

Data Link & Network Security

Information Security 2019

Johannes Feichtner johannes.feichtner@iaik.tugraz.at

Computer Networks – How?

Using four layers...

- Application
 - Everything else (HTTP, user applications, etc.)
- Transport
 - Ensure that sent data arrives (TCP)
- Internet
 - Addressing other nodes, routing of packets (IP)
- Link
 - Type of Network: Wireless, Cables, Protocols, Networks

Attack Scenarios

Blogging in Tunesia

- Assumption
 - You are a blogger in Tunesia
 - The government does not like your critical comments on Facebook
- True story happening during the "Arab Spring"

Link: Where are you?

- At home? In a café with WiFi? Using a smartphone?
- Technologies:
 - Wired: LAN
 - WiFi: 802.11a, 802.11b, ..., 802.11ax
 - Mobile Networks: GPRS, ..., HSPA(+), LTE

Source: http://goo.gl/6frkcF

Link Layer ARP/InARP · NDP · OSPF ·

Tunnels (L2TP) · PPP · Media Access Control (Ethernet, DSL, ISDN, FDDI) · (more)

Network Layer – Packets

- From your computer to Facebook servers
 - Over the Internet: TCP, UDP, IP
 - Via your local ISP through the Internet to Facebook
 In times of cloud: Which server?
 - Which links do packets take?
 - Leaking meta information?User Profiling?

Application Layer

Facebook

- Web application: JavaScript, HTML, ...
- Communication: AJAX, HTTP
- HTTPS via your browser
- Communication: DNS

GET /hprofile-ak-snc4/187700_43202447_1193426_q.jpg HTTP/1.1	View certificate
Host: profile.ak.fbcdn.net	
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.13) Gecko/20101203 Firefo	Connection - secure connection settings
Accept: image/png,image/*;q=0.8,*/*;q=0.5	The connection to this site is encrypted and authenticated using TLS 1.3
Accept-Language: en-us,en;q=0.5	X25519, and AES_128_GCM.
Accept-Encoding: gzip,deflate	Resources - all served securely
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7	All resources on this page are served securely.
Keep-Alive: 115	
Connection: keep-alive	
Referer: http://www.facebook.com/	

Application Layer

BGP • DHCP • DNS • FTP • HTTP • IMAP • IRC • LDAP • MGCP • NNTP • NTP • POP • RIP • RPC • RTP • SIP • SMTP • SNMP • SSH • Telnet • TLS/SSL • XMPP •

(more)

Security overview

A

This page is secure (valid HTTPS).

Certificate - valid and trusted

The connection to this site is using a valid, trusted server certificate issued by DigiCert SHA2 High Assurance Server CA.

Scenario 1 – Blogging in Tunesia

• Abstract

- Join WiFi network
- Fire up your browser and go to Facebook
- Post something, read feeds...

• Tools

- Browser
- Wireshark
 - Network Sniffer
 - Captures data on every layer

Internet Protocol Suite
Application Layer
BGP • DHCP • DNS • FTP • HTTP • IMAP • IRC • LDAP • MGCP • NNTP • NTP • POP • RIP • RPC • RTP • SIP • SMTP • SNMP • SSH • Telnet • TLS/SSL • XMPP •
(more)
Transport Layer
TCP · UDP · DCCP · SCTP · RSVP · ECN ·
(more)
Internet Layer
IP (IPv4, IPv6) · ICMP · ICMPv6 · IGMP · IPsec ·
(more)
Link Layer
ARP/InARP • NDP • OSPF • Tunnels (L2TP) • PPP • Media Access Control (Ethernet, DSL, ISDN, FDDI) • (more)

1 0.000000	Cisco_67:e4:9d	Spanning-tree-(for	STP	Conf. TC + Root = 32768/0/00:90:21:67:68:0a Cost = 4 Port
2 0.000007	174.36.30.8	10.27.152.168	HTTP	HTTP/1.1 200 OK (text/html)
3 0.000936	fe80::c62c:3ff:fe15:ae5a	ff02::1:ff15:ae5a	ICMPv6	Multicast listener report
DHCP	:2c:03:15:ae:5a	3Com_f6:ab:8e	ARP	Who has 10.27.152.1? Tell 10.27.152.168
	.0.0.0	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x34c277d5
ΔRD	com_f6:ab:8e	c4:2c:03:15:ae:5a	ARP	10.27.152.1 is at 00:04:75:f6:ab:8e
	l:2c:03:15:ae:5a	Broadcast	ARP	Gratuitous ARP for 10.27.152.168 (Request)
	.27.152.5	10.27.152.168	DHCP	DHCP ACK - Transaction ID 0x34c277d5
	1:2c:03:15:ae:5a	IO.27.152.168 DHCP DHCP ACK - Transaction ID 0x34c277d5 Broadcast ARP Who has 169.254.255.255? Tell 10.27.152.168 224.0.0.2 IGMP V2 Leave Group 224.0.0.251 224.0.0.251 ICMP V2 Membership Depent (laip group 224.0.0.251		
10 0.069249	10.27.152.168	224.0.0.2	IGMP	V2 Leave Group 224.0.0.251
11 0.069500	10.27.152.168	224.0.0.251	IGMP	V2 Membership Report / Join group 224.0.0.251
٨DD	4:2c:03:15:ae:5a	Broadcast	ARP	Who has 10.27.152.1? Tell 10.27.152.168
ANF	Com_f6:ab:8e	c4:2c:03:15:ae:5a	ARP	10.27.152.1 is at 00:04:75:f6:ab:8e
14 0.072125	10.27.152.168	129.27.142.23	DNS	Standard query PTR lbdns-sdudp.0.152.27.10.in-addr.arpa
15 0.072170	10.27.152.168	129.27.142.23	DNS	Standard query TXT cfdns-sdudp.0.152.27.10.in-addr.arpa
16 0.072217	10.27.152.168	129.27.142.23	DNS	Standard query PTR bdns-sdudp.0.8.16.172.in-addr.arpa
17 0.072262	10.27.152.168	129.27.142.23	DNS	Standard query PTR dbdns-sdudp.0.8.16.172.in-addr.arpa
18 0.072308	10.27.152.168	129.27.142.23	DNS	Standard query PTR rdns-sdudp.0.8.16.172.in-addr.arpa
19 0.072353	10.27.152.168	129.27.142.23	DNS	Standard query PTR drdns-sdudp.0.8.16.172.in-addr.arpa
20 0.072399	10.27.152.168	129.27.142.23	DNS	Standard query PTR lbdns-sdudp.0.8.16.172.in-addr.arpa
21 0.072444	10.27.152.168	129.27.142.23	DNS	Standard query TXT cfdns-sdudp.0.8.16.172.in-addr.arpa

