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Systems and Correctness

* We consider a broad range of systems
* Hardware (digital circuitry)
* Software

* We want to check that the system is correct
* Meets high-level requirements
e Captured in the form of system properties



Why Model?

Specification System

States what you want to prove Abstract away unnecessary details
* How does the OS scheduler work?
* How is the CPU pipeline implemented?
 What are the voltage levels in the CPU?

But careful!

e Carelessly implemented CPUs introduce side
channels

» Alpha particles may cause bits to flip

* Your formally verified system will fail when hit
with a hammer



What is a Model?

* A model is a description of the behavior of the system

* Behavior is
* a set of observations
* as the system evolves its state over time

* We check algorithmically that the model satisfies the properties

e To this end the model...

* must have sufficient detail to prove the property
e but should not be too complex
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Kripke Structures
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Inputs: Light Switch Example

* Input: “button pressed” or “button released”,
controlled by a hand, which is part of the environment

e Output: “light on” or “light off”
e Button is “retractive”, it bounces back

 When the light is off, pushing the button
turns the light on

 When the light is on, pushing the button
turns the light off
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light switch
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Inputs : Light Switch Example
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light switch

“released” =r
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Kripke Structure M = (S, S,, R, AP, L)

S — (finite) set of states
* S, S—setof initial states

e R SxS — left-total transition relation

* For every s € S there exists s"e S such that (s, s’) € R
» Left-total implies that every path is infinite

AP — finite set of atomic propositions

e L:S— 2A°—labeling function that associates every state
with the atomic propositions true in that state. We include inputs (if
we are interested in them)
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First-Order Logic and
Symbolic Representations
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3-bit Counter
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3-bit Counter

Ro(V, V') = (v © =)
RV, V") = (v; © vy D 1)
R,(V, V') = (vé o v, D (vy A vl))
RV, V)=RyAR{ AR,
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IV = {vl, ...,Un}
D,
s:V - UvEV Dv

Example
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Symbolic Representation

system variables
domain of v

valuation, state
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Symbolic Representation

V={vq..,v,} system variables
D, domain of v

s:V = U,ey D_v valuation, state

Example

V ={vy,vy,v3}, Dy, =N

State space: NV (or simply N3)

examples of state: {(vq, 2), (v,, 3), (v3,8)} (short: (2,3,8))
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Characteristic Functions

In general, a formula is a set of states.
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Characteristic Functions

In general, a formula is a set of states.

vy =2AvV, =3AvV3 =8 (2,3,8)
Vg =2AV; =3 {(2,3,n3) Ing EN}
vy, =3AV3 =V + 1, {(n,3,n;+3)|n, €N}

true N3



Formula Set

A, B A B
AUB
ANB

Sets and Formulas

S=D,, X XD,

S\4
Example

U1:2/\v2:3
UV, =3AVU3 =V + 71,y
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{(2,3,n3)Inz €N}
{(n,3,n;+3)|In, EN}
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Sets and Formulas

Formula Set

A, B A B

AV B AUB

ANB ANB

true S=Dy, X+ XDy

—A S\A

Example

v, =2AV, =3 {(2,3,n3) | ng €N}

Vo =3AV3 =V + Uy {(n,3,n+3)|Iny EN}

U1:2/\U2:3/\vz:3/\1]3:171+vz (2,3,5)
vy =2AV,=3VVv,=3Av3=v,+v, {(23,n3)|Inse€N}U{(n,3,n,+3)In €N}
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Inputs

Inputs can be anything - model as
nondeterministic

Ro(V, V") =
:Rl(V, V’) — (Ui < Py @ vl) :RZ (V, V,) —
(v3 © v, @ (Vo Avy))
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Inputs

Inputs can be anything - model as
nondeterministic

Ro(V,V") = true no constraints on v,

RV, V") = (v; © vy D v1)
Rz(v, V’) — (vé < Dy @ (UO N Ul))

RWV,V)Y=R,(V,V)I)VR,(V,V")

What is the Kripke structure?
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Inputs

What is the Kripke structure?
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Properties

