
IAIK

IAIK

Application Layer –
TLS / SSL
Information Security 2019

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● Crypto Crash Course

● TLS Handshake

● Properties

 Cipher Suites

 Perfect Forward Secrecy

● Security

 HSTS

 Certificate Pinning (HPKP)

Outline
Application

Transport

Link layer
(Ethernet, WLAN, LTE…)

TCP / IP Model

HTTP TLS / SSL

Network

FTP DNS

Telnet SSH

...

IAIK

Asymmetric Cryptography:
Encryption / Decryption

Private Key = Really private, only the owner should have it

Public Key = Everyone can have it

● Typically only small data is encrypted with asymmetric keys (performance!)

● Asymmetric schemes often encrypt („wrap“) symmetric keys

Crypto Crash Course

Public Key

Private Key

Plain data

Keypair
Encrypted data

Encrypt
(everybody)

Plain data

Decrypt (only
private key owner)

IAIK

Asymmetric Cryptography:
Signing / Verification

Signature
● Not applied on complete data block

● Instead, hash calculated over data
 signed / verified

Verification: Comparison if hashes match

Crypto Crash Course

Public Key

Private Key Hash

Verify
(everybody)

Signed Hash
Sign (only key owner)

Plain data

Calculate,
e.g. using SHA-256

Signed Hash

Hash

Plain data

Hash

Calculate,
e.g. using SHA-256

Compare

IAIK

Basic idea
● Server determines DH parameters + generates key pair

● Sends parameters + public key to client

● Client uses DH parameters (of server) + generates key pair

● Client sends public key to server

● Both calculate same secret

Diffie-Hellman (DH)

IAIK

Asymmetric Cryptography: Key Agreement

Crypto Crash Course

Public Key

Private Key
Exchange public keys

Public Key

Private Key

Public Key

Private Key

Agree on symmetric key with user 1
private key and user 2 public key

Public Key

Private Key

User 1 User 2

ECDH / DH Symmetric key

Public Key

Private Key

Agree on symmetric key with user 2
private key and user 1 public key

Public Key

Private Key

ECDH / DH Symmetric key

User 1

User 2

IAIK

X.509
Certificates

Source: https://goo.gl/egFCjg

https://goo.gl/egFCjg

IAIK

Validation

Web Browser gets host cert
during TLS handshake

1. Verify hostname matches
certificate subject

2. Verify signature

X.509 Certificates

Certificate of secure.example.com

Public Key

Signature
Web Browser

https://secure.example.com

Certificate of super secure TLS CA

Public Key

Trust Store in Browser / OS

Public Key

Signature

Subject: secure.example.com

Issuer: super secure TLS CA

Certificate hash

Public Key

Signature (self-signed)

Subject: super secure TLS CA

Issuer: super secure TLS CA

Certificate hash

Private Key (Webserver) Private Key (CA)

Certificate of secure.example.com Certificate of super secure TLS CA

secure.example.com
https://secure.example.com/
secure.example.com
secure.example.com

Transport Layer
Security

IAIK

Basics
● Key protocol for secure communication

 HTTPS, VPNs, for any secure communication based on certificates

● Designed to operate on TCP (for reliability reasons)

 Later adapted to support datagram protocols also, e.g. UDP
 Datagram Transport Layer Security (DTLS), RFC 6347

● Initial development by Netscape in the 90s

 Named „Secure Sockets Layer“ (SSL)

 Later standardized by IETF  renamed to TLS

TLS Introduction

IAIK

● 1995: First public release of proprietary SSL 2.0
 Critical security flaws briefly afterwards
 Usage prohibited in 2011 (RFC 6176)

● 1996: SSL 3.0, RFC 6101, deprecated in June 2015 (RFC 7568)

● 1999: TLS 1.0, RFC 2246
 No „dramatic changes“ but no more interoperability between SSL 3.0 & TLS 1.0

 Includes downgrade option to SSL 3.0  weakens security!

● 2006: TLS 1.1, RFC 4346

● 2008: TLS 1.2, RFC 5246: Removed old ciphers, bugfixes

● 2018: TLS 1.3, RFC 8446 (Proposed Standard): Drop weak ciphers

TLS Versions

IAIK

All applications running TLS are provided with three essential services

Note: Technically, not all services are required to be used
 Can raise risk for security issues!

TLS Services

SMTPS

TLS

IP

TCP

...

HTTPS FTPS
Authentication
Verify identity of client and server

Data Integrity
Detect message tampering and forgery,
e.g. malicious Man-in-the-middle

Encryption
Ensure privacy of exchanged
communication

IAIK

= Establish parameters for cryptographically secure data channel

TLS 1.2 Handshake RFC 5246

Full handshake
scenario!

Optional:
Only with
Client TLS!

