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Authenticated Encryption with Associated Data (AEAD)

AEAD is a category of operating modes of block ciphers that ensure 
1. authenticity 
2. integrity 
3. and confidentiality .

AEAD

Plaintext

Associated data

Key

Ciphertext

Authentication tag
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Two AEAD schemes for Assignment 1

Depending on your group, you will implement encryption of any one 
scheme

1. “Elephant” NIST Lightweight Cryptography Standardization.
Full specification: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-

round/updated-spec-doc/elephant-spec-final.pdf

        

1. “PHOTON-Beetle” NIST Lightweight Cryptography Standardization. 
Full specification: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-

doc-rnd2/photon-beetle-spec-round2.pdf

More information and source code: https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates


Commonly used symbols

Symbols Use

a ⊕ b Bitwise XOR between binary strings a and b 

a ‖ b Concatenation of binary strings a and b.

a1, a2, … a Splits a into r-bit sub strings a1, a2, etc.

a<<i Left shift a by i positions with 0 filling in the right 

a>>i Right shift a by i positions with 0 filling in the left

a<<<i Left circular shift of a by i positions

a>>>i Right circular shift of a by i positions

r



Splitting of message into blocks

1. Message M is a binary string of any length.
2. It will be split into n-bit blocks.
3. If length(M) is not a multiple of n, then pad 0s at the end.

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should 
check the specification and reference implementation.



1. Message M is a binary string of any length.
2. It will be split into n-bit blocks.
3. If length(M) is not a multiple of n, then pad 0s at the end*.

Toy example: Let M = 1011010010001111010101011
                        and n=4 bit.   

Splitting of message into blocks

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should 
check the specification and reference implementation.



1. Message M is a binary string of any length.
2. It will be split into n-bit blocks.
3. If length(M) is not a multiple of n, then pad 0s at the end.

Toy example: Let M = 1011010010001111010101011
                        and n=4 bit.  

Length of M is 25. Hence pad three 0s to make the length 28. 

M after right padding = 1011-0100-1000-1111-0101-0101-1000
Number of blocks = 28/4 = 7.

M0       M1       M2       M3      M4         M5       M6

Splitting of message into blocks

Footnote *: Depending on scheme, it 0s are added either to left or right. For a given scheme, you should 
check the specification and reference implementation.



Encryption of Elephant
(Dumbo variant will be implemented in Assignment 1)

Notice
I will present the concept of the cipher. For exact parameters and orientation of bits, 
please follow the specification and reference implementation. 



Ciphertext generation in Elephant

1. Encryption uses a random m-bit nonce N where m ≤ n, where n is block length.
2. From the encryption key K, masks are generated using 
3. Message blocks are encrypted one-by-one as shown below. 

Nonce is 0-padded to
make it n-bit long.

P is a secure 
permutation

All data lines are n-bits wide. 

XOR

XOR

This example encrypts lM blocks Mi and outputs lM ciphertext blocks Ci

XOR

XOR



Permutation P in Elephant
• Elephant has three security levels. 
• We will use the 160-bit permutation in Assignment 1.

Key size

It maps 160-bit input into 160-bit output.



Permutation Spongent-π[160]

• This permutation is applied on the 160-bit state X.

• The state X is a byte-array of 20 words.
BYTE state[20]

• The permutation performs three operations in a loop on state bytes of X.        

P( ): Input X
for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X)
return X



ICounter160(i)

• This function is a 7-bit Linear Feedback Shift Register (LFSR) 
initialized with “1110101”     (Check spec/ref for ordering of bits)

• When the input is ‘i’, there are i number of shifts

• After one left shift, new bits of the LFSR is
                {b6, b5, …, b1, b0}  {b5, b4, …., b1, b6^b5} 
 

b6 b5 b4 b3 b2 b1 b0

7th 6th 1st 

XOR gate

Footnote: Slide shows idea only. Check reference implementation for exact information.