Can | say “if the state is 000, the next state is 001”7



Properties

Can | say “if the state is 000, the next state is 001”7

UV AV A=vg A R(V, V') » v’ AV AV



Symbolic Representations

Hope: Sets (transition relation, all reachable states) will have small
formulas

We know
+ size of transition relation = size of circuit, software

- To represent a subset of {1, ..., 2%} we need 2*bits in general

We will try to find algorithms that tend to produce small formulas



skipped
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Asynchronous Systems
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Software
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Modeling Software

rrograms Example

Consist of p::

* consecution (; ) |: cobegin PO || P1 coend;

P 1f PO::

*while |0: while true do

° s =e NCO: wait(turn = 0);
: CRO: turn:=1

) Sklp end while

* labels L:

Assume every line has a label. Pl

|1: while true do
NC1: wait(turn = 1);
CR1:turn:=0

end while
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Translation

Define same(Y) = Ayeyy =Y’

f label of statement
{ statement
Define C(I, s, 1" )- label of next statement

C(lLv:i=oegl) =
C(l,skip,l") =

C(l,(P;l':PN,1I") =



Translation

Define same(Y) = Ayeyy =Y’

F label of statement
statement
Define C(l, S, l’} label of next statement

CllLvi=e,l')=pc=1Apc"=1'"AV =eAsame(V \ {v}),
C(l,skip,l') =pc =1Apc" =1 Asame(V),
C(l,(P;U':PH,I")y=c(L,P1")yved, P, l,
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Translation

C(l,if bthenl;:P1elsel,: P2 end if,[") =
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Translation

C(l,while bdo l;: P1 end while, ") =
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Translation

C(l,if bthenl;:P1elsel,: P2 endif,l') =
[pc =1lADbApc’ =1 ANsame(V)]V
[pc = IA=bApc' =1, ANsame(V)]V
C(l, PLI)V
C(ly, P2,1")

C(l,whilebdol;: P1;1,: end while,[') =
pc =1IADbApc’' =1; Asame(V)]V
pc=IAN=bApc =1"Asame(V)]|V
pc =1, Apc' =1L Asame(V)]|V
C(l,P1,1,)




Concurrency

P:: cobegin
11: P1 117 ||
12: P2 127
coend
Three program counters:
1.  pc for the program that invokes cobegin
2.  pcq forThread 1
3. pc, for Thread 2
pc = susp means that the program is not running.

C(LP,I") =(pc=1Apc' =susp Apc; =1, Apcy =1, Asame(V)) V

(pc =suspApc; =l Apc, =15 Apc’ =1 Apc'y = susp Apc', = susp A Same(V)) %
r €U, P L) Asame(V\V;) A same(PC \ {pc;})
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Example

PO::

|0: while true do
NCO: wait(turn = 0);
CRO: turn:=1

end while

P1::

|1: while true do
NC1: wait(turn = 1);
CR1:turn:=0

end while
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Termination

* Programs can end

* Kripke structures are not allowed to have dead ends, reminder:

e R © SxS — left-total transition relation
* Foreverys € S there exists s’e S such that (s, s’) € R
» Left-total implies that every path is infinite

* We assume programs end in self loop that does nothing
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Fairness
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* skipped
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Fairness
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Model Checking (SS 2025) Homework 1

Deadline: 11 March 2025, 9:00 am
Submit your solution through TeachCenter

Chapter 3

Consider the following synchronous circuit C'. The initial value of the state variable zy is true. The
initial values of z; and z, are unknown.

ine

rx1 e

1

Task 1. [30 points] State the formula Sy that represents the set of initial states and the formula R that
represents the transition relation of C.

)

Task 2. [30 points] Draw the Kripke structure M = (S, Sy, R, AP, L) that represents C. (Add an
incoming arrow for each initial state.)

Task 3. [40 points] We want to use BMC to check whether z; is always true.

3.1 Will BMC find a counterexample? If so, what is the smallest k such that BMC finds a counterex-
ample. [ 10 points |

3.2 Write the BMC formula for £ = 2. (You can use Sy and R in your formula. [ 15 points |

3.3 Is the formula satisfiable? Explain. [ 15 points |
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