Client Server

1ClientHello

2

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

4

Application DataApplication Data

Client: ClientHello
With TCP connection setup on port 443,
clients initiate the TLS negotiation

Message contains

● Highest supported TLS version

● Random number (for key exchange)

● Session ID

 If existing session should be resumed

 Kind of „keep-alive“ across requests

● Suggested cipher suites

● Supported compression methods

● Extensions

IAIK

Server: ServerHello
Response to ClientHello if server finds
common set of algorithms

Message contains

● Chosen TLS version

● Random number (for key exchange)

● Session ID

 If supported / enabled by server

● Chosen cipher suite

 No list, only the selected one

● Chosen compression method

● Common extensions

If no match on TLS version and cipher suite
 Handshake abort with error, e.g.
Firefox: „SSL_ERROR_NO_CYPHER_OVERLAP “
Chrome: „ERR_SSL_VERSION_OR_CIPHER_MISMATCH“

Server: Certificate
Server sends X.509v3 certificate chain

● Server‘s certificate has to be the first certificate

● Each following (intermediate) certificate must certify the preceding one

● Root certificates can be excluded

 Browsers need to know them anyway

IAIK

Server: ServerKeyExchange
● Carry additional data needed for key exchange

 Only sent when required for specified protocol

 Our example: Parameters for ECDH

● Often this information is
already within the certificate,
e.g. if key exchange is RSA

IAIK

Server: CertificateRequest

Client Server

1ClientHello

2

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

4

Application DataApplication Data

Request client
authentication and
tell client expected
public key

Only with
Client TLS!

IAIK

Server: ServerHelloDone

Client Server

1ClientHello

2

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

4

Application DataApplication Data

Signal that server has
sent all handshake
messages

IAIK

Client: Certificate

Client Server

1ClientHello

2

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

4

Application DataApplication Data

Empty if no certificate
requested by server

Only with
Client TLS!

IAIK

Client: ClientKeyExchange
Carries client‘s contribution (= preMaster secret) to key exchange

● Content depends on used cipher

 If RSA is used, an RSA-encrypted secret is transfered

 If Diffie Hellman (DH) is used, only the parameters are sent
 enables both parties to agree on same preMaster secret

 If ephemeral Diffie Hellman (DHE) is used, message contains client‘s DH public key

IAIK

Client: ClientKeyExchange
Example: RSA is used for key exchange

Step 1
● Client generates „PreMaster secret“ (48 random bytes)

● PreMaster secret encrypted with public key of server certificate

● Server decrypts PreMaster secret with private RSA key

Step 2
● Master secret (= session key) is derived by server and client

masterSecret = PRF(preMasterSecret, „master secret“,

ClientHello.random + ServerHello.random)[0..47]

PRF = Pseudo-Random Function

IAIK

Client: ClientKeyExchange – Security
RSA
● Simpler than others but with a fundamental weakness

 PreMaster secret encrypted with server‘s public key

 Anyone with access to private key can recover preMaster secret

 Using preMaster secret  master secret recomputable

Diffie Hellman
● Security depends on quality of chosen parameters

 If server sends weak or insecure parameters  compromise security of session

● Solution is to use standardized domain parameters of varying strength

IAIK

Client: CertificateVerify

Client Server

1ClientHello

2

ServerHello
Certificate
ServerKeyExchange
CertificateRequest
ServerHelloDone

3

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

4

Application DataApplication Data

Client proves possession
of private key for sent
client certificate

Only with
Client TLS!

IAIK

Client & Server: ChangeCipherSpec
Signal that one party has all needed parameters,
has generated encryption keys and is switching to encryption

Sent by client and server as soon as they are ready…

IAIK

Client & Server: Finished
Signal that handshake is complete

● Purpose is to verify integrity of entire handshake

 Content is already encrypted

● Message contains hash of all handshake messages

 Integrity of Finished message itself is guaranteed by negotiated MAC algorithm

 Both parties decrypt message  check hash values

verify_data = PRF(masterSecret, finishedLabel, hash(handshakeMessages))

IAIK

1. Client starts handshake, sends parameters to Server

2. Server chooses common connection parameters

3. Server sends his certificate chain

4. If needed for key exchange  Server sends needed parameters to client

5. Server informs client that everything is done

6. Client sends parameters for key exchange to Server

7. Client switches to encrypted communication and informs Server about this

8. Client sends checksum (MAC) of all sent and received handshake messages to
Server

9. Server switches to encrypted communication and informs client about this

10. Server also sends MAC of handshake messages

TLS Handshake Summary

IAIK

Typical workflow
● Record protocol receives application data

● Received data is divided into blocks (max. 16 KB per record)

● Add message authentication code (MAC)

● Data is encrypted using negotiated masterSecret

TLS Record

Source: http://goo.gl/7zig7b

http://goo.gl/7zig7b

TLS Properties

IAIK

Cryptographic aspects of TLS are fully configurable by cipher suites.
 Define exactly how security will be implemented

Defines the following attributes
● Key exchange RSA, DH, DHE, ECDH, ECDHE

● Authentication RSA, DSA, DSS, ECDSA

● Hash function for MAC MD5, SHA-1, SHA-256, SHA-512

● Encryption algorithm & key size none, RC4, (3)DES, AES, …

 Ensure TLS principles: Authenticity, Integrity, Confidentiality

Key exchange is a requirement for integrity and confidentiality

Note: RSA can be used for key exchange and authentication!