Where is Facebook?

333 9.2301/0	10.2/.132.100	10.2/.102.200	NDND	Negraciación No WolvColoursies
556 9.593170	IntelCor_4d:34:be	Broadcast	ARP	Gratuitous ARP for 10.27.152.159 (Request)
557 9.827137	Cisco_67:e4:9d	Spanning-tree-(for	STP	Conf. TC + Root = 32768/0/00:90:21:67:68:0a
558 10.34513	fe80::1179:aac2:eb1a:9ca	ff02::1:2	DHCPv6	Solicit
559 10.48143	HonHaiPr_80:0b:f6	Broadcast	ARP	Who has 10.27.152.1? Tell 10.27.152.113
560 10 96630	10.27.152.168	129.27.142.23	DNS	Standard query A www.facebook.com
DNS	129.27.142.23	10.27.152.168	DNS	Standard query response A 66.220.158.32
202 10.90732	10.27.152.168	66.220.158.32	TCP	58738 > http [SYN] Seq=0 Win=65535 Len=0 MS
563 11.07537	66.220.158.32	10.27.152.168	TCP	http > 58738 [SYN, ACK] Seq=0 Ack=1 Win=438
564 11.07552	10.27.152.168	66.220.158.32	TCP	58738 > http [ACK] Seq=1 Ack=1 Win=524280 L
565 11.07623	10.27.152.168	66.220.158.32	HTTP	GET / HTTP/1.1

Ethernet II, Src: c4:2c:03:15:ae:5a (c4:2c:03:15:ae:5a), Dst: 3Com f6:ab:8e (00:04:75:f6:ab:8e) ✓ Internet Protocol, Src: 10.27.152.168 (10.27.152.168), Dst: 129.27.142.23 (129.27.142.23) Version: 4 Header length: 20 bytes ▷ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) Total Length: 62 Identification: 0xfdb7 (64951) ▷ Flags: 0x00 Fragment offset: 0 Which IP does Time to live: 255 Facebook have? Protocol: UDP (0x11)D Header checksum: 0x0c01 [correct] Source: 10.27.152.168 (10.27.152.168) Destination: 129.27.142.23 (129.27.142.23) ✓ User Datagram Protocol, Src Port: 49766 (49766), Dst Port: domain (53) Let's ask the DNS server Source port: 49766 (49766) Destination port: domain (53) 129.27.142.23 Length: 42 Checksum: Oxb28f [validation disabled] [Response In: 561] Transaction ID: 0xe278 Flags: 0x0100 (Standard query) UDP Ρ Questions: 1 Answer RRs: 0 Authority RRs: 0 DNS Additional RRs: 0 Name: www.facebook.com Type: A (Host address)

Class: IN (0x0001)

Frame 561 (92 bytes on wire, 92 bytes captured)

- Ethernet II, Src: 3Com_f6:ab:8e (00:04:75:f6:ab:8e), Dst: c4:2c:03:15:ae:5a (c4:2c:03:15:ae:5a)
- Internet Protocol, Src: 129.27.142.23 (129.27.142.23), Dst: 10.27.152.168 (10.27.152.168)
- User Datagram Protocol, Src Port: domain (53), Dst Port: 49766 (49766)
- ▽ Domain Name System (response)

[Request In: 560]

[Time: 0.000758000 seconds]

Transaction ID: 0xe278

▷ Flags: 0x8180 (Standard query response, No error)

Questions: 1

Answer RRs: 1

Authority RRs: 0

Additional RRs: 0

⊽ Queries

✓ www.facebook.com: type A, class IN Name: www.facebook.com Type: A (Host address) Class: IN (0x0001)

✓ www.facebook.com: type A, class IN, addr 66.220.158.32 Name: www.facebook.com Type: A (Host address) Class: IN (0x0001) Time to live: 42 seconds Data length: 4 Addr: 66.220.158.32

