

Model Checking

Lecture:

Roderick Bloem, Bettina Könighofer, Stefan Pranger Fabian Russold Practicals:

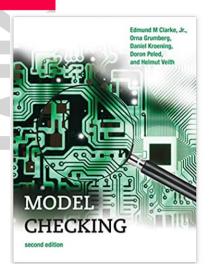
Johannes Haring

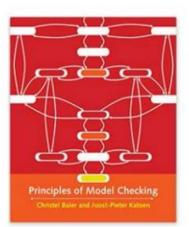
Today

- Administrative
- Motivation
- Modeling

LIAIK

Material & Communications


Lecture: Tuesday 12-13:30, HS i11 (ICK1002H) Practicals: Right after, only if there is something to discuss Question Hours: Tuesdays after class.


Webpage: https://www.iaik.tugraz.at/course/model-checking-705080sommersemester-2025/ Discord: https://discord.gg/FDcxjR728N, Channel MC (robot) Email: bettina.koenighofer@tugraz.at, roderick.bloem@tugraz.at, stefan.pranger@tugraz.at johannes.haring@tugraz.at, fabian.russold@student.tugraz.at Teach Center: https://tc.tugraz.at/main/course/view.php?id=5645

LIAIK

Model Checking, second edition (Cyber Physical Systems Series) Gebundene Ausgabe – 4. Dezember 2018 Englisch Ausgabe von Edmund M. Clarke Jr. (Autor), & 4 mehr ***** ~ 2 Sternebewertungen > Alle Formate und Ausgaben anzeigen Kindle **Gebundenes Buch** 42,97€ 60,24 € Lesen Sie mit unserer kostenfreien App 4 Gebraucht ab 46,97 € 8 Neu ab 57,00 € GRATIS Lieferung: Montag, 8. Mär. Siehe Details. An avnanded and undated edition of a comprehensive presentation of the Principles of Model Checking (Mit Ē. Press) Gebundene Ausgabe - Illustriert, 25. April 2008 Englisch Ausgabe von Christel Baier ~ (Autor), Joost-Pieter Katoen (Autor) ****** 16 Sternebewertungen Alle Formate und Editionen anzeigen **Gebundenes Buch** 88,97 € 3 Gebraucht ab 68,28 € 14 Neu ab 84.80 €

Möchten Sie Ihre Elektro- und Elektronikgeräte kostenlos recyceln? Mehr erfahren

Another good book:

Clarke, Henzinger, Veith, Bloem, Handbook of Model Checking, Springer 2018

How to get a grade?

Lecture: Two options

- 1. Do an exam, or
- 2. Participate in class and do weekly homework. Course grade = homework grade

(Not happy with homework grade? Take exam!)

• Miss at most 2 classes

Practical:

- Individual work
- Three assignments with point distribution 30/40/30
- Final interviews

Homework

IIAIK

Weekly homework

- uploaded just before the lecture
- deadline = 9 am day bof the next lecture

Individually or groups of two.

• You can do each homework with a different group.

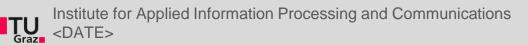
Submission

- In TeachCenter
- If handwritten, use **clear writing** and a good scan

Marks

- available within 1 week of submission deadline in TeachCenter
- Final mark = average of all homework.
- You can skip homework **at most 2** weeks. (Skipped homework = 0 points)
- Questions
 - email: Fabian.Russold@student.tugraz.at
 - I also actively answer questions in the discord channel

Lecture Schedule


IAIK					
	Date	Торіс	Lecturer		
	04 Mar	Intro	Roderick		
	11 Mar	SAT-Based Model Checking (BMC, k-induction) – Chapter 10	Roderick		
	18 Mar	SAT-Based Model Checking (interpolation) – Chapter 10	Roderick		
	25 Mar	SAT-Based Model Checking (PDR) – Chapter 10	Roderick		
	01 Apr	Temporal Logic – Chapter 4	Bettina		
	08 Apr	CTL Model Checking – Chapter 5	Bettina		
	29 Apr	UPPAAL - MC for Timed Properties	Florian Lorber		
	06 May	LTL Model Checking -Chapter 7	Bettina		
	13 May	LTL Model Checking - Chapter 7 + Reactive Synthesis	Bettina		
	20 May	Probabilistic Model Checking - Chapter 10 - PRISM & Reachability in Markov Chains	Stefan		
	27 May	Probabilistic Model Checking – Chapter 10 – PCTL and MDPs	Stefan		
	03 June	Statistical Model Checking	Bettina		
	17 June	Security Verification	Roderick		
	24 June	Reserved slot			
			SCOS		