Overview

IAIK

Name construction

Different notations
● IANA: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

● OpenSSL: ECDHE-RSA-AES128-GCM-SHA256

● PolarSSL: TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256

 [SSL|TLS], [Key Exchange], [Authentication], [Bulk cipher], [MAC]

Cipher Suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Key Exchange

Authentication

Cipher

Algorithm

Strength

Mode

MAC or PRF

IAIK

Key Exchange

Note
● ECDH/ECDHE is similar to

DH/DHE but faster!

 ECDH keys with elliptic curves
instead of DH parameters

 Table of equivalent key lengths:

Cipher Suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

DH = Diffie Hellman
DHE = Diffie Hellman Ephemeral
ECDH = Elliptic Curve Diffie Hellman
ECDHE = Ellliptic Curve Diffie Hellman Ephemeral

ECRYPT2 Yearly Report on Algorithms and Keysizes (2012)

Cipher Suites
openssl ciphers -v

TLS_AES_256_GCM_SHA384 TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD

TLS_CHACHA20_POLY1305_SHA256 TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256)…

TLS_AES_128_GCM_SHA256 TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD

ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384

ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384

ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1

ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1

SRP-DSS-AES-256-CBC-SHA SSLv3 Kx=SRP Au=DSS Enc=AES(256) Mac=SHA1

SRP-RSA-AES-256-CBC-SHA SSLv3 Kx=SRP Au=RSA Enc=AES(256) Mac=SHA1

SRP-AES-256-CBC-SHA SSLv3 Kx=SRP Au=SRP Enc=AES(256) Mac=SHA1

DHE-DSS-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=DSS Enc=AESGCM(256) Mac=AEAD

(...) For complete list, see http://goo.gl/Jg5wUp

http://goo.gl/Jg5wUp

IAIK

Which are offered by your client?

● Depends on used library

 Internet Explorer (Edge): Cryptography Service Provider (CSP)

 Mozilla Firefox: Network Security Services (NSS)

 Google Chrome: NSS with own adaptions

 Apple Safari: SecureTransport

 Android: AndroidOpenSSL and BouncyCastle (modified)

 Modern browsers prefer AES-GCM and AES-CBC

Find out your preferences at https://www.howsmyssl.com

Cipher Suites in the Browser

https://www.howsmyssl.com/

IAIK

Cipher Suites in
the Browser

IAIK

Compromise of long-term keys should not compromise past session keys

Without Forward Secrecy
● Security of all connections depend on server‘s private key

● If broken or stolen  previous communication can be decrypted

Why is this possible?

● During the handshake, the client creates a preMaster secret

● Encrypted using the server‘s public (RSA) key it is sent to the server

 Server uses his private key to decrypt it  calculate common masterSecret

 If you have the private key, you can decrypt past and future data!!

(Perfect) Forward Secrecy

IAIK

Without PFS

Source: http://goo.gl/q1FfGS

http://goo.gl/q1FfGS

With Forward Secrecy
● Server generates a short-living („ephemeral“) Diffie-Hellman keypair

 DHE = Diffie-Hellman Ephemeral
 ECDHE = Elliptic Curve Diffie-Hellman Ephemeral

● Server signs the public key of this DH pair with the
private key of the server‘s certificate

 Can be RSA or ECDSA depending on the certificate

● Client receives the signed public DH key, checks if signature is verifiable using
public key of the previously received server‘s certificate

 Instead of „Key transport“ (RSA), forward secrecy works with „Key agreement“!

(Perfect) Forward Secrecy

IAIK

With PFS

Source: http://goo.gl/q1FfGS

Note: This graphic misses
the key signing part!

http://goo.gl/q1FfGS

Security
● For every new session, client & server generate new Diffie-Hellman parameters

 If compromised somehow  attacker could only read this particular session

● Attacking the session key

 If parameters are securely chosen, brute-force should not be possible

E.g. use 2048-bit or stronger Diffie-Hellman groups with „safe“ primes

● Attacking the server‘s private key

 With PFS, only used to sign ephemeral public DH keys sent to the client

 If broken or leaked  would not compromise past sessions

● Hacking the server: Attacker only gets current session keys & key for signatures

(Perfect) Forward Secrecy

How to get Forward Secrecy?
● Server needs at least TLS 1.2 + offer PFS supporting cipher suite

● Important: Only key exchange with DHE or ECDHE offers forward secrecy!