The answer is 66.220.158.32

Let's Login

10.96735! 10.27.152.168	66.220.158.32	TCP	58738 > http [S	(N] Seq=0 Win=6553	5 Len=0	MSS=1460	
11.07537 66.220.158.32	10.27.152.168	TCP	http > 58738 [S	(N, ACK] Seq=0 Ack	=1 Win=4	4380 Len=	
11.07552 10.27.152.168	66.220.158.32	TCP	58738 > http [A	CK] Seq=1 Ack=1 Wi	n=52428	0 Len=0 T	
11.07002 10.07 153.168	66.220.158.32	HTTP	GET / HTTP/1.1	· · · · ·			
11.: HTTP 8.32	10.27.152.168	TCP	[TCP segment of	a reassembled PDL]		
11.24/70/00.220.108.32	10.27.152.168	TCP	[TCP segment of	a reassembled PDL]		
11.24777 10.27.152.168	66.220.158.32	TCP	58738 > http [AG	CK] Seq=364 Ack=14	49 Win=9	524176 Le	
11.24780 10.27.152.168	66.220.158.32	TCP	58738 > http [A	CK] Seq=364 Ack=28	97 Win=9	522728 Le	
11.21700 00 000 158.32	10.27.152.168	TCP	[TCP segment of	a reassembled PDL]		
11.: HTTP .168	66.220.158.32	TCP	58738 > http [A	CK] Seq=364 Ack=43	45 Win=9	524176 Le	
11.20000 10.27.152.168	129.27.142.23	DNS	Standard guery /	A static.ak.fbcdn.	net		
11.26605 10.27.152.168	129.27.142.23	DNS	Standard query /	A b.static.ak.fbcc	n.net		
11.35529: 66.220.158.32	10.27.152.168	TCP	[TCP segment of	a reassembled PDL]		
11.35554: 66.220.158.32	10.27.152.168	TCP	[TCP segment of	a reassembled PDL	- 1]		
11.35562 10.27.152.168	66.220.158.32	752 18.50444	10.27.152.168	66.220.158.32	TCP	58743 > https [SYN] Seq=0 Win=655
11.35571:66.220.158.32	10.27.152.168	753 18.61096	66.220.158.32	10.27.152.168	TCP	https > 58743 [SYN	, ACK] Seq=0 Ac
11 35582 66 220 158 32	10.27.152.168	754 18.61111	10.27.152.168	66 220 158 32	TLSV1	S8/43 > https [ACK	J Seq=1 ACK=1 W
11 35586 10 27 152 168	66 220 158 32	756	TPS 3.32	10.27.152.168	TLSV1	Server Hello.	
11.33580 10.27.132.108	00.220.130.32	757 10./195/	00.220.108.32	10.27.152.168	TCP	[TCP segment of a	reassembled PDU
		758 18.71968	66.220.158.32	10.27.152.168	TCP	[TCP segment of a	reassembled PDU
		759 18.71973	10.27.152.168	66.220.158.32	TCP	58743 > https [ACK] Seq=164 Ack=4
		760 1	TDC 3.32	10.27.152.168	TLSv1	Certificate, Serve	r Hello Done
		761 1	168	66.220.158.32	TCP	58743 > https [ACK] Seq=164 Ack=4
$P \longrightarrow TCP$		762 18.83504	10.27.152.168	66.220.158.32	TLSv1	Client Key Exchange	e
		763 18.83506	10.27.152.168	66.220.158.32	TLSv1	Change Cipher Spec	
		764 18.83508	10.27.152.168	66.220.158.32	TLSv1	Encrypted Handshak	e Message
LITTD(C)		765 1	TTDO .32	10.27.152.168	TCP	https > 58743 [ACK] Seq=4419 Ack=
		766 1	IIPS .32	10.27.152.168	TLSv1	Change Cipher Spec	, Encrypted Han
		767 18.94240	. 10.27.152.168	66.220.158.32	TCP	58743 > https [ACK] Seq=350 Ack=4
		768 18,94329	10.27.152.168	66,220,158,32	TLSv1	Application Data	

769 18.94343 10.27.152.168

Application Data

66.220.158.32

TLSv1

Let's Post

5735! 10.27.152.168	66.220.158.32	TCP S	8738 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460			
537 66.220.158.32	10.27.152.168	TCP	ttp > 58738 [SYN, ACK] Seq=0 Ack=1 Win=4380 Len=			
552 10.27.152.168	66.220.158.32	TCP 5	8738 > http [ACK] Seq=1 Ack=1 Win=524280 Len=0 T			
623 10.27.152.168	66.220.158.32	HTTP (ET / HTTP/1.1			
766 66.220.158.32	10.27.152.168	TCP	TCP segment of a reassembled PDU]			
776: 66.220.158.32	10.27.152.168	TCP	TCP segment of a reassembled PDU]			
777 10.27.152.168	66.220.158.32	TCP 5	8738 > http [ACK] Seq=364 Ack=1449 Win=524176 Le			
780: 10.27.152.168	66.220.158.32	TCP 5	8738 > http [ACK] Seg=364 Ack=2897 Win=522728 Le			
789 66.220.158.32	10.27.152.168	TCP	TCP segment of a reassembled PDU1			
794 10.27.152.168	66.220.158.32	TCP 5	8738 > http [ACK] Seg=364 Ack=4345 Win=524176 Lo			
500 10.27.152.168	129.27.142.23	DNS	tandard query A static.ak.fbcdn.net	- T		
605 10 27 152 168	129 27 142 23	DNS	tandard query A b static ak fbcdn net	1 (3	Scour	0
529 66, 220, 158, 32	10.27.152.168	TCP	TCP segment of a reassembled PDU1		50001	
554: 66 220 158 32	10.27.152.168	TCP	TCP segment of a reassembled PDU1			
562 10 27 152 168	66 220 158 32	TCP 1	8738 > http [ACK] Seg=364 Ack=7241 Win=5227			
571' 66 220 159 22	10 27 152 169	TCP	TCR segment of a reassembled PDUL		— ·· · ·	
592 66 220 159 22	10.27.152.100		TTP/1 1 200 OK (text/html)		🗉 News Ahoy!	Shiniest booty · Fresh booty
596 10 27 152 169	66 220 159 22	TCD	9739 > http [ACK] Sed-364 Ack-10032 Win-5328' old	le Vessel		
00 10.27.102.100	00.220.130.32		3/30 > http [Ack] Seq=304 Ack=10052 WIN=522C 010	ie vessel		
					Blabber t' yer mates 🛛 📰 Recent Tales	💽 Portrait 🕂 Anchor
					— · · · · · · · · · · · · · · · · · · ·	
					🐙 Bewitched Portrait	
			2065			
			ages			
					What be troublin' ye?	
				1		
				1		
IP		IUP				
IITTD(C)						
$H \mid P(3)$			Secon			
···· (~)			00001011			
			High-lovel or		unication	
	JavaS	Cript	High-level co	omm	unication	►