Systematic Construction of Correct Systems

Practicals

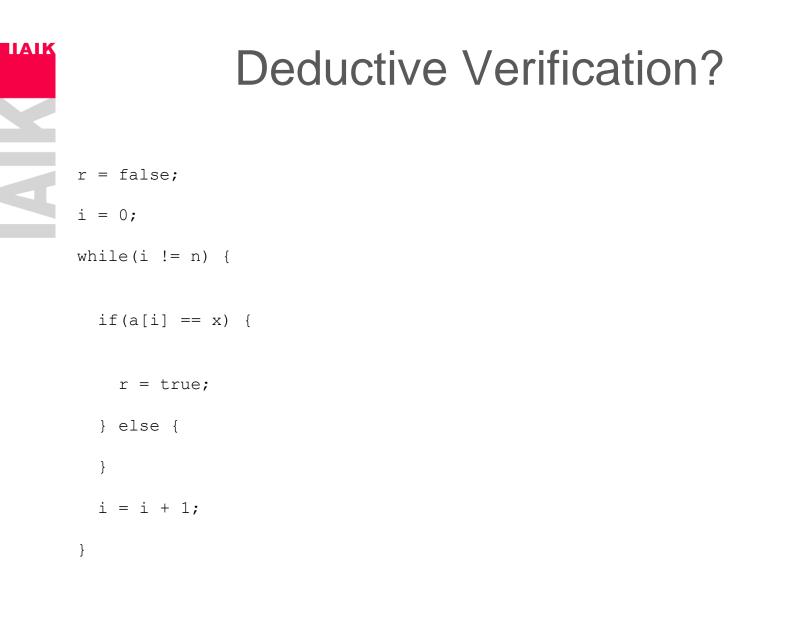
- Separate course (Übung), so please register in Teach Center
- Group Size: 1
- 3 Submissions
 - Warmup: Getting to know Z3
 - Hardware Model Checker
 - BMC
 - K-Induction
- Questions can be asked on Discord or Tuesdays after the lecture

IIAIK

Practicals Schedule

Date	Туре	Торіс	Lecturer
4 Mar	Lecture	Intro (merged with lecture)	Roderick
11 Mar	Handout	Warmup Exercise	Johannes
18 Mar	Tutorial	Introduction to Z3	Johannes
25 Mar	Handout	BMC Exercise	Johannes
01 Apr	Question Hour	Warmup Exercise	Johannes
06 Apr	Deadline	Warmup Deadline	
08 Apr	Tutorial	Hardware and Verilog	Johannes
06 May	Handout	K-Induction Exercise	Johannes
13 May	Question Hour	Question Hour BMC	Johannes
25 May	Deadline	BMC Deadline	
03 Jun	Question Hour	Question Hour K-Induction	Johannes
06 Jun	Deadline	K-Induction Deadline	

737 Max



"The people who wrote the code for the original MCAS system were obviously terribly far out of their league and did not know it". (Gregory Reed Travis) 346 deaths

