p) = \mathbb{F}_p$	$\mathbb{F}_p[X]/(f) = \mathbb{F}_{p^n}$

Construction of Finite Fields II

In \mathbb{Z}_p elements are congruence classes (of integers) modulo some prime p. This is the reason why we write

$$\mathbb{F}_p = \{0, 1, \ldots, p-1\},\$$

whereas on a technical level in \mathbb{Z}_p the element *i* represents the set

$$i = \{i + kp : k \in \mathbb{Z}\} = \{\dots, i - 2p, i - p, i, i + p, i + 2p, \dots\}.$$

In \mathbb{F}_{p^n} , elements are congruence classes (of polynomials over \mathbb{F}_p) modulo some prime polynomial f of degree n, hence we write

$$\mathbb{F}_{p^n} = \{a_{n-1}X^{n-1} + a_{n-2}X^{n-2} + \dots + a_1X + a_0 : a_i \in \mathbb{F}_p\},\$$

again with the technicality that

$$a_{n-1}X^{n-1} + \dots + a_0 = \{(a_{n-1}X^{n-1} + \dots + a_0) + kf : k \in \mathbb{F}_p[X]\}.$$

Construction of Finite Fields III

More formally we have

Theorem (Construction of Extension Fields)

Let \mathbb{F}_p be a field with p elements. If $f \in \mathbb{F}_p[X]$ is a prime polynomial of degree n, then the quotient ring $\mathbb{F}_p[X]/(f)$ is a finite field with p^n elements.

The justification is straightforward and mimics the proof for \mathbb{F}_p over \mathbb{Z} . In essence, the only prerequisite is the following

Theorem (Extended Euclidean Algorithm)

For every two elements a, b in \mathbb{Z} (or $\mathbb{F}_p[X]$) we can compute elements x, y in \mathbb{Z} (or $\mathbb{F}_p[X]$) such that

 $a \cdot x + b \cdot y = \gcd(a, b).$

Example: Construction of \mathbb{F}_4

Question: How can we construct the finite field \mathbb{F}_4 with 4 elements?

Answer: Since $4 = 2^2$, we know the construction! It is an extension field and given by

 $\mathbb{F}_4 = \mathbb{F}_2[X]/(f),$

where *f* is an irreducible (=prime) polynomial in $\mathbb{F}_2[X]$ of degree 2. For *f* we take the irreducible polynomial $X^2 + X + 1$ (check!). Then

 $\mathbb{F}_4 = \{0, 1, X, X + 1\}.$

Addition is clear (how?). For multiplication consider, e.g.,

$$X \cdot (X+1) \equiv X^2 + X \equiv 1 \mod f.$$

Maps over Finite Fields

Remark: Every polynomial $f \in E[X]$ induces a polynomial function $f : E \to E$, $a \mapsto f(a)$. **Remember:** Over \mathbb{R} , for a data set of m points $(x_1, y_1), \ldots, (x_m, y_m)$ there is a unique polynomial f with degree at most m - 1 that interpolates these points, i.e. $f(x_i) = y_i$ for all i.

Theorem (Every Function over a Finite Field is a Polynomial Function)

Every map $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ can be uniquely described as a univariate polynomial with maximum degree $p^n - 1$.

Important: Above property is the basis for several approaches in (symmetric) cryptanalysis (e.g. *Interpolation* and *Higher-Order Differentials*)!

Questions?

Questions for Self-Control

- 1. What are the main differences between a commutative ring (with identity) and a field?
- 2. Describe the construction of prime and extension fields and discuss the similarities/differences in the construction process.
- 3. Can every map over a finite field be described as a polynomial? Justify your answer.
- 4. What is the connection between linear algebra and field theory? Why is it beneficial?