Internet Protocol Suite
Application Layer
BGP • DHCP • DNS • FTP • HTTP • IMAP • IRC • LDAP • MGCP • NNTP • NTP • POP • RIP • RPC • RTP • SIP • SMTP • SNMP • SSH • Telnet • TLS/SSL • XMPP •
(more)
Transport Layer
TCP · UDP · DCCP · SCTP · RSVP · ECN · (more)
Internet Layer
IP (IPv4, IPv6) · ICMP · ICMPv6 · IGMP · IPsec ·
(more)
Link Layer
ARP/InARP • NDP • OSPF • Tunnels (L2TP) • PPP • Media Access Control (Ethernet, DSL, ISDN, FDDI) • (more)

Attack – Open WLAN

How?

Client

- a) Join WLAN, start ARP Poisoning
- b) Create own AP
 - E.g. with smartphone...

Attacker

- Sniff data
- Manipulate data
- Attack HTTPS connections

http://www.apple.com http://www.microsoft.com https://www.google.com

Attack – Sniff data

Unencrypted (HTTP)

- Credentials, cookies, content
- Derive usage patterns
 - Which hosts visited?
 - Called URLs?

Encrypted (HTTPS)

 Find out communication partners (IP addresses)

Client

http://www.apple.com http://www.microsoft.com https://www.google.com

Attack – Manipulate data

- Fake DNS replies
 - Reroute traffic to malware page
- Manipulate content
 - Unencrypted, e.g.
 - Inject JavaScript
 - Change links (SSLstrip)
 - Encrypted
 - Fake certificates (MITM)

Client

google.com

Attack – HTTPS Traffic

...by faking server certificates

The problem

- Users often accept invalid certificates anyway
- We have ~130 certificate authorities (CA) in our browsers' trust stores
 - They are not equally rigid when issuing certificates

→Certificate could be obtained and misused

• Especially with mobile apps

- Can overwrite certificate validation routines
- Many apps silently (without warning) accept invalid certificates

Back in Tunesia...

Attacks in 2011/2012

- Facebook was largely HTTP
- HTTPS only
 - For login (password protection)
 - If explicitly requested (<u>https://www.facebook.com</u>)
- Tunesia had a national (stated-owned) ISP

Scenario

- ISP has access to Facebook HTTP transmissions
- Injects JavaScript code into Facebook logon page
- JS in your browser reads entered user and password → posts it to non-existing URI, e.g. <u>http://www.facebook.com/fake/user/password</u>
- ISP catches HTTP URLs and reads out user/password

Scenario 1 - Turkey (2014)

Situation: Government decides to block Twitter

How?

- Send orders to every national ISP
- Task: Any DNS request to
 *.twitter.com should not be resolved

Remedy: Change your ISP's DNS servers to use alternatives, e.g. from Google or OpenDNS

Turkey cont. (2014)

New situation: Government decides to block Google's DNS servers

Source: https://goo.gl/x31tCE

How?

On AS 9121(TurkTelecom) re-route all traffic to 8.8.8.8 to 212.156.253.130 instead. \rightarrow BGP Hijacking

Null routing would break connectivity for all users of 8.8.8.8

```
show router bgp routes 8.8.8.8
BGP Router ID:212.156.116.127 AS:9121 Local AS:9121
Legend -
Status codes : u - used, s - suppressed, h - history, d - decayed, * - valid
Origin codes : i - IGP, e - EGP, ? - incomplete, > - best, b - backup
BGP IPv4 Routes
Flag Network LocalPref MED
Nexthop Path-Id VPNLabel
As-Path
u*>? 8.8.8.8/32 100 None
                                  We would expect to see 8.8.8.0/24 here
212.156.253.130 None -
                                  originated by AS 15169.
No As-Path
                                  This is the proof of Turk Telekom
*? 8.8.8.8/32 100 None
                                  hijacking Google DNS.
212.156.253.130 None -
No As-Path
Routes : 2
```

Scenario 2 – Kazakhstan (2019)

- Government requires citizens to install trust anchor
 - Law to "improve nation's security"
- In 07/2019 users receive SMS with request to visit qca.kz and install a certificate from "Qaznet Trust Network"
- \rightarrow How to prevent/bypass this attack? :-)

Tele2 🔽 😵 🖸 🗹 🔶 …

@² X O to ⁴⁶ 11 55% ► 16:02

Scenario 4 – Iran (2019)

Within 24h \rightarrow government sends shutdown requests to all ISPs

Source: https://goo.gl/x31tCE

- 1. Only downlinks blocked, uplinks still worked
- 2. Everything blocked

Review: Link Layer

- IEEE 802
 - Logical Link Control (LLC)
 - Media Access Control (MAC)
 - Ethernet (LAN)
 - Frame Collisions
 - VLANs
- Cables, Hubs, Switches
- Wireless Networks
 - Basics: CSMA/CA, Channels
 - Attacks

