JAY,

Graz

SCIENCE
PASSION
TECHNOLOGY

Model Checking for CTL

Bettina Konighofer

bettina.koenighofer@tugraz.at

> isec.tugraz.at

mailto:Bettina.koenighofer@tugraz.at

Plan for Today isec.tugraz.at M

* Presentation of Homework
= Properties of CTL and LTL
= CTL Model Checking

Homework isec.tugraz.at M

= Task 5a: Draw a Kripke Structure to model the coffee machine:

1.
2.

>

Initially, the brewer is in the off state until it is switched on.

Once the brewer is switched on, the user can select the number of cups and
the strength of the coffee. The user can choose either five or ten cups, with a
strength of either medium or strong.

After the selections are made, the coffee machine starts brewing,.
During brewing, if an error is detected, the brewer enters an error state.

Alternatively, the brewer may complete the brewing process and serve the
coffee.

After serving or entering the error state, the coffee machine can be turned off,
ready to be turned on again later.

Homework < off isec.tugraz.at M
< on

selectbm e select5s @ selecthm @ select10s
............ iy 513)
brew Q “““ bre._.- @ Breiy . brew
servesm @ servess @ @ servelOm @ servel0s

&t

Homework: Translate sentences in temporal logic isec.tugraz.at M

1. The error state is always eventually reachable.

AGEF (err)

2. Ten cups of coffee are always eventually served.

AGF (servel0OmV servel0s)

3. ltisalways possible to select ten cups of coffee, and once selected,
ten cups will always eventually be served, unless an error occurs.

servel(= servelOmyV servelOs
select10 = select10m YV select10s

AG (select10) AN AG(select10 — AF(serve 10 V error))

Homework: Translate sentences in temporal logic isec.tugraz.at M

4. The error state may never be reached.

EG(—err)

5. ltis not possible for the machine to serve ten cups of coffee in the
current time step and then serve five more cups in the next time step

—EF (servel0 — Xserve5)

6. The selected amount of coffee will be served in the next time step.

AG((selects5m — Xsever5m) A (select5s — serve5s) ...)

Homework < off isec.tugraz.at M
< on

"
{ 3d n
"

.
-“‘

brew Q _____ brew @ ; @ brew . brew
servesm @ servess @ servelOm servelOs
@ off

Does M = AGEF (err)? (The error state is always eventually reachable)

Homework < off isec.tugraz.at M
< on

.
s

.
‘-

servesm @ servess @ servelOm servelOs
@ off

- Does M = AGF (servelOmV servel0s)? x

Homework < off isec.tugraz.at M
< on

Py}

.
-“‘

brew Q _______ brew @ : @ D&y - brew
servesm @ servess @ servelOm servelOs
@ off

. Does M = AG (select10) AN AG(select10 — AF(serve 10V error))? x

Homework < off isec.tugraz.at M
< on

selectbm e select5s @ selecthm @ select10s
............ g 513)
brew Q “““ bre._.- @ Breiy . brew
servesm @ servess @ @ servelOm @ servel0s

&t

DoesM = EG (_le 1‘1')? \

Homework < off isec.tugraz.at M
< on

selectbSm e select5s @ selecthm @ select10s
............ g 513)
brew Q brew @ @ brew . brew
servesm @ servess @ @ servelOm @ servel0s

&t

Does M & —EF (servel0 - Xserve5)?

A
'V 4
%

Homework < off isec.tugraz.at M
< on

.
s

.
‘-

servesm @ servess @ servelOm servelOs
@ off

Does M = AG((select5m — Xsever5m) A (select5s — serveb5s) ...)? x

Plan for Today isec.tugraz.at M

= Properties of CTL and LTL
= L TLvsCTL
= Counterexamples
= Safety and Liveness Properties

= CTL Model Checking

Recap - CTL* - Path Quantifiers isec.tugraz.at M

" Infinite path Tt = s, 5,

= Path quantifiers: A@, E@
= They specify that all paths or some paths starting from a state s have property @.

l l

Kripke structure M @ @
2Nl RO
mRORe

Recap - CTL* - Temporal Operators

* Temporal operators
= Describe properties along a given path/execution

= AP: a set of atomic propositions, p,q € AP

= Next: Xp
= Globally: Gp
= Eventually: Fp
= Until: pUq
= Release: pRq

N
u

:A
u

00000

I A 4 A 4 A 4 CV

7N
|
a2 N
S
7N
|

» O

» O

O

O

O

O

isec.tugraz.at H

PRq ... “preleases q”: g hasto hold until p holds.

However, p is not required to hold eventually.

Recap - LTL/CTL/CTL* isec.tugraz.at M

LTL

GFo,— F ¢,

G(¢,—~ F ¢,)

or resp.
AG(¢, — AF ¢,)

Implicit A
quantifier

RECap -LTL - Syntax isec.tugraz.at W

= State formulas
= Ag where g is a path formula

= Path formulas
=p € AP

" 91, 91V 92 91N G2 Xg1, Ggi1, g1Ugz gi1Rg;
where g,and g, are path formulas

Recap -CTL - Syntax isec.tugraz.at W

= State formulas
=p e AP
"=fi, iV, NS
= AXf;, AGf,, A(f1Uf,), A(f1Rf;)
" EXf1, EGf,, E(f1Uf2), E(f1Rf>)

where f;and f, are path formulas

RECap -CTL - Syntax isec.tugraz.at W

= State formulas
=p € AP

"—f1, iV AN
" AXf1, AGf;, A(f1Ufz), A(fiRf?)

"EXf1, EGf,, E(f1Uf2), E(f1iRf2)
where f;and f, are path formulas ex,’_;‘t“; --------
o R R ﬂ

et 0..00

ﬁ\ .
reachable
states..

LT L/CT L/CT L* isec.tugraz.at H

= The expressive powers of LTL and CTL are incomparable
= There are LTL formulas that have no equivalent CTL formula
* There are CTL Formulas that have no equivalent LTL formula

CTL"

E(GF ¢)

G(d,— F ¢.)
or resp.
AG(9, — AF ¢,)

Implicit A
quantifier

LTLvs CTL 1/2 isec.tugraz.at M

= Exercise: Does the LTL formula AFG p have an equivalent in CTL?
» AFG p =“for all paths, eventually p always holds”
" Hint:
= Consider M
S S1 S,

= Does M E AFGp? ?" @ @
? * Does M E AFAGp?

LTLvs CTL 1/2 isec.tugraz.at M

= Exercise: Does the LTL formula AFG p have an equivalent in CTL?
» AFG p =“for all paths, eventually p always holds”
» AFAGp = “for all paths, there is a point from which all reachable states satisfy p"

S S

Sy 1 2
« M = AFGp M

= All paths satisfy FGp
" S9,S0,SQ -
" S9,S0, - S0, S1,52,52,S87, «n .
= M AFAGp
" Sg,Sp,Sg, --- does not satisfy FAGp

LTLvs CTL 1/2 isec.tugraz.at M

= Exercise: Does the LTL formula AFG p have an equivalent in CTL?
» AFG p =“for all paths, eventually p always holds”

= Hint:
= Consider M Sy S,

" Does M = AFGp?
? * Does M E AFEGp?

LTLvs CTL 1/2 isec.tugraz.at M

= Exercise: Does the LTL formula AFG p have an equivalent in CTL?
» AFG p =“for all paths, eventually p always holds”

» AFEGp = “for all paths, there is a point from which where p globally
holds "

* M AFGp
" S9,S1,S0,S1,So, S1 -.- does not satisfy FGp

* MEAFEGpP S

0 1
= All paths satisfy FEGp %

LTLvs CTL 2/2 isec.tugraz.at M

= Exercise: Does AG(EF p) have an equivalent in LTL?
= AG(EF p) =“from all reachable states, it is possible to reach a state that satisfies p”

= Hint:
= Consider M So S

= Does M = AG(EF p)? m

@ * Does M E AGFp?

o

LTLvs CTL 2/2 isec.tugraz.at M

= Exercise: Does AG(EF p) have an equivalentin LTL?
= AG(EF p) =“from all reachable states, it is possible to reach a state that satisfies p”
= AGF p =“Inall paths, p holds infinitely often”

e PR
= Allreachable states satisfy EFp

* M ¥ AGFp

" Sy,Sp,Sp ... does not satisfy GFp

Plan for Today isec.tugraz.at M

= Properties of CTL and LTL

= Counterexamples
= Safety and Liveness Properties

= CTL Model Checking

Counterexamples isec.tugrazat M

= Given M and ¢ s.t. M # ¢.
A counterexample is trace = of M violating ¢

= Counterexamples are a central feature of MC
= Used for debugging

= Should be easy-to-understand by human
* Should have finite representation

Counterexamples isec.tugrazat M

" AXp
= Acounterexample for AX p is a transition from an initial state to a state violating p.
= Acounterexample for AX p is a witness for EX —p

" AGp
= Acounterexample for AG p is a finite path from an initial state to a state violating p.
= Acounterexample for AG p is a witness for EF —p

w0

Counterexamples isec.tugrazat M

" AFp
= Acounterexample for AF p is an infinite path with all of its states violating p.
= Acounterexample for AF pis a witness for EG —p

* Finite representation of counterexamples for AF p:
» Lasso: = my(1mq)?
" 1, and mryare finite paths
* w indicates infinitely many repetitions of ,

Gop (Do D D

Plan for Today isec.tugraz.at M

= Properties of CTL and LTL

= Safety and Liveness Properties
= CTL Model Checking

Safety and Liveness isec.tugraz.at M

= Safety properties state that “something bad will never happen”
- E.g.:AG—lp
* Acounterexample is a finite (loop-free) path

bad = =p —(s o e o —(D)

= Liveness properties state that “something good will happen eventually”
" Eg:.AF p,A(pUq)
= Acounterexample is an infinite path showing that the good property NEVER holds.

good =p

Model Checking Problem isec.tugraz.at M

= Given a Kripke structure M and a CTL formula f

= Model Checking Problem
" Does M E [7?

= Algorithm:

= Compute all states satisfying f:
[[f]]M:{SE'SlM;S = f}

= |f S, € [f],, thenitholdsthat M & f

Illustrative Example - Mutual Exclusion

= Given a Kripke structure M and a CTL formula f
= Two processes P;and P, with a joint semaphor signal sem

= Each process P; has a variable v; describing its state:
= p; =N Non-critical
= p; =T Trying
= p; =C Critical

= Each process runs the following program
while (true) {

Atomlc/lf(v) vi=T;
— —elseif (v,==T && sem) {v;=C; sem =0;}

action P
\else if (v,==C) {v,=N;sem=1;}
}

isec.tugraz.at H

Mutual Exclusion isec.tugraz.at |

v,=C, v,=T, —sem v,=T, v,=C, —sem

Mutual Exclusion isec.tugraz.at |

= We define atomic propositions: AP = {C,,C,, T, T,)
= Astateislabeledwith T, ifv, =T
= Astateislabeled with C; ifv, = C

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?
"0 :AG—I(Cl/\Cz)

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?
"0 :AG—I(Cl/\Cz)

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?
"0 :AG—I(Cl/\Cz)

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?
"0 :AG—I(Cl/\Cz)

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 1/4 isec.tugraz.at

= Doesitholdthat M = ¢?

Mutual Exclusion - 2/4 isec.tugraz.at

= Doesitholdthat M = ¢?

" 9 =AG-(TAT;) ¥

Mutual Exclusion - 2/4 isec.tugraz.at

= Doesitholdthat M = