

Model Checking for CTL

Bettina Könighofer

bettina.koenighofer@tugraz.at

Plan for Today

- Presentation of Homework
- Properties of CTL and LTL
- CTL Model Checking

Homework

- Task 5a: Draw a Kripke Structure to model the coffee machine:
 - 1. Initially, the brewer is in the off state until it is switched on.
 - Once the brewer is switched on, the user can select the number of cups and the strength of the coffee. The user can choose either five or ten cups, with a strength of either medium or strong.
 - 3. After the selections are made, the coffee machine starts brewing.
 - 4. During brewing, if an error is detected, the brewer enters an error state.
 - 5. Alternatively, the brewer may complete the brewing process and serve the coffee.
 - After serving or entering the error state, the coffee machine can be turned off, ready to be turned on again later.

Homework: Translate sentences in temporal logic

1. The error state is always eventually reachable.

2. Ten cups of coffee are always eventually served.

```
AGF (serve10m \lor serve10s)
```

3. It is always possible to select ten cups of coffee, and once selected, ten cups will always eventually be served, unless an error occurs.

```
serve10 := serve10m \lor serve10s
select10 := select10m \lor select10s
```

$$AG$$
 (select10) \land AG (select10 \rightarrow AF (serve 10 \lor error))

Homework: Translate sentences in temporal logic

4. The error state may never be reached.

$$EG(\neg err)$$

5. It is not possible for the machine to serve ten cups of coffee in the current time step and then serve five more cups in the next time step

$$\neg EF (serve10 \rightarrow Xserve5)$$

6. The selected amount of coffee will be served in the next time step.

$$AG((select5m \rightarrow Xsever5m) \land (select5s \rightarrow serve5s) \dots)$$

Does $M \models AGEF (err)$?

(The error state is always eventually reachable)

Plan for Today

- Presentation of Homework
- Properties of CTL and LTL
 - LTL vs CTL
 - Counterexamples
 - Safety and Liveness Properties
- CTL Model Checking

Recap - CTL* - Path Quantifiers

- Infinite path $\pi = s_0, s_1,$
- Path quantifiers: $\mathbf{A}\boldsymbol{\varphi}$, $\mathbf{E}\boldsymbol{\varphi}$
 - They specify that all paths or some paths starting from a state s have property ϕ .

Recap - CTL* - Temporal Operators

- Temporal operators
 - Describe properties along a given path/execution
- AP: a set of atomic propositions, $p, q \in AP$

pRq ... "**p** releases **q**": **q** has to hold until **p** holds. However, **p** is not required to hold eventually.

Recap - LTL/CTL/CTL*

Recap - LTL - Syntax

State formulas

• Ag where g is a path formula

Path formulas

- $p \in AP$
- $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Gg_1 , g_1Ug_2 , g_1Rg_2 where g_1 and g_2 are path formulas

Recap - CTL - Syntax

State formulas

- $p \in AP$
- $\blacksquare \neg f_1, f_1 \lor f_2, f_1 \land f_2$
- AXf_1 , AGf_1 , $A(f_1Uf_2)$, $A(f_1Rf_2)$
- **E** Xf_1 , EGf_1 , $E(f_1Uf_2)$, $E(f_1Rf_2)$

where f_1 and f_2 are path formulas

Recap - CTL - Syntax

State formulas

- $p \in AP$
- $\blacksquare \neg f_1$, $f_1 \lor f_2$, $f_1 \land f_2$
- AXf_1 , AGf_1 , $A(f_1Uf_2)$, $A(f_1Rf_2)$
- **E** Xf_1 , EGf_1 , $E(f_1Uf_2)$, $E(f_1Rf_2)$

where f_1 and f_2 are path formulas

LTL/CTL/CTL*

- The expressive powers of LTL and CTL are incomparable
 - There are LTL formulas that have no equivalent CTL formula
 - There are CTL Formulas that have no equivalent LTL formula

- Exercise: Does the LTL formula AFG p have an equivalent in CTL?
 - AFG p = "for all paths, eventually p always holds"
- Hint:
 - Consider M
 - **Does** $M \models AFGp$?
 - **Does** $M \models AFAGp$?