Switch / Hub – Security

Hub attack

- Every node sees whole traffic
- Sniffing is easy by setting network card into "promiscuous mode"

Switch attacks

- MAC Flooding
 - Flood switch with fake MAC addresses until memory exhausted
 - Switch then changes mode and behaves like hub
- MAC Spoofing
 - Fake foreign MAC address. Switch then redirects traffic to port of attacker
- ARP Poisoning

Attacks on Switched Networks

• MAC Flooding

- Flood switch with fake MAC addresses until memory exhausted
- Switch then changes mode and behaves like hub
- MAC Spoofing
 - Emulate foreign MAC address
 - Targets the SAT of the switch
- ARP Poisoning / Spoofing
 - Targets other clients

MAC Spoofing

Workflow

- 1. Attacker forges MAC address of victim host
 - Switch refreshes SAT mapping: MAC address <-> switch port
- 2. Switch redirects incoming frames to attacker
- 3. Works until victim sends new frame

Purpose

- Can suffice to capture credentials
- Denial-of-Service (DoS) attack
 - Prevent IP connectivity with spoofed victims
- Fake identity in WiFis that require username / password

See: https://goo.gl/l8AOKL

elect an adapte	r from the list below.	
en0: Ethernet A	dapter (001) > MAC: 00:1B:	Restore
Mac Address		
New Address	001B	Random
Manufacturer	Apple Inc. OID=00	

Review: TCP / UDP

- Service provisioned to higher layers through ports
 - Port 80 for HTTP, 443 for HTTPS / TLS, 21 for FTP, ...
- Session: Communication client / server via socket pair
 - TCP: Established after fulfilling a handshake
 - Connection-oriented
 - Reliable \rightarrow error detection, flow & congestion control
 - UDP: Identified on higher layer, e.g. using session cookies
 - Connection-less
 - $\hfill \label{eq:constraint}$ Unreliable \rightarrow sender does not know if destination reached
 - No congestion control

HTTP!

TCP Scanning

Portscan \rightarrow Check whether specific ports are open on host

How?

- TCP SYN Scan "Half-open" scanning
 - Attacker sends SYN packet
 - If server answers with SYN/ACK packet \rightarrow port open
 - If server answers with RST packet \rightarrow port closed
 - Attacker sends RST packet instead of ACK
- TCP FIN Scan
 - Attacker sends FIN packet
 - If port is open \rightarrow server ignores FIN packet
 - If port is closed \rightarrow server answers with RST packet

Nmap

Leading tool for portscanning: <u>https://nmap.org/</u>

Features include

- IP & Port Scans UDP / TCP (SYN, FIN Scanning)
- OS Fingerprinting
 - Determine running OS by checking reaction to uncommon packets
 - Use of reserved flags in TCP header
 - Use of weird flag combination
 - Selection of initial SEQ numbers
 - Analysis to ICMP responses
 - Each TCP/IP implementation is different in handling corner cases

Not shown	n: 986 closed p	orts	
PORT	STATE	SERVICE	
53/udp	open	domain	
23/udp	open filtered	ntp	
135/udp	open	msrpc	
137/udp	open	netbios-ns	
138/udp	open filtered	netbios-dgm	
l61/udp	open filtered	snmp	
145/udp	open filtered	microsoft-ds	
500/udp	open filtered	isakmp	
1029/udp	open	solid-mux	
1031/udp	open filtered	iad2	
1036/udp	open	nsstp	
1434/udp	open filtered	ms-sql-m	
3456/udp	open filtered	IISrpc-or-vat	
4500/udp	open filtered	nat-t-ike	
AC Addre	ess: 00:0C:29:1	8:6B:DB (VMware)	

Source: http://goo.gl/XPe00k

Attack: SYN Flooding

Very common DoS attack!

Idea

- 1. Attacker starts handshake with SYN segment
- 2. Victim replies with SYN-ACK
 - → Allocates data structures (reassembly buffer, etc.)
- 3. Attacker host stays silent

Problem:

Hosts can only keep limited number of TCP connections in *half-open* state to limit memory usage \rightarrow after that limit, no more connections accepted!

Solution (not always): Drop half-open connections (FIFO), SYN cookies IAIK

Source: https://goo.gl/6lUQ7a

Attack: UDP Reflection Attack

Distributed Denial of Service attack

→ Send packets with forged source IP address and let server answer large replies to victim

Basic Workflow

- 1. Attacker sends UDP requests spoofing the victim's IP address, e.g. NTP or DNS request
- 2. Servers sends response to victim
 → x-times larger than request

Consequences

- Victim overwhelmed with traffic
- Attacker barely traceable

Routing the Blogger

Routing the Blogger

ARP Request on Gateway

- 1. ARP Request: Who has a.b.c.d
 - → Tell to MAC 00:11:22:33:44:55
- 2. ARP Reply: That's me. My MAC 66:77:88:99:00:AA
- 3. ARP Cache: Stores IP to MAC mapping

