

SCIENCE PASSION TECHNOLOGY

Cryptography 4 – Addendum: (EC)DSA Signatures

Maria Eichlseder

Information Security - WT 2019/20

> www.iaik.tugraz.at/infosec

(EC)DSA Signatures

- Security relies on Diffie–Hellman Problem (DHP) / Discrete Log Problem (DLP)
- The algorithm involves a long-term keypair $x, y = \alpha^x$ like Diffie–Hellman, but also an ephemeral (temporary) keypair k, α^k .
 - This makes the signature scheme non-deterministic
 - k must be unpredictable and secret and must not be reused!
- There are several related schemes:
 - ElGamal signature, the original & the simplest
 - DSA signature, a more efficient version (some numbers are smaller)
 - ECDSA, Elliptic-Curve version of DSA where some multiplications are replaced by point additions and exponentiations by scalar multiplications

DSA (Digital Signature Algorithm, FIPS 186-4)

𝗠 Key generation

Choose a prime p, prime q (q divides p-1), and $\alpha \in \mathbb{Z}_p^*$ with $\alpha^q \equiv 1 \pmod{p}$:

private key = $x \in \{2, ..., p-1\}$ public key = $y = \alpha^x \pmod{p}$

🕑 Sign

Hash h = SHA-2(M). Choose ephemeral key $k \in \{2, ..., q-1\}$ co-prime to q:

$$S = (r, s)$$
: $r = (\alpha^k \mod p) \mod q$, $s = (h + xr) \cdot k^{-1} \pmod{q}$

Serify

Compute $w = s^{-1} \mod q$, verify that $r \stackrel{?}{=} (\alpha^{h \cdot w} \cdot y^{r \cdot w} \mod p) \mod q$

DSA signature: Security

Ephemeral key k must not be reused!

Suppose $h_1 = SHA-2(M_1)$, $h_2 = SHA-2(M_2)$ were signed with the same k, then by rewriting the definition of s (s_1 for M_1 and s_2 for M_2), we get:

$$h_1 = k \cdot s_1 - x \cdot r$$
$$h_2 = k \cdot s_2 - x \cdot r$$
$$h_1 - h_2 = k \cdot (s_1 - s_2)$$

We can recover $k = (h_1 - h_2) \cdot (s_1 - s_2)^{-1}$ and thus also the private key x!

If *k* is not exactly the same, but somehow related, similar tricks are possible. Real-world examples: Sony PS3 disaster 2010, Debian PRNG bug 2008

DSA signature: Security

Prime bitsize recommendations (NIST SP 800-57):

Security in bits	80	112	128	192	256
Size of <i>p</i> in bits	1024	2048	3072	7680	15360
Size of <i>q</i> in bits	160	224	256	384	512

- Advantages and disadvantages of DSA (compared to RSA signatures)
 - some operations mod q (smaller)
 - shorter signature
 - cannot be (easily) used for encryption (crypto export restrictions!)
 - verification of signature slower than signing
- Same problem as ElGamal with reuse of *k*

EC ElGamal/DSA signatures (ECDSA, simplified)

Classic ElGamal/DSA signature 📝

Public: prime *p*, number $\alpha \in \mathbb{Z}_p^*$ of prime order *q*

Alice's keypair:
$$x \in \mathbb{N}$$
, $y = \alpha^{x}$

Hash $H \in \mathbb{N}$ of message M

Signing of *M* by Alice:

Alice picks $k \in \mathbb{N}$ $r = [\alpha^k] \mod q$ $s = [k^{-1} \cdot (H + xr)] \mod q$ $\xrightarrow{(r,s)}$ Bob verifies $r \stackrel{?}{=} [\alpha^{Hs^{-1}}y^{rs^{-1}}]_q$

EC ElGamal/ECDSA signature

Public: curve *E*, base point $\alpha \in E$ of prime order *q* Alice's keypair: $x \in \mathbb{N}$, $y = x \cdot \alpha$ Hash $H \in \mathbb{N}$ of message *M* Signing of *M* by Alice:

Alice picks $k \in \mathbb{N}$ $r = [k \cdot \alpha]_{x \text{-coord mod } q}$ $s = [k^{-1} \cdot (H + \chi r)] \mod q$ $\xrightarrow{(r,s)}$ Bob verifies $r \stackrel{?}{=} [Hs^{-1} \cdot \alpha + rs^{-1} \cdot \gamma]_{x,q}$