Deductive Verification?

```
\{false == false\} \leftrightarrow \{true\}

    (Manual) Proofs

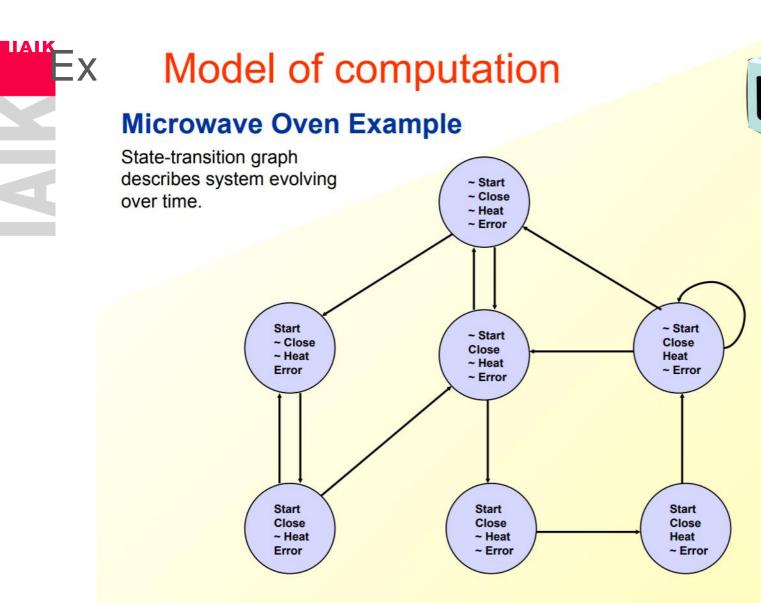
r = false;
\{r == (\bigvee_{i=0}^{-1} a[j] == x)\} \leftrightarrow \{r == false\}

    No diagnostics

i = 0:
                                                                           • Full specifications
\{r == (V_{j=0}^{i-1} a[j] == x)\}

    Concurrency is hard

while(i != n) {
   { (r == (V_{j=0}^{i-1} a[j] == x) ) \land i != n }
   \{r == (\bigvee_{i=0}^{l-1} a[j] == x)\}
                                                                            (But: things have gotten better!)
   if(a[i] == x)  {
      \{ (r == (\bigvee_{i=0}^{i-1} a[j] == x)) \land a[i] == x \}
      \{(\texttt{true} == (\bigvee_{j=0}^{i} a[j] == x)) \land a[i] == x\} \leftrightarrow \{\texttt{true} \land a[i] == x\} \leftrightarrow \{a[i] == x\}
      r = true;
      \{r == (\bigvee_{i=0}^{i} a[j] == x)\}
   } else {
    \{ (r == (V_{j=0}^{i} a[j] == x)) \land a[i] != x \} \leftrightarrow \{ (r == (V_{j=0}^{i-1} a[j] == x)) \land a[i] != x \}
   {r == (V_{j=0}^{i} a[j] == x)}
   i = i + 1;
   \{r == (\bigvee_{i=0}^{i-1} a[j] == x)\}
\{r == (\bigvee_{j=0}^{n-1} a[j] == x) \land i == n\} \leftrightarrow \{r == (\bigvee_{j=0}^{i-1} a[j] == x) \land i == n\}
\{r = (\bigvee_{j=0}^{n-1} a[j] = x)\}
```



Automatic Verification!

- Program = state machine = graph
- Bug hunting = efficient graph search
- "Interesting" properties = "complicated" graph searches
 - Need language to express interesting things!
- But how to search a graph efficiently?

What properties are interesting?

Efficiency

LIAIK

1981: EMC Model checker ~10^4 states
1992 BDDs:

Symbolic Model Checking: 10²⁰ States and Beyond*

J. R. BURCH, E. M. CLARKE, AND K. L. MCMILLAN

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND

D. L. DILL AND L. J. HWANG

Stanford University, Stanford, California 94305

Symbolic Model Checking without BDDs*

Armin Biere1, Alessandro Cimatti2, Edmund Clarke1, and Yunshan Zhu1

• 1999 SAT:

Efficiency

1992 Abstraction

Construction of Abstract State Graphs with PVS

Susanne Graf and Hassen Saidi VERIMAG¹ {graf,saidi}@imag.fr

~1995: Partial Order Reduction ~2000: Software

The SLAM Toolkit

Thomas Ball and Sriram K. Rajamani

Microsoft Research http://www.research.microsoft.com/slam/

More than Microwave Ovens?

