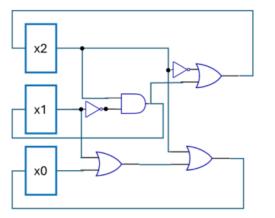
Homework

Deadline: 18 March 2025, 9:00 am Submit your solution through TeachCenter

Consider the synchronous circuit C from last week's exercise. (The initial value of the state variable x_0 is true. The initial values of x_1 and x_2 are unknown.)



Task 1. [100 points] We want to use BMC to check whether x_0 is always true.

- 3.1 Will BMC find a counterexample? If so, what is the smallest k such that BMC finds a counterexample. [**20 points**]
- 3.2 Write the BMC formula for k = 2. (You can use S_0 and R in your formula. [40 points]
- 3.3 Is the formula satisfiable? Explain. [40 points]

3.1 No, x₀ is always true **3.2** Let

 $V = \{x_0, x_1, x_2\} \text{ and let}$ $\phi(V) = x_0. \text{ The BMC formula is}$ $\psi(V, V', V'') = S_0(V) \land R(V, V')$ $\land R(V, V'') \land (\neg \phi(V) \lor \neg \phi(V')$ $\lor \neg \phi(V'')).$

Note that I write $\phi(V')$ to mean $\phi(V)$, where every occurrence of x_i has been replaced by x'_i .

3.3 The formula is not satisfiable because there is no path of length 2 from an initial state to a state in which x_0 is false.

Verifying Reachability Properties with *k*-induction

Mary Sheeran, Koen Claessen, Per Bjesse, 2000

Chapter 10

Model Checking

Make BMC Complete

Increase k until the following in unsatisfiable: $New(V_0, ..., V_k) = S_0(V_0) \wedge \bigwedge_{i=0}^{k-1} (R(V_i, V_{i+1}) \wedge \bigwedge_{j < i} V_i \neq V_j)$

Drawback: k can be very large.

Make BMC Complete

Increase k until the following in unsatisfiable:

$$New(V_0, ..., V_k) = S_0(V_0) \wedge \bigwedge_{i=0}^{k-1} (R(V_i, V_{i+1}) \wedge \bigwedge_{j < i} V_i \neq V_j)$$

Drawback: k can be very large.

```
How do you prove i < n + 1 for the following program?
BigInt i;
i = 0;
while(true)
    if(i == n) i = 0;
    else i++;</pre>
```

Motivation

- Completeness thresholds usually very large
- Can we **prove** a property with fewer unrollings?
- Idea: Use induction.

Base: Prove Q(0) **Induction**: Prove $Q(t - 1) \Rightarrow Q(t)$ **Conclusion**: $\forall t. Q(t)$

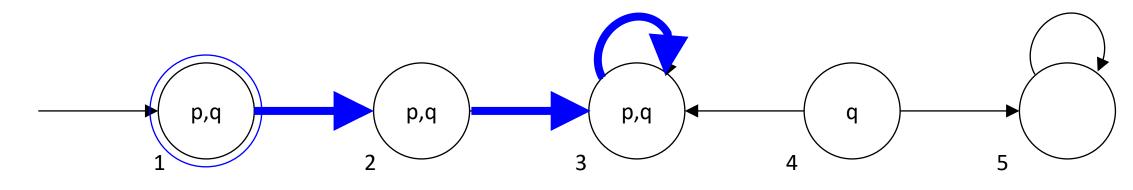
Caveat: Property may be true, but not inductive (see below) We will go through a series of algorithms until we find a nice one

Induction

Let's prove AG p on the following structure.