Contacting Facebook via 10.27.152.1

Wireshark

1 0.000000	Cisco_67:e4:9d	Spanning-tree-(for	STP	Conf. TC + Root = 32768/0/00:90:21:67:68:0a Cost = 4 Port
2 0.000007	174.36.30.8	10.27.152.168	HTTP	HTTP/1.1 200 OK (text/html)
3 0.000936	fe80::c62c:3ff:fe15:ae5a	ff02::1:ff15:ae5a	ICMPv6	Multicast listener report
4 0.004892	c4:2c:03:15:ae:5a	3Com_f6:ab:8e	ARP	Who has 10.27.152.1? Tell 10.27.152.168
5 0.004965	0.0.0.0	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x34c277d5
٨DD	Com_f6:ab:8e	c4:2c:03:15:ae:5a	ARP	10.27.152.1 is at 00:04:75:f6:ab:8e
AN	l:2c:03:15:ae:5a	Broadcast	ARP	Gratuitous ARP for 10.27.152.168 (Request)
8 0.029129	10.27.152.5	10.27.152.168	DHCP	DHCP ACK - Transaction ID 0x34c277d5
9 0.040115	c4:2c:03:15:ae:5a	Broadcast	ARP	Who has 169.254.255.255? Tell 10.27.152.168
10 0.069249	10.27.152.168	224.0.0.2	IGMP	V2 Leave Group 224.0.0.251
11 0.069500	10.27.152.168	224.0.0.251	IGMP	V2 Membership Report / Join group 224.0.0.251
	4:2c:03:15:ae:5a	Broadcast	ARP	Who has 10.27.152.1? Tell 10.27.152.168
ARP	Com_f6:ab:8e	c4:2c:03:15:ae:5a	ARP	10.27.152.1 is at 00:04:75:f6:ab:8e
14 0.072125	10.27.152.168	129.27.142.23	DNS	Standard query PTR lbdns-sdudp.0.152.27.10.in-addr.arpa
15 0.072170	10.27.152.168	129.27.142.23	DNS	Standard query TXT cfdns-sdudp.0.152.27.10.in-addr.arpa
16 0.072217	10.27.152.168	129.27.142.23	DNS	Standard query PTR bdns-sdudp.0.8.16.172.in-addr.arpa
17 0.072262	10.27.152.168	129.27.142.23	DNS	Standard query PTR dbdns-sdudp.0.8.16.172.in-addr.arpa
18 0.072308	10.27.152.168	129.27.142.23	DNS	Standard query PTR rdns-sdudp.0.8.16.172.in-addr.arpa
19 0.072353	10.27.152.168	129.27.142.23	DNS	Standard query PTR drdns-sdudp.0.8.16.172.in-addr.arpa
20 0.072399	10.27.152.168	129.27.142.23	DNS	Standard query PTR lbdns-sdudp.0.8.16.172.in-addr.arpa
21 0.072444	10.27.152.168	129.27.142.23	DNS	Standard query TXT cfdns-sdudp.0.8.16.172.in-addr.arpa

Security?

By sending gratuitous ARP replies we can update ARP caches of other hosts...

But...

- ARP Request / Replies are not authenticated!
 - Anybody can send them for arbitrary IPs / MAC addresses
- Gratuitous ARP replies can update the ARP cache

→ Consequences?

Assumption

- Attacker is in same (W)LAN
- Blogger has MAC address of gateway (WLAN AP) in cache
- Attacker wants to modify traffic of blogger

→ Attacker poisons ARP cache of blogger and gateway

Attacker poisons ARP cache with gratuitous ARP replies

Communication with attacker due to poisoned ARP cache!

Applicable in...

- Old LANs with hubs
 - One big collision domain due to the shared medium

Switched networks

- Frames only sent to destination host, others cannot see / modify traffic
- \rightarrow with ARP Poisoning this becomes possible!
- WLANs
 - Especially in (untrusted) open WLANs

Protection Tips

- Always ensure you are using HTTPS
 - Raises complexity for attacks as ARP Spoofing alone is not enough
- Use VPN
 - Establishes encrypted tunnel
- Use trusted and protected WLANs
- Use firewall or intrusion detection system
 - Some of them remember their own IP <-> MAC mappings
 - Detect cache poisoning attack and identify attacker

Wireless Networks

Overview

Types

- Ad-hoc networks
- Infrastructure-based networks (access points)

Technologies

- Wireless LANs (IEEE 802.11)
- GSM/UMTS/LTE, ...
- Bluetooth
- ADS-B (Airplanes), AIS (Ships), Satellite Internet

See: http://goo.gl/cQfUY6 See: https://goo.gl/3tsgy0 See: https://goo.gl/zolC0t

Wireless LAN – Evolution

- 1999: 802.11a: 5 GHz, max. 54 Mbit/s
- 1999: 802.11b: 2.4 GHz, max. 11 Mbit/s
- 2003: 802.11g: 2.4 GHz, max. 54 Mbit/s
- 2009: 802.11n: 2.4 GHz/5 GHz, 54 Mbit/s to 600 Mbit/s
- 2013: **802.11ac:** 5 GHz, max. 1300 Mbit/s via multiple 80 MHz channels

Non-Overlapping Channels for 2.4 GHz WLAN 802.11b (DSSS) channel width 22 MHz

Source: https://goo.gl/Zt1G59

- 2016: 802.11ah: 900 MHz, "WiFi HaLow" → Internet of Things
- 2018: 802.11ax: 1-5 GHz, improved multi-user MIMO, OFDMA for spectrum segregation

Wireless LAN – Security

Many security issues ever since!

Man-in-the-middle (MITM), Denial of Service (DoS), Injection, Spoofing, ...

Attacking WLANs in Practice

Which of these networks could be vulnerable?