- Exercise: Does the LTL formula AFG p have an equivalent in CTL?
 - AFG p = "for all paths, eventually p always holds"
 - AFAGp = "for all paths, there is a point from which all reachable states satisfy p"
- $M \models AFGp$
 - All paths satisfy FGp
 - S_0, S_0, S_0, \dots
 - $S_0, S_0, \dots S_0, S_1, S_2, S_2, S_2, \dots$
- $M \not\models AFAGp$
 - s_0, s_0, s_0, \dots does not satisfy FAGp

- Exercise: Does the LTL formula AFG p have an equivalent in CTL?
 - AFG p = "for all paths, eventually p always holds"
- Hint:
 - Consider M
 - **Does** $M \models AFGp$?
 - **Does** $M \models AFEGp$?

- Exercise: Does the LTL formula AFG p have an equivalent in CTL?
 - AFG p = "for all paths, eventually p always holds"
 - AFEGp = "for all paths, there is a point from which there is a path where p globally holds"
- M ⊭ AFGp
 - $s_0, s_1, s_0, s_1, s_0, s_1$... does not satisfy *FGp*
- $M \models AFEGp$
 - All paths satisfy FEGp

- **Exercise**: Does AG(EFp) have an equivalent in LTL?
 - AG(EF p) = "from all reachable states, it is possible to reach a state that satisfies p"
- Hint:
 - Consider M
 - **Does** $M \models AG(EF p)$?
 - **Does** $M \models AGFp$?

- Exercise: Does AG(EFp) have an equivalent in LTL?
 - AG(EF p) = "from all reachable states, it is possible to reach a state that satisfies p"
 - AGF p = "In all paths, p holds infinitely often"
- $\blacksquare \mathsf{M} \vDash \mathbf{AG}(\mathbf{EF}\,\mathbf{p})$
 - All reachable states satisfy *EFp*

- M ⊭ AGFp
 - $s_0, s_0, s_0 \dots$ does not satisfy GFp

Plan for Today

- Presentation of Homework
- Properties of CTL and LTL
 - LTL vs CTL
 - Counterexamples
 - Safety and Liveness Properties
- CTL Model Checking

Counterexamples

- Given M and φ s.t. $M \not\models \varphi$. A counterexample is trace π of M violating φ
- Counterexamples are a central feature of MC
- Used for debugging
 - Should be easy-to-understand by human
 - Should have finite representation

Counterexamples

- \blacksquare AX p
 - A counterexample for AX p is a **transition** from an initial state to a state **violating** p.
 - A counterexample for AX p is a witness for $EX \neg p$
- AG p
 - A counterexample for AGp is a **finite path** from an initial state to a state **violating** p.
 - A counterexample for AGp is a witness for $EF \neg p$

Counterexamples

- \blacksquare AF p
 - A counterexample for AFp is an **infinite path** with all of its states **violating** p.
 - A counterexample for AFp is a witness for $EG \neg p$
 - Finite representation of counterexamples for AF p:
 - Lasso: $\pi = \pi_0(\pi_1)^{\omega}$
 - π_0 and π_1 are **finite** paths
 - ω indicates **infinitely many repetitions** of π_1

Plan for Today

- Presentation of Homework
- Properties of CTL and LTL
 - LTL vs CTL
 - Counterexamples
 - Safety and Liveness Properties
- CTL Model Checking

Safety and Liveness

- Safety properties state that "something bad will never happen"
 - E.g.: $AG \neg p$
 - A counterexample is a finite (loop-free) path

$$bad = \neg p \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc p$$

- Liveness properties state that "something good will happen eventually"
 - E.g.: AF p, A(pUq)
 - A counterexample is an infinite path showing that the good property NEVER holds.

Model Checking Problem

- Given a Kripke structure M and a CTL formula f
- Model Checking Problem
 - Does $M \models f$?
- Algorithm:
 - Compute all states satisfying f: $[f]_M = \{s \in S \mid M, s \models f\}$
 - If $S_0 \subseteq [f]_M$ then it holds that $M \models f$

Illustrative Example - Mutual Exclusion

- Given a Kripke structure M and a CTL formula f
- Two processes P_1 and P_2 with a joint semaphor signal sem
- Each process P_i has a variable v_i describing its state:
 - $v_i = N$ Non-critical
 - $v_i = T$ Trying
 - $v_i = C$ Critical
- Each process runs the following program while (true) {

```
Atomic v_i == N v_i = T;
else if (v_i == T \&\& sem) \{ v_i = C; sem = 0; \}
else if (v_i == C) \{ v_i = N; sem = 1; \}
```

Mutual Exclusion

Mutual Exclusion

- We define atomic propositions: $AP = \{C_1, C_2, T_1, T_2\}$
- A state is labeled with T_i if $v_i = T$
- A state is labeled with C_i if $v_i = C$

isec.tugraz.at ■

- Does it hold that $M \models \varphi$?

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

isec.tugraz.at ■

- Does it hold that $M \models \varphi$?

isec.tugraz.at ■

- Does it hold that $M \models \varphi$?

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

- Does it hold that $M \models \varphi$?
- S_i ...reachable states from an initial state after i steps

isec.tugraz.at ■

- Does it hold that $M \models \varphi$?
- Model checker returns a counterexample

isec.tugraz.at ■

- Does it hold that $M \models \varphi$?

- Does it hold that $M \models \varphi$?
 - $\varphi = AG EF (T_1)$
 - Form any state it is always possible to reach the state labeled with T_1 .

CTL MC Algorithm

- Does $M \models f$?
- MC algorithm works iteratively on sub-formulas of f
- For checking AG(request → AF grant)
 - Check grant, request
 - Then check AF grant
 - Next check request → AF grant
 - Finally check AG(request → AF grant)

CTL MC Algorithm

- Does $M \models f$?
- MC algorithm works iteratively on sub-formulas of f
- For every sub-formula g of f:
 - Add g to label(s) for every state s that satisfies g
 - $g \in label(s) \Leftrightarrow M, s \models g$
- label(s) = set of sub-formulas of f that are true in s
- $M \models f$ if and only if $f \in label(s)$ for all initial states $s \in S_0$ of M
- MC algorithm needs to handle AP and ¬, ∨, EX, EU, EG

CTL MC Algorithm: Checking AP, \neg , \lor - Formulas

- label(s) = set of sub-formulas of f that are true in s
- Procedure for labeling the states:
 - For $p \in AP$: $p \in label(s)$ if and only if $p \in L(s)$
 - For subformulas f_1 and f_2 that have already been checked
 - $\neg f_1$ add to label(s) if and only if $f_1 \notin label(s)$
 - $f_1 \lor f_2$ add to label(s) if and only if $f_1 \in labels(s)$ or $f_2 \in label(s)$

CTL MC Algorithm: Checking $g = EX f_1$

- Procedure for labeling the states satisfying $g = EXf_1$:
 - Add g to label(s) if and only if s has a successor t such that $f_1 \in label(t)$

```
procedure CheckEX (f_1)
T := \{t \mid f_1 \in label(t)\}
while T \neq \emptyset do
choose \ t \in T; \ T := T \setminus \{t\};
for all s such that R(s,t) do
if \ EX \ f_1 \not\in label(s) \ then
label(s) := label(s) \cup \{ \ EX \ f_1\};
```

CTL MC Algorithm: Checking $g = E(f_1Uf_2)$

- Exercise: Procedure for labeling the states satisfying $g = E(f_1U f_2)$
 - Hint: Rewrite the procedure CheckEX

```
procedure CheckEX (f<sub>1</sub>)
 T := \{ t \mid f_1 \in label(t) \}
while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
        if EX f₁ ∉ label(s) then
           label(s) := label(s) \cup \{ EX f_1 \};
```

```
procedure CheckEU (f<sub>1</sub>,f<sub>2</sub>)
T := \{ t \mid f_2 \in label(t) \}
 for all t∈T do
    label(t) := label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) }
 while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
           if E(f_1 \cup f_2) \not\in label(s) and f_1 \in label(s) then
              label(s) : = label(s) \cup {E(f<sub>1</sub> U f<sub>2</sub>) };
              T := T \cup \{s\}
```

• Does it hold that $M \models E(aUb)$?


```
procedure CheckEU (f<sub>1</sub>,f<sub>2</sub>)
 T := \{ t \mid f_2 \in label(t) \}
 for all t∈T do
    label(t) := label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) }
 while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
          if E(f_1 \cup f_2) \notin label(s) and f_1 \in label(s) then
              label(s) := label(s) \cup {E(f<sub>1</sub> U f<sub>2</sub>) };
              T:=T\cup\{s\}
```

• Does it hold that $M \models E(aUb)$?


```
procedure CheckEU (f<sub>1</sub>,f<sub>2</sub>)
 T := \{ t \mid f_2 \in label(t) \}
 for all t∈T do
    label(t) := label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) }
 while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
          if E(f_1 \cup f_2) \notin label(s) and f_1 \in label(s) then
              label(s) := label(s) \cup {E(f<sub>1</sub> U f<sub>2</sub>) };
              T:=T\cup\{s\}
```

• Does it hold that $M \models E(aUb)$?


```
procedure CheckEU (f<sub>1</sub>,f<sub>2</sub>)
 T := \{ t \mid f_2 \in label(t) \}
 for all t∈T do
    label(t) := label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) }
 while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
          if E(f_1 \cup f_2) \notin label(s) and f_1 \in label(s) then
              label(s) := label(s) \cup {E(f<sub>1</sub> U f<sub>2</sub>) };
              T:=T\cup\{s\}
```

• Does it hold that M = E(aUb)?

$$[[E(aUb)]] = \{0,1,2,3,4,5\}$$

```
procedure CheckEU (f<sub>1</sub>,f<sub>2</sub>)
 T := \{ t \mid f_2 \in label(t) \}
 for all t∈T do
    label(t) := label(t) \cup { E(f<sub>1</sub> U f<sub>2</sub>) }
 while T \neq \emptyset do
    choose t \in T; T := T \setminus \{t\};
    for all s such that R(s,t) do
          if E(f_1 \cup f_2) \notin label(s) and f_1 \in label(s) then
              label(s) := label(s) \cup {E(f<sub>1</sub> U f<sub>2</sub>) };
              T := T \cup \{s\}
```

CTL MC Algorithm: Checking $g = EGf_1$

- $S \models \mathbf{EG} \ \mathbf{f}_1$ iff there is a path π starting at s, such that $\pi \models \mathbf{G} \ f_1$ iff there is a path from s to a **strongly connected component (SCC)**, where all states satisfy f_1
- An SCC is a subgraph C s.t. every node in C is reachable from any other node in C
 - C is nontrivial if it contains at least one edge. Otherwise, it is trivial.
- An SCC C is maximal (MSCC) if it is not contained in any other SCC
 - Possible to find all MSCC in linear time O(|S|+|R|) (Tarjan)

CTL MC Algorithm: Checking $g = EGf_1$

- 1. Remove from M all states such that $f_1 \notin labels(s)$
- 2. Resulting model: M' = (S', R', L')
 - $S' = \{ s \mid M, s \models f_1 \}$
 - $R' = (S' \times S') \cap R$
 - L'(s') = L(s') for every $s' \in S'$
- 3. Theorem: $M, s \models EG f_1$ if and only if
 - $s \in S'$ and
 - there is a path in M' from s to some state t in a nontrivial MSCC of M'.

CTL MC Algorithm: Checking $g = EGf_1$

```
procedure CheckEG (f<sub>1</sub>)
 S' := \{s \mid f_1 \in label(s)\}
 MSCC := { C | C is a nontrivial MSCC of M' }
T := \bigcup_{C \in MSCC} \{ s \mid s \in C \}
for all t \in T do
   label(t) := label(t) \cup \{ EG f_1 \}
 while T \neq \emptyset do
   choose t \in T; T := T \setminus \{t\};
   for all s \in S' such that R'(s,t) do
        if EG f₁ ∉ label(s) then
            label(s) := label(s) \cup \{EG f_1\};
            T := T \cup \{s\}
```

CTL MC Algorithm: Complexity

Steps per sub-formula:

■ MC
$$\neg$$
, \vee formulas O(|S|) steps

• MC
$$g = EX f_1$$
 O(|S| + |R|) steps

• MC
$$g = E(f_1 U f_2)$$
 O(|S|+|R|)

•
$$MCg = EGf_1$$

- Computing MSCCs using Tarjan's algorithm: O (|S'| + |R'|)
- Labeling all states in MSCCs:O (|S'|)
- Backward traversal: O(|S'| + |R'|)
- => Overall steps per subformula: O (|S| + |R|)

CTL MC Algorithm: Complexity

Complexity of CTL MC:

• Steps per sub-formula: O(|S| + |R|)

Number of sub-formulas in f: O(|f|)

■ Total: O(|M| × |f|)

- For comparison
 - Complexity of LTL MC is $O(|M| \times 2^{|f|})$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land EG\ \neg Heat))$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land EG\ \neg heat))$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land \textbf{\textit{EG}}\ \neg \textbf{\textit{heat}}))$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land EG\ \neg heat))$

 $\llbracket \text{ start} \land \text{ EG} \neg \text{heat} \rrbracket = \{2, 5\}$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land EG\ \neg heat))$

• Does $M \models f$ with $f = \neg E(true\ U\ (start \land EG\ \neg heat))$

