

Temporal Logic

Bettina Könighofer, Stefan Pranger

bettina.koenighofer@tugraz.at

Plan for next 5 Weeks

- 1. Intro to Temporal Logics: CTL*, LTL, CTL
- 2. CTL Model Checking Part 1
- 3. MC for timed properties Florian
- 4. CTL Model Checking Part 2
- 5. LTL Model Checking
- Next: Model Checking of Probabilistic Systems (Stefan's Part)

Plan for Today

- Motivating Example
 - Informal Explanation of Syntax and Semantics
- CTL*
 - Syntax
 - Semantics
- Sublogics: CTL, LTL

Please interrupt at any time!

Warm Up - Model Sentences in Propositional Logic

- "If a sentence has a truth value and is not a question, then it is a declarative sentence."
 - t ... a sentence has a truth value
 - q ... a sentence is a question
 - *d* ... a sentence is a declarative sentence
 - $(t \land q) \rightarrow d$
- "If two integers are either both odd or both even, then their sum is even."
 - *o* ... two integers are both odd
 - *e* ... two integers are both even
 - *s* ... the sum of the integers is even
 - \bullet (o \oplus e) → s

- For any run, it is always the case that if the robot visits A, then it visits C within the next two steps.
- There exists an run, in which the robot always visits C within the next two steps after visiting A.
- For detailed modelling, we need:
 - temporal operators, and
 - path quantifiers.

Temporal Operators

- Temporal operators
 - Describe properties along a given path/execution
- AP: a set of atomic propositions, $p \in AP$
- Next: $Xp \hookrightarrow \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
- Globally: Gp
- Eventually: $F_p \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Path Quantifiers

- For all paths: $A\varphi$
- There exists a path: $\mathbf{E} \varphi$

- For any run, it is always the case that if the robot visits A, then it visits C within the next two steps.
- $A G (a \rightarrow Xc \lor XXc)$
- There exists a run, it is always the case that if the robot visits A, then it visits C within the next two steps.
- $E G (a \rightarrow Xc \lor XXc)$

Temporal Operators

X... next

G... globally

F... eventually

Path quantifiers

A for all paths

E there exists a path

- For any execution, it holds that the robot never visits X.
- $\blacksquare A G (\neg x)$

- There exists an execution, in which it holds that the robot never visits X.
- $\blacksquare E G (\neg x)$

Temporal Operators

X... next

G... globally

F... eventually

Path quantifiers

A for all paths

E there exists a path

- There exists an execution in which it holds that the robot visits A infinitely often and C infinitely often.
- $E(GF a \wedge GF c)$

- For any execution it holds that if the robot visits A infinitely often then
 C is visited only finitely often.
- A (GF $a \rightarrow FG \neg c$)

Temporal Operators

X... next

G... globally

F... eventually

Path quantifiers

A for all paths

E there exists a path

Plan for Today

- Motivating Example
 - Informal Explanation of Syntax and Semantics
- CTL*
 - Syntax
 - Semantics
- Sublogics: CTL, LTL

Computation Tree Logic - CTL*

- Defines properties of Computation Trees of Kripke structures.
- Computation Tree
 - Shows all possible executions starting form initial state.
 - All branches of the tree are infinite.

CTL* - Path Quantifiers

- Infinite path $\pi = s_0, s_1, ...$ with
 - s_0 is an initial state, and
 - for all $i \ge 0$, $(s_i, s_{i+1}) \in R$.
- Path quantifiers: $\mathbf{A}\boldsymbol{\varphi}$, $\mathbf{E}\boldsymbol{\varphi}$
 - They specify that all paths or some paths starting from a state s have property ϕ .

Temporal Operators

- Temporal operators
 - Describe properties along a given path/execution
- AP: a set of atomic propositions, $p, q \in AP$

pUq holds if there is a state on π where q holds, and at every preceding state on π (if it exists), p holds.

Temporal Operators

- Temporal operators
 - Describe properties along a given path/execution
- AP: a set of atomic propositions, $p, q \in AP$

pRq ... "**p** releases **q**": **q** has to hold until **p** holds. However, **p** is not required to hold eventually.

a,b

С

 π_2

 $\boldsymbol{\mathcal{C}}$

State and Path Formulas

- Two types of formulas:
 - State formulas ...true in a specific state
 - Path formulas ...true along a specific path
- CTL* formulas are the set of all state formulas

Path Formulas:

• E.g.: $\pi_1 \models Gb$ since b holds at every state along π_1

• E.g.: $\pi_2 \not\models Gb$ since **b** does **not** hold at every state along π_2

State and Path Formulas

- Two types of formulas:
 - State formulas ...true in a specific state
 - Path formulas ...true along a specific path
- CTL* formulas are the set of all state formulas

State Formulas:

• $s_0 \models EGb$ since there is a path from s_0 that satisfies Gb

• $s_0 \not\models \mathbf{AG} \mathbf{b}$ since **not all paths** from s_0 satisfy \mathbf{Gb}

Informal Semantics of State and Path Formulas

• Does s_0 satisfy the following formula?

$$\bullet s_0 \models \text{EXX} (a \land b)$$

 $\bullet s_0$ \nvDash EXAX (a ∧ b)

Syntax of CTL*

- CTL* formulas are the set of all state formulas
- Inductive definition of state formulas:
 - If $p \in AP$, then p is a state formula
 - If f_1 and f_2 are state formulas, so are $\neg f_1$, $f_1 \lor f_2$, and $f_1 \land f_2$.
 - If g is a path formula, then Eg, Ag are state formulas
- Inductive definition of path formulas:
 - If f is a state formula, then f is also a path formula.
 - If g_1, g_2 are path formulas, then $\neg g_1, g_1 \lor g_2, g_1 \land g_2$, $Xg_1, Gg_1, Fg_1, g_1Ug_2, g_1Rg_2$ are path formulas.

Semantics of CTL* - Notation

- Kripke Structure $M = (S, S_0, R, AP, L)$
- $\blacksquare \pi = s_1, s_2, s_3 \dots$ infinite **path** in M
- $\pi^i = s_i, s_{i+1}, s_{i+2}$... suffix of π starting at s_i
- For state formulas:
 - $M, s \models f$... the **state** formula f holds in state s of M
- For path formulas.
 - $M, \pi \models g \dots$ the **path** formula g holds along π in M

Semantics of CTL*

- Let g_1 and g_2 be path formulas and f_1 and f_2 be state formulas
- ⊨ is inductively defined via the structure of the formula

State formulas:

- $\blacksquare M, s \models p \Leftrightarrow p \in L(s) \text{ for } p \in AP$
- M, $s \models E g_1 \Leftrightarrow \text{there is a path } \pi \text{ from } s \text{ s.t. } M$, $\pi \models g_1$
- M, $s \models A g_1 \Leftrightarrow \text{for every path } \pi \text{ from } s \text{ s.t. } M$, $\pi \models g_1$
- Boolean combination (\land, \lor, \neg) the usual semantics

Semantics of CTL*

- Let g_1 and g_2 be path formulas and f_1 and f_2 be state formulas
- ⊨ is inductively defined via the structure of the formula

Path formulas

- $M, \pi \models f_1$ $\Leftrightarrow M, s_0 \models f_1 \text{ and } \pi = s_0, s_1, s_2, s_3$ ■ $M, \pi \models \mathbf{X} g_1$ $\Leftrightarrow M, \pi^1 \models g_1$ ■ $M, \pi \models \mathbf{G} g_1$ $\Leftrightarrow \text{for every } i \geq 0$: $M, \pi^i \models g_1$ ■ $M, \pi \models \mathbf{F} g_1$ $\Leftrightarrow \text{there exists } k \geq 0$: $M, \pi^k \models g_1$
- $M, \pi \vDash g_1 \cup g_2$
- \Leftrightarrow there exists $k \ge 0$: $M, \pi^k \models g_2$ and for every $0 \le j < k$: $M, \pi^j \models g_1$

Semantics of CTL*

- Let g_1 and g_2 be path formulas and f_1 and f_2 be state formulas
- ⊨ is inductively defined via the structure of the formula

■ $M \models f_1 \Leftrightarrow$ for all initial states $s_0 \in S_0$: $M, s_0 \models f_1$

Properties of CTL*

- The operators \vee , \neg , X, U, E are sufficient to express any CTL* formula
- Your task:
 - Rewrite the following formulas using ∨, ¬, X, U, E