Permutation Spongent-π[160]: Operation with ICounter

for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X)

ICounter160(i)

Byte IV = {0, b6, b5, …, b1, b0}  

Step1: 

rev(IV)

Byte INV_IV = {b0, b1, b2, …, b6, 0}  

Check ref for bit ordering



Permutation Spongent-π[160]: Operation with ICounter

for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X)

Step2: 

Update the least and most significant state bytes of X as: 
state[0] = state[0] ^ IV;
State[19] = state[19] ^ INV_IV;



Permutation Spongent-π[160]: Operation with sBoxLayer

for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X)

1. The 160-bit state X is segmented into 4 bit chunks. There are 40 chunks.

2. Each 4-bit chunk is replaced by the mapping sBox()

chunk

sBox(chunk)



Permutation Spongent-π[160]: Operation with pLayer

for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X) This permutes the bits of X



Permutation Spongent-π[160]: Operation with pLayer

for i = 1, …, 80 do
 X  XOR most and least significant bytes of X with ICounter160(i)
 X  sBoxLayer160(X)
 X  pLayer160(X)

Example: Bit X0 moves to position 0.
                 Bit X1 moves to position 40.
  Bit X5 moves to position 200 mod 159 = 41. 

This permutes the bits of X



Ciphertext generation in Elephant

Next: We will see how                                        works.   

We have seen how 
P = Spongent-π[160] works



Mask generation in Elephant

1. Takes an input k-bit key K and pads n-k number of 0s.
2. Then applies the P permutation on the state.
3. Applies the φ1 LFSR a times. 

4. φ2 = φ1 ⊕ ID where ID is the identity function.

There are only three values for b: {0, 1, 2}



LFSR φ1

Input bytes of X:          state[0], state[1], …., state[19]

Output bytes of X’:      state[1], …., state[19], z

φ1160-bit input X 160-bit output X’

where z = (state[0] <<< 3) ⊕ (state[3] << 7) ⊕ (state[13] >> 7) 

<<< is left-cyclic rotation 
<< is left shift
>> is right shift

Footnote: Slide shows idea only. 
Check ref. imp. for bit ordering.



Ciphertext and Tag Generation in Elephant



Main building blocks in Elephant

1. Permutation P

• ICounter

• S-box

• Bit permutation

2. LFSR φ1

3. State-machine for managing the operations



Assignment 1 on Elephant’s Encryption

Your implementation must meet the original specification

• You will implement the “Dumbo” version of Elephant.

It uses 160-bit permutation.   

• Read Section 2 of Elephant’s specification. 

• See the source reference C code of Elephant.

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

What I presented is a simplification of the original Elephant.

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates


Encryption of PHOTON-Beetle
(AEAD[128] will be implemented in Assignment 1)

Notice
I will present the concept of the cipher. For exact parameters and orientation of bits, 
please follow the specification and reference implementation. 



Ciphertext and Tag generation
Message M has m blocks Mi.
Ci is encryption of Mi.
Message block Mi and ciphertext block Ci are 128 bits. 
Nonce N and key K are 128 bits.

f( ) is the PHOTON256 permutation function.
ρ is a linear function.



State representation in PHOTON256(X) permutation

It works on the 256-bit state X.

X is represented as a 2D matrix of 4-bit elements.

xi,j are 4-bit state elements.

x0,0  x0,1 … x0,7

x1,0  x1,1 … x1,7

x7,0  x7,1 … x7,7 8 × 8



PHOTON256(X) permutation

• The permutation has 12 rounds.
• Each round has four layers.



PHOTON256(X) permutation: AddConstant(X, k)

Adds constants to the first column of state matrix X.

Round constant RC[k] depends on the iteration counter within PHOTON256.



PHOTON256(X) permutation: SubCells(X)

This substitutes each 4-bit state element according to the table:

Example:  X[2,3] = 7 after substitution becomes X[2,3] = D.  



PHOTON256(X) permutation: ShiftRows(X)

State element within a row are cyclically rotated. 

Example: Let the 3rd row of X be X[2] = [5, D, A, 3, 4, F, 2, 7]. 

After ShiftRows() it becomes        X’[2] = [A, 3, 4, F, 2, 7, 5, D]              

Check exact left vs. right ordering from ref. imp.



PHOTON256(X) permutation: MixColumnSerial(X)

M is the constant ‘serial’ matrix =

M8 is a constant matrix.

Obtain constants from ref. imp.



PHOTON-Beetle: Overall block diagram

We have studied f( )= PHOTON256 permutation function

Next: Structure of ρ is a linear function.



PHOTON-Beetle: ρ linear function. 

• Two inputs:    S ∈ {0, 1} r and U ∈ {0, 1} ≤ r.

• Two outputs: S ∈ {0, 1} r and V ∈ {0, 1} |U|.

• where r is 128.

• Trunc(X, i) is a truncation function. It returns most significant i bits of X. 

• Ozsr(U) appends 10* to U and outputs U ‖ 1 ‖ 0r-|U|-1

• In general, S, U and V are all r-bits in PHOTON-Beetle-AEAD.   