- Amazon Web Services
 - S3, DynamoDB, EBS, lock manager
 - https://assets.amazon.science/67/f9/92733d574c11ba1a11bd08bfb8ae/howamazon-web-services-uses-formal-methods.pdf
- Facebook
 - Static Analysis <u>https://research.facebook.com/publications/moving-fast-with-software-verification/</u>
- Intel

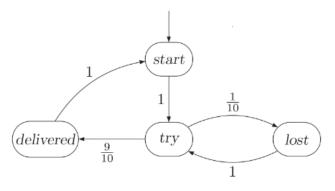
ΙΙΑΙΚ

17

- Security <u>https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/formally-verifying-processor-security</u>
- Microsoft
 - Device drivers
 - Smart contracts
 - Z3
- Cadence & Synopsys
 - Jasper Formal Verification, VC Formal

сп

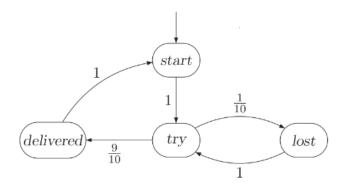
EDMUND M. CLARKE, E. ALLEN EMERSON, JOSEPH SIFAKIS Model Checking: An Automated Quality Assurance Method



Why do we need Probabilities?

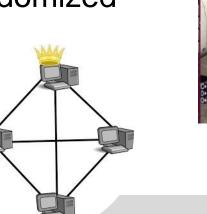
Analysis of Reliability

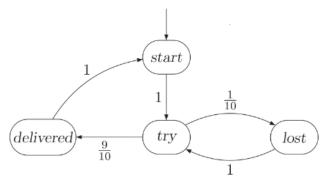
- Probability of Failure,
- Quantify Message Loss,
- Quantify Arrival Times, …



Why do we need Probabilities?

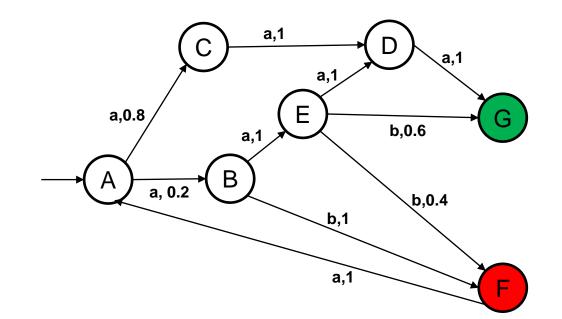
- Analysis of Reliability
 - Probability of Failure,
- Quantify Message Loss,
- Quantify Arrival Times, …
- Models of Safety-Critical Systems,
 - Modeling Unknowns,
 - Modeling Faults, …





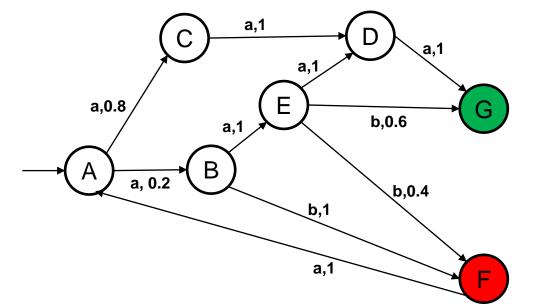
Why do we need Probabilities?

- Analysis of Reliability
 - Probability of Failure,
 - Quantify Message Loss,
 - Quantify Arrival Times, …
- Models of Safety-Critical Systems,
 - Modeling Unknowns,
 - Modeling Faults, …
- Analysis of Randomized Algorithms,



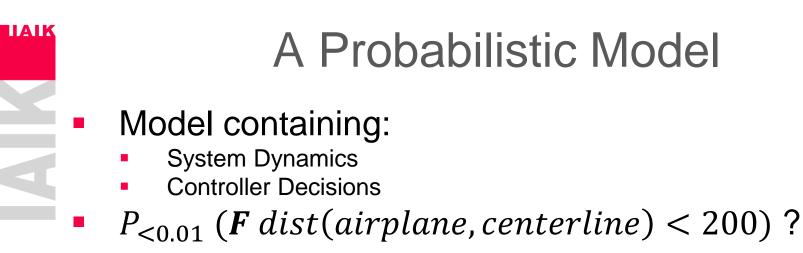
Probabilistic Model Checking

Extend Models with Probabilistic Transitions
"Markov Models"



Probabilistic Model Checking

Formalism to quantify Probabilities


 $P_{\geq 0.95} (F \rightarrow true U^{<9}G)$

Is the probability of delivering a message withing 9 steps after encountering a failure greater or equal 0.95?