Take arbitrary path π

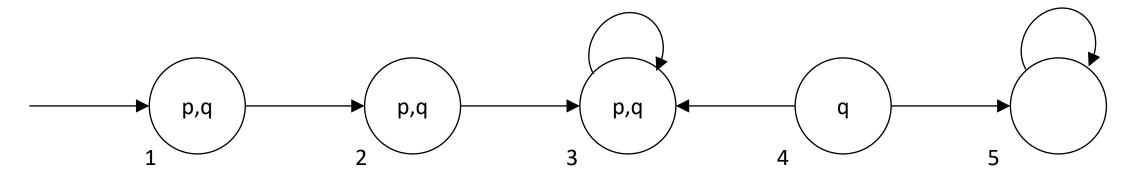
- Base case: $\pi(0) \vDash p$ true: $q_1 \vDash p$
- Induction: if $\pi(n-1) \models p$ then $\pi(n) \models p$ true: any successor of a *p*-state is a *p*-state
- **Conclusion**: for any path π we have $\forall n. \pi(n) \vDash p$



Satisfiability

Let's prove AG p on the following structure. How can these properties be violated? Take arbitrary path π

- Base case: $\pi(0) \vDash p$ $S_o(s) \land \neg p(s)$ Unsatisfiable
- Induction: if $\pi(n-1) \vDash p$ then $\pi(n) \vDash p(s) \land R(s,s') \land \neg p(s')$ Unsatisfiable
- **Conclusion**: for any path π we have $\forall n. \pi(n) \vDash p$

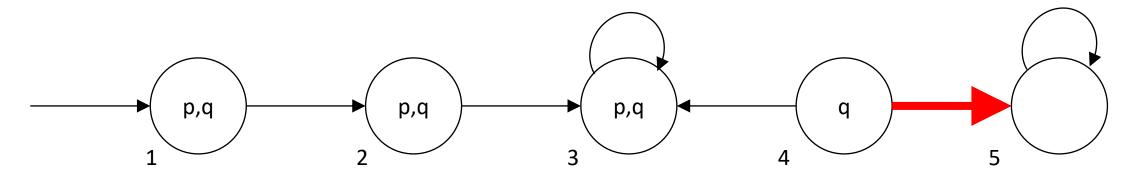


A Problem

Let's prove **AG** *q* on the following structure.

Take arbitrary path π

- Base case: $\pi(0) \vDash q$
- Induction: if $\pi(n-1) \vDash q$ then $\pi(n) \vDash q$ not true!
- Conclusion: for any path π we have $\forall n. \pi(n) \vDash q$ not all true properties are inductive



k-induction

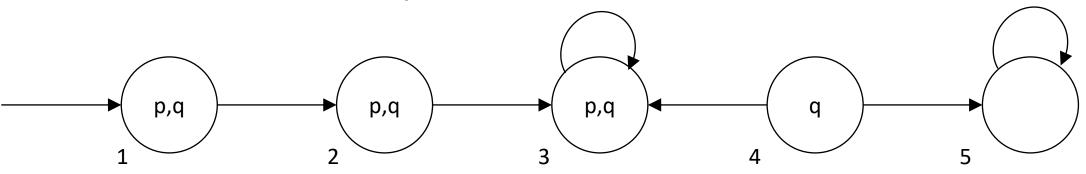
Base: Induction: Conclusion: $\forall n. Q(n)$

In our setting:

Base. all paths from S_0 with k or fewer edges are labeled q

Induction. all paths of length k labeled with all qs are followed by a q

Conclusion. All paths from S_0 are labeled q

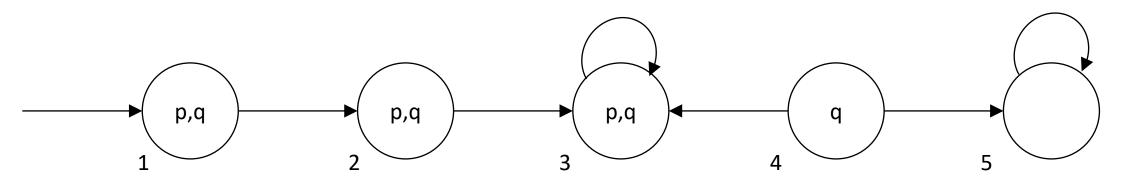


k-induction

Base: Prove
$$Q(1) \land \dots \land Q(k-1)$$

Induction: Prove $Q(n - k + 1) \land \dots \land Q(n-1) \Rightarrow Q(n)$
Conclusion: $\forall n. Q(n)$

In our setting: **Base.** all paths of length k from S_0 are labeled q **Induction.** all paths of length k labeled with all qs are followed by a q **Conclusion.** All paths from S_0 are labeled q

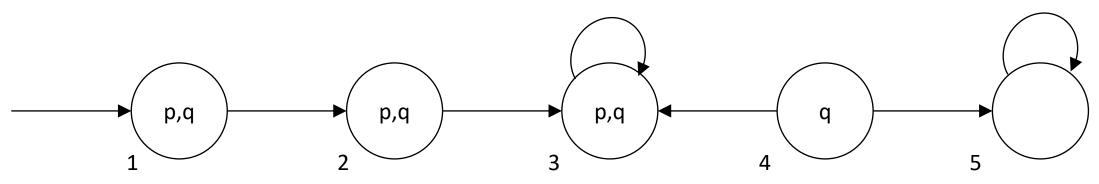


Prove AG q using 1-induction

Base: Consider all paths of length 1 from q_1 : $q_1 \vDash q$ and $q_2 \vDash q$. **Induction**: Do all successors of paths of length 1 labeled (q, q) fulfill q?

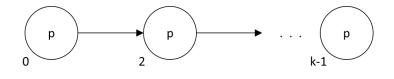
- (q_1, q_2)
- (q_2, q_3)
- (q_3, q_3)
- (q_4, q_3)

Conclusion: for any path π we have $\forall n. \pi(n) \vDash p$



k-induction as Satisfiability

Base. all paths of length k from S_0 are labeled p



Induction. every path of length k labeled with all ps is followed by p

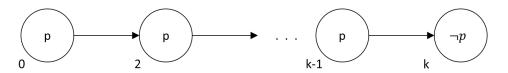
Formula satisfiable iff there is a counterexample

k-induction as Satisfiability

Base. all paths of length k from S_0 are labeled p This is BMC! $S_0(s_1) \wedge \bigwedge_{i=1}^k R(s_i, s_{i+1}) \wedge \bigvee_{i=1}^{k+1} \neg p(s_i)$ **Induction.** every path of length k labeled with all ps is followed by p

$$\bigwedge_{i=1}^{k+1} R(s_i, s_{i+1}) \wedge \bigwedge_{i=1}^{k+1} p(s_i) \wedge \neg p(s_{k+2})$$

Formula satisfiable iff there is a counterexample



k-induction

while(k=0; ; k++){ build BMC formula ϕ_k if ϕ SAT return "bug!"

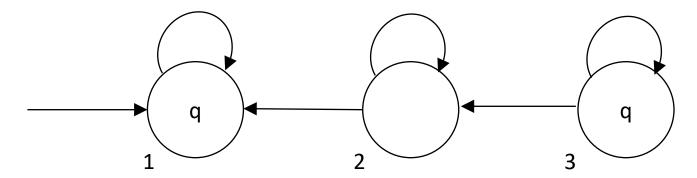
> build induction formula ψ_k if ϕ UNSAT return "correct!"

}

This Version of k-induction is not Complete

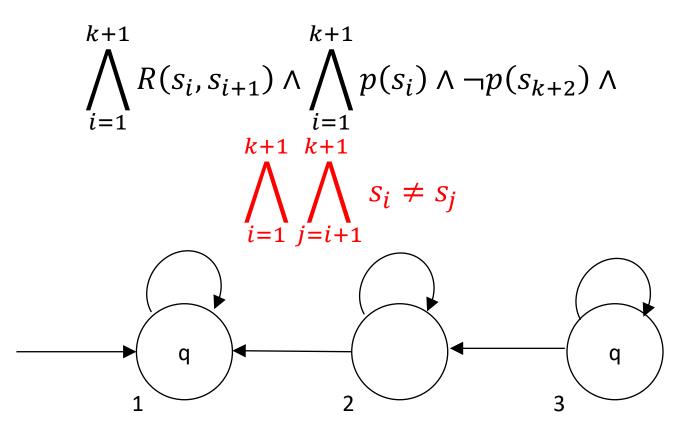
System satisfies AG q, but induction step fails for any k

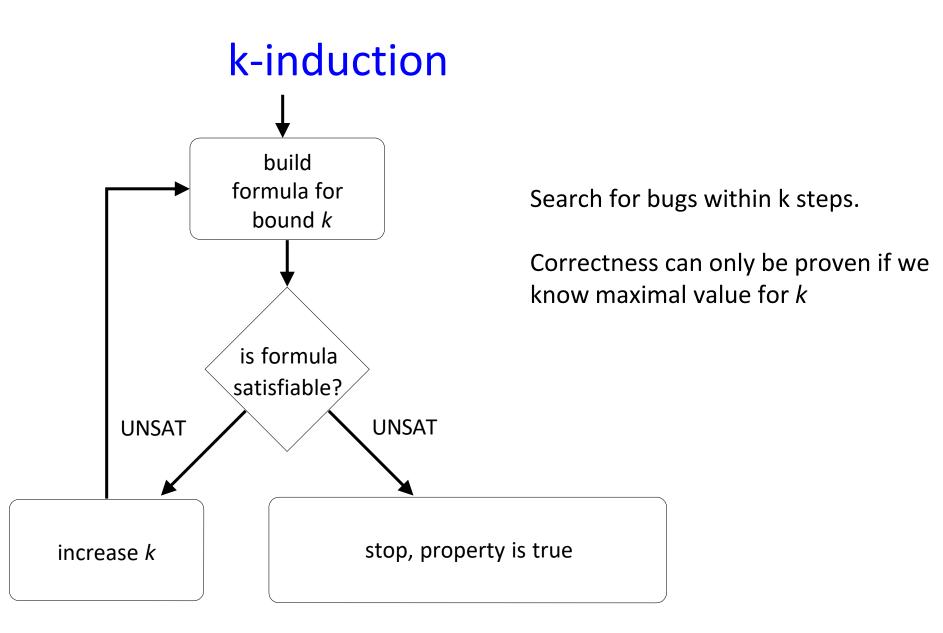
Base. all paths of length k from S₀ are labeled q **Induction.** all paths of length k labeled with all qs are followed by a q. FALSE



k-induction, the Final Version

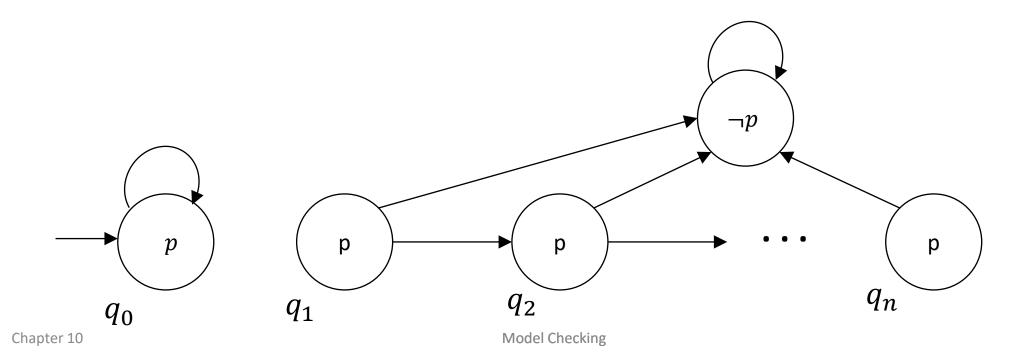
Induction. all noncyclic paths of length k labeled with all ps are followed by a p





Problems with k-induction

Problem: Sometimes k is very large In the following machine, you need k = n + 1 to prove **AG** p. **Idea:** Automatically find better inductive invariants.



Note to myself

• There is a BASE formula and an INDUCTION formula. You need both to do k-induction. That was unclear in the home work.h