 Cipher suite, e.g DHE-RSA-AES128-SHA or ECDHE-ECDSA-AES128-SHA

Test servers
● https://www.ssllabs.com/ssltest/

● http://demoapps.a-sit.at/ssl-tool/

● https://testssl.sh

● https://github.com/nabla-c0d3/sslyze

● Examples on how not to configure servers: https://badssl.com

 Small DH groups, weak ciphers, etc.

(Perfect) Forward Secrecy

https://www.ssllabs.com/ssltest/
http://demoapps.a-sit.at/ssl-tool/
https://testssl.sh/
https://github.com/nabla-c0d3/sslyze
https://badssl.com/

IAIK

(Perfect) Forward Secrecy

TLS Security

IAIK

Problem
Attacks often based on downgrades HTTPS  HTTP („SSLStrip“)

● Variant A

 Web page offers HTTP and HTTPS version

 Attacker injects HTTP links to force user to use weak HTTP communication

● Variant B

 Web page offers HTTPS only

 Attacker uses proxy server (Man-in-the-middle) and translates to HTTP
communication

Solution? HTTP Strict Transport Security (HSTS)

Overview

IAIK

= Tell browser that all connections to a domain are HTTPS only

 Specified via HTTP header that can only be sent during valid HTTPS request

Browser remembers (for specified max-age period) that it should
only request HTTPS resources for this site (and optionally subdomains)

 Effectively prevents „SSL Stripping“ attacks!

HSTS RFC 6797

Strict-Transport-Security: max-age=10886400; includeSubDomains

Optional
(recommended)

in seconds

IAIK

But: What if an attacker has control over the initial HTTPS requests?

Scenario
● Attacker would strip HSTS headers

● Browsers would not know HSTS should be active

Solution
● Browsers ship with „preloaded“ HSTS lists  Sites that always require HTTPS

● Add „preload“ header and add domain here: https://hstspreload.appspot.com

HSTS

Strict-Transport-Security: max-age=10886400; includeSubDomains; preload

https://hstspreload.appspot.com/

IAIK

Problem
You are not presented the „correct“ certificate for a domain

● Variant A

 Attacker malevolently exchanges certificate with self-generated one

 Client connects and attacker redirects data transfer

● Variant B

 Certificate Authority (CA) is compromised

 Attacker generates trusted certificate and exchanges it

Solution? HTTP Public Key Pinning (HPKP)

Man-in-the-Middle

IAIK

Problem
Our browsers trust ~130 CAs („Trust Store“)

How is trust established?
1. Browser compares DNS hostname with

subject name in certificate

2. Upon match, check if certificate issued
by trusted CA

Certificate Pinning (HPKP) RFC 7469

IAIK

Scenario
Usually the certificate chain for google.com looks as follows:

Now:
● Assume „TÜRKTRUST Elektronik Sunucu Sertifikası Hizmetleri“ issues a

certificate for google.com

● A webserver for google.com is setup, DNS entries are rewritten to point at that
server and the user is forwarded there  would he notice?

Certificate Pinning RFC 7469

GlobalSign Root CA – R2

- GTS CA 1O1

- google.com

TÜRKTRUST Elektronik Sunucu Sertifikası Hizmetleri

e-islem.kktcmerkezbankasi.org

- google.com

No, he would not!
https://goo.gl/QVfHYV

https://goo.gl/QVfHYV

IAIK

Another scenario
1. Attacker has access to trusted CA, issues certificates for arbitrary hostnames

2. Attacker performs MITM attack using previously generated certificate

 Attacker could replace any TLS certificate, browser would still trust it

Remedy?
● Remember hash values („pins“) of public keys associated with certificates

● If PIN changes (= certificate changes), drop connection even if certificate would
be trustworthy and DNS name matches with cert‘s subject name

● PINs either stored in browser (or mobile app) or sent via HTTP header

Certificate Pinning

IAIK

How to generate PINs?
● Get SHA-256 hash value of public key of server certificate

● Base-64 encoding of hash and inserting into header

Advantages
● Defeats MITM attacks

● PIN can also be stored
in browser

Certificate Pinning
Public-Key-Pins:

pin-sha256="GRAH5Ex+kB4cCQi5gMU82urf+6kEgbVtzfCSkw55AGk=";

pin-sha256="lERGk61FITjzyKHcJ89xpc6aDwtRkOPAU0jdnUqzW2s=";

max-age=15768000; includeSubDomains

Disadvantages
● “Trust-on-first-use“ mechanism (like HSTS)

● Many things can go wrong while setup

● You must have >= 2 PINs

IAIK

● 24.01.2020

 TLS Vulnerabilities & Attacks

 DNS Security

● 31.01.2020

 Lecture Exam

Outlook