1.
$$f_1 \wedge f_2 \equiv \neg(\neg f_1 \vee \neg f_2)$$

2.
$$F g_1 \equiv true U g_1$$

3.
$$G g_1 \equiv \neg F \neg g_1$$
 Until: $pUq \longrightarrow \bigcirc \bigcirc$ Release: $pRq \bigcirc$

$$4. A f_1 \equiv \neg E \neg f_1$$

5.
$$g_1 R g_2 \equiv \neg (g_2 U (g_1 \wedge g_2)) \vee G g_2$$

Negation Normal Form (NNF)

 Formulas in NNF are formulas in which negations are applied only to atomic propositions

- Every CTL* formula is equivalent to a CTL* formula in NNF
- Negations can be "pushed" inwards.

$$\blacksquare \neg \mathbf{E} f \equiv \mathbf{A} \neg f$$

$$-Gf \equiv F - f$$

$$\blacksquare \neg (f \cup g) \equiv (\neg f \cap R \neg g)$$

$$\blacksquare \neg X f \equiv X \neg f$$

Example 1/5: Semantics of CTL*

■ $M \models f_1 \Leftrightarrow$ for all initial states $s_0 \in S_0$: $M, s_0 \models f_1$

■ Does $M \models EX p$ or $M \models \neg EX p$?

Solution:

 $M \models \mathsf{EX}\,p$

Example 2/5: Semantics of CTL*

■ $M \models f_1 \Leftrightarrow$ for all initial states $s_0 \in S_0$: $M, s_0 \models f_1$

■ Does $M \models EXp$ or $M \models \neg EXp$?

Neither

Such a situation **never** happens when *M* has a **single initial state.**

Example 3/5: Semantics of CTL*

• Given $a, b \in AP$ What does a path satisfying F(a U b) need to satisfy?

$$F(a U b)$$
 \circ \circ \circ

Example 4/5: Semantics of CTL*

• Given $p \in AP$, what is the meaning of the following formulas?

- $\blacksquare \pi \vDash GF p$ Infinitely often p along π
- $\blacksquare \pi$ ⊨ FGp Finitely often $\neg p$ along π

Example 5/5: Semantics of CTL*

• Given $p \in AP$, what is the meaning of the following formulas?

- $\blacksquare \pi \models EGF p$ There exists a path that satisfies p infinitely often
- $\pi \models EGEFp$ There exists a path in which it is possible to reach p from any state

Plan for Today

- Motivating Example
 - Informal Explanation of Syntax and Semantics
- CTL*
 - Syntax
 - Semantics
- Sublogics: CTL, LTL

Sublogics of CTL*

- CTL and LTL are the two most used sub-logics of CTL*
 - Restriction on allowed combination of temporal operators and path quantifiers
- CTL* allows any combination of temporal operators and path quantifiers.

Linear Temporal Logic (LTL)

- LTL consists of state formulas of the form Ag, where g is a path formula, containing no path quantifiers.
 - > Formulas have only one, outermost universal quantification
 - → Typically in LTL, the path quantifier is omitted.
- Examples:
 - $GF \varphi$
 - $G(\varphi \to F \psi)$
 - $G(\varphi \to XXX \psi)$
 - •

LTL - Syntax

• LTL is the set of all state formulas as defined below.

State formulas

• Ag where g is a path formula

Path formulas

- $p \in AP$
- $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Gg_1 , g_1Ug_2 , g_1Rg_2 where g_1 and g_2 are path formulas

Computation Tree (CTL)

• LTL consists of state formulas, where path quantifiers and temporal operators come in pairs: AG, AU, AX, AF, AR, EG, EU, EX, EF, ER

- Examples:
 - $E(\varphi U\psi)$
 - $EF(\varphi) \wedge EG\psi$
 - $AF AG \varphi ...$

CTL - Syntax

CTL is the set of all state formulas as defined below.

State formulas

- $p \in AP$
- $\blacksquare \neg f_1$, $f_1 \lor f_2$, $f_1 \land f_2$
- AXf_1 , AGf_1 , $A(f_1Uf_2)$, $A(f_1Rf_2)$
- **E** Xf_1 , EGf_1 , $E(f_1Uf_2)$, $E(f_1Rf_2)$

where f_1 and f_2 are path formulas

LTL/CTL/CTL*