PHOTON-Beetle: ρ linear function. 

• Two inputs:    S ∈ {0, 1} r and U ∈ {0, 1} ≤ r.

• Two outputs: S ∈ {0, 1} r and V ∈ {0, 1} |U|.

• where r is 128.

• Trunc(X, i) is a truncation function. It returns most significant i bits of X. 

• Ozsr(U) appends 10* to U and outputs U ‖ 1 ‖ 0r-|U|-1

• In general, S, U and V are all r-bits in PHOTON-Beetle-AEAD.   

Becomes simpler for the following specific case



Simplified ρ when |S|, |U|, and |V| are of length 128

ρ(S, U)

1:      S1 ‖ S2  S                               /* S1 and S2 are 64-bit words */

2:      temp  S2 ‖ (S1 >>>1)           /* Rotate S1 right-cyclic and rearrange S1, S2 */

3:      S  S ⊕ U          /* Output state S is computed from S and data U */ 

4:      V  temp ⊕ U         /* Output data V is computed shuffled state and U */ 

return (S, V);

Footnote: Check reference implementation for exact information.



Main building blocks in PHOTON-Beetle

1. Permutation PHOTON256

• Constant addition (XOR)

• S-box (Table access)

• Shift rows

• Mix Columns (matrix multiplication M8 ⊙ X )

• Field multiplication and XOR   

2. Simplified  linear function ρ

3. State-machine for managing the operations



Next: matrix multiplication M8 ⊙ X 

Elements are multiplied in a binary field



Field multiplication

4-bit values are multiplied with reduction polynomial z4 + z + 1.
                                         z4 = z + 1 mod GF(24) 

Let two 4-bit values be a={a3, a2, a1, a0} and b={b3, b2, b1, b0}.

We can write them as polynomial 
a(z) = a3z3 + a2z2

 + a1z + a0

b(z) = b3z3 + b2z2
 + b1z + b0



Field multiplication (2)

a(z) = a3z3 + a2z2
 + a1z + a0

b(z) = b3z3 + b2z2
 + b1z + b0

a(z)*b(z) gives c(z) = c6z6 + c5z5 + … c3z3 + … + c0

where c0 = a0&b0

            c1 = (a0&b1) ^ (a1&b0)
            c2 = (a0&b2) ^ (a1&b1) ^ (a2&b0)
            … 
            c6 = (a3&bb) 

These ci are bits

& is AND gate
^ is XOR gate



Multiplication result has 7 bits c0 to c6

c(z) = c6z6 + c5z5 + … c3z3 + … + c0

Result is reduced to 4 bits using z4 = z + 1 



Field multiplication (3)

Next, reduce c6z6 + c5z5 + c4z4
 using z4 = z + 1, z5 = z2 + z, z6 = z3 + z2. 

 
That gives: 
c4z4= c4z + c4   
c5z5= c5z2 + c5z
c6z6= c6z3 + c6z2



Field multiplication (3)

Next, reduce c6z6 + c5z5 + c4z4
 using z4 = z + 1, z5 = z2 + z, z6 = z3 + z2. 

 
That gives: 
c4z4= c4z + c4   
c5z5= c5z2 + c5z
c6z6= c6z3 + c6z2

c6z6 + c5z5 + … c3z3 + … + c0 → (c6z3 + c6z2)+ (c5z2 + c5z) + (c4z + c4) + c3z3 + … + c0 



Field multiplication (4)

Next, reduce c6z6 + c5z5 + c4z4
 using z4 = z + 1, z5 = z2 + z, z6 = z3 + z2. 

 
That gives: 
c4z4= c4z + c4   
c5z5= c5z2 + c5z
c6z6= c6z3 + c6z2

c6z6 + c5z5 + … c3z3 + … + c0 → (c6z3 + c6z2)+ (c5z2 + c5z) + (c4z + c4) + c3z3 + … + c0 

Final result is 4 bits:    d(z) = (c6 + c3)z3 + … + (c5+c4+c1)z + (c4 + c0) 

where bit addition of two values is XOR operation.



Assignment 1 on PHOTON-Beetle Encryption

What I presented is a simplification of the original PHOTON-Beetle

Your implementation must meet the original specification

• You will implement PHOTON-Beetle-AEAD[128].   

• Read Chapter 3 on the specification. 

• See the source reference C code of PHOTON-Beetle-AEAD[128].

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

	Slide 1: Digital System Design Cipher Specification for Assignment 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