SSID	MAC Address	Security	WPS	Manufacturer
				See: <u>https://goo.gl/kGYaYv</u>
3HuiGate_74F5	C8:51:95:74:F6:14	WPA2-PSK	Yes	Huawei Ltd.
3WebCube207C	D4:40:F0:1B:20:80	WPA2-PSK	No	Huawei Ltd.
A1-6842DG	A4:B1:E9:68:43:DF	WPA-PSK + WPA2-PSK	Yes	Technicolor
NETGEAR_11g	E4:F4:C6:F8:9B:70	WPA2-PSK	No	Netgear
PBS-536755	38:22:9D:53:67:5A	WPA-PSK	No	ADB Broadband Italia
TMOBILE-53141	C8:51:95:9D:A6:76	WPA-PSK + WPA2-PSK	No	Huawei Ltd.
UPC1381027	8C:04:FF:E4:C4:10	WPA-PSK + WPA2-PSK	No	Technicolor USA Inc.
UPC Wi-Free	FE:94:E3:25:4E:38	WPA2-EAP	No	
WLAN_E9	00:1A:2B:01:AC:A0	WEP	No	Ayecom Technology Co.

WEP

"Wired Equivalent Privacy"

2 Variants

- 1. 40-bit key + 24-bit IV \rightarrow 64-bit RC4 Key
 - 10 hex chars (0-9, A-F) or 5 ASCII chars (0-9, a-z, A-Z)
- 2. 104-bit key + 24-bit IV \rightarrow 128-bit RC4 key
 - 26 hex chars or 13 ASCII chars

Attack Idea

- Look for many packets with "weak IVs" that reveal information about WEP key
- Enough weak IVs found? \rightarrow Crack WEP key
- Weak IV is key dependent \rightarrow Takes different amount of time per key

Source: https://goo.gl/hhQEdm

Attacking WEP

Ways to get the key...

- Active attack (traffic generation)
 - Replay attack
 - Stimulate network to send encrypted data packets
 - ARP Replay
 - Send ARP requests, listen for ARP responses

• Passive attack

 Wait, wait, wait and just capture traffic...

Source: https://goo.gl/0SmCZz

 Advantage: Undetectable!

						jan dan dari 1919-191			cessfully	' brokei
						Aircra	ck-ng 1.2 r	c1		
					[00:00:02]	Tested 705	keys (got 1	73001 IVs)		
KB	dep	oth	byte(vote)						
Θ	0/	25	5A(22	5280)	02(193792)	50(193536)	88(190720)	9F(188928)	6E(188160)	5C(18790
1	1/	1	85(19	0464)	32(188928)	F8(188928)	CD(188672)	BA(187648)	65(186880)	16(18585
2	0/	1	6D(25	4208)	14(189184)	A3(189184)	1F(188928)	E3(188672)	B9(188160)	F0(18739
з	0/	1	70(24	2944)	FF(187904)	CC(187136)	1D(186368)	C6(186368)	18(186112)	4F(18611
4	3/	4	9C(18	7904)	26(187648)	C2(187136)	00(186368)	87(186368)	OA(185856)	EE(18585

- Message Integrity Check (MIC)
 - Prevent attacker from modifying and resending packets
- Two operation modes
 - Personal: Pre-Shared Key (PSK)
 - Enterprise: 802.1x + RADIUS Authentication Server

WPA 2

"Wi-Fi Protected Access II"

- Replacement of WPA
 - "Long Term Solution" (802.11i)
- Based on AES-256 (block cipher) instead of RC4 (stream cipher)
 - Counter <u>Mode</u> CBC-MAC (CCMP) protocol instead of TKIP for encryption

Attack Idea

Security depends on quality of used passphrase (PSK)

→ Crack PSK since attacking strong encryption is pointless...

Attacking WPA / WPA 2

Ways to get the key...

Only known way so far: Brute Force!

Requirements

- Captured handshake
- Passphase to test: Can be provided from a dictionary or generated on-the-fly
- SSID of AP: Serves as IV for PBKDF2

Attacking WPA / WPA 2

Fasten up the brute force attack...

- Use pre-calculated rainbow tables
 - List of PMK for one specific SSID and a dictionary of passphrases
 - Most popular SSIDs

linksys	MSHOME	orange
Default	home	USR8054
NETGEAR	hpsetup	101
Wireless	SMC	tmobile
WLAN	tsunami	SpeedStream
Belkin54g	ACTIONTEC	•••

See: https://goo.gl/P7zSoJ

• Use GPU acceleration

- − Nvidia CUDA or OpenCL \rightarrow E.g. Pyrit or Elcomsoft EWSA
- In the cloud, e.g. Amazon EC2

See: https://goo.gl/WEr7ul

See: http://goo.gl/mBzBw4

Wikipedia, list of common passwords, ...

Attacking WPA / WPA 2

Result?

Brute-force always works :-)

but...

- What if passphrase is not in used dictionary?
- What if passphrase is simply too complex or long?

[ec2-user@ip-10-16-16-171 handshakes]\$ pyrit -r wpa.cap -i /home/ec2-user/storag e/dictionaries/huge_wpa_list.txt attack_passthrough Pyrit 0.4.1-dev (svn r308) (C) 2008-2011 Lukas Lueg http://pyrit.googlecode.com This code is distributed under the GNU General_Public License v3+

Parsing file 'wpa.cap' (1/1)... Parsed 5 packets (5 802.11-packets), got 1 AP(s)

Picked AccessPoint 00:0d:93:eb:b0:8c ('test') automatically. Tried 233691684 PMKs so far; 52086 PMKs per second.

The password is 'biscotte'.

Source: https://goo.gl/DV4sBc

EWSA (WPA/WPA2-PSK)

WPS

"Wi-Fi Protected Setup"

- 8 digits PIN as alternative to passphrases
- Emphasis on usability
 - Fixed on sticker or dynamically generated

Problem

- Last digit is checksum → only 10^7 = 10.000.000 possible PINs
- PIN is validated in two separate halves: 1st half 10.000, 2nd 1.000 possibilities
- → Need max. 11.000 guesses until PIN recovered (< 4 hours)</p>

Attacking WPS

Result?

reaver -i mon0 -b A4:B1:F9:68:43:DF -c 6 [+] Associated with A4:B1:E9:68:43:DF (ESSID: A1-6842DG) [+] Trying pin 12345670 [+] Trying pin 95946344 [+] Trying pin ... [+] 92.25% complete @ 2016-04-09 17:31:55 (3 seconds/attempt) [+] Trying pin 19196343 [+] Key cracked in 4942 seconds [+] WPS PIN: '19196343' [+] WPA PSK: 'rkndemo' [+] AP SSID: 'A1-6842DG'

Note: Only works if WPS enabled on AP and amount of tries not limited!

See: https://goo.gl/oJrwa0

Attacking WLANs

Q: What if AP has WPS disabled, uses WPA 2 and strong passphrase? **A:** One option left to consider: *WPA (2) Password-generating algorithms*

Problem

- Many vendors use (known) algorithms to generate a default password which is then attached to sticker
- If password not changed by users → attackers may simply calculate it!

For case studies, see <u>https://goo.gl/Slh07u</u> and <u>https://goo.gl/9uSvne</u>

Attacking WLANs

Q: How to identify the vendor?A: MAC Address!

OUI Lookup Tool

The Wireshark OUI lookup tool provides an easy way to look up OUIs Wireshark manufacturer database, which is a list of OUIs and MAC ad

Examples:

0000.0c

08:00:20

01-00-0C-CC-CC-CC

missouri

OUI search

8C-04-FF-7E-F4-18

...

Find

Results

8C:04:FF Technico Technicolor CH USA Inc.

Evil Twin Attack

How does it work?

- Perform DoS attack to deauthenticate client from WiFi
- Create fake AP with same ESSID and encryption
 - Easy if AP is open: Freewave, Airport-Frankfurt, TUGRAZguest, freeGRAZwifi, …
 - Otherwise, you need to know the password
- Client connects:
 - MITM attack
 - Phishing (show fake captive portal, OAuth login, ...)

Why does it work?

- Clients choose APs with best signal
- Auto-Connect feature \rightarrow Usability vs security
 - Enabled by default in Windows, Ubuntu, macOS, ...

Evil Twin Attack

Deauthentication Attack

- Leverage DEAUTH frame (transmitted unencrypted)
 - Sent when all communication is terminated
 - Kick out client from WiFi by forging DEAUTH frames
 - I from AP to client
 - I from client to AP
 - I from AP to broadcast address

Probe Response Flooding

- Keep answering to probe request frames
 - "Sorry, your PSK is incorrect"
- Victim will stay disconected
 - Client will mostly connect manually
 - Also useful for downgrade attacks

root@kali	.∼# airep	olay	/-ngdea	auth 0 - d	c 98:5F:	D3:4A:B1:31 -a C4:E9:84:3F:26:04
21:36:31	Waiting	fo	beacon t	frame (BS	SSID: C4	H:E9:84:3F:26:04) on channel 1
21:36:31	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [1 51 ACKs]
21:36:32	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 52 ACKs]
21:36:32	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 47 ACKs]
21:36:33	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [20 49 ACKs]
21:36:33	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [24 48 ACKs]
21:36:34	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [1 52 ACKs]
21:36:34	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 53 ACKs]
21:36:35	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [1 53 ACKs]
21:36:36	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [6 48 ACKs]
21:36:36	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [4 45 ACKs]
21:36:37	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [28 46 ACKs]
21:36:37	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [58 46 ACKs]
21:36:38	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [61 53 ACKs]
21:36:38	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 54 ACKs]
21:36:39	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 48 ACKs]
21:36:39	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [0 54 ACKs]
21:36:40	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [4 50 ACKs]
21:36:40	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [1 54 ACKs]
21:36:41	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [42 43 ACKs]
21:36:41	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [70 48 ACKs]
21:36:42	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [81 48 ACKs]
21:36:43	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [185 42 ACKs]
21:36:43	Sending	64	directed	DeAuth.	STMAC:	[98:5F:D3:4A:B1:31] [66 30 ACKs]

Vendor Imitation NETGEAR® Firmware Upgrade

A new version of the Netgear firmware (1.0.12) has been detected and awaiting installation. Please review the following terms and conditions and proceed.

Terms And Conditions:

1. LICENSE.

Subject to the terms and conditions of this Software License Agreement, Netgear hereby grants you a restricted, limited, non-exclusive, non-transferable, license to use the Netgear Firmware/Software/Drivers only in conjunction with Netgear products. The Netgear Company does not grant you any license rights in any patent, copyright or other intellectual property rights owned by or licensed.

I Agree With Above Terms And Conditions

WPA2 Pre-Shared Key:

Start Upgrade

© Netgear 2016, All Rights Reserved.

Protection Tips

- Use a manually set, long and <u>really</u> complex passphrase
 - Raises complexity for successful brute force attack
- Change SSID to your own choice
 - Hinders attacks with pre-calculated rainbow tables
- Use WPA 2 CCMP only
 - Drops some deficiencies of TKIP and RC4 in WPA
- Disable WPS in your AP settings

Outlook

10.01.2020

HTTP Sessions
Same Origin Policy, CSP, Client-side Attacks

<u>17.01.2020</u>

- TLS Handshake
- TLS Security Features

HAPPY HOLIDAYS & A SECURE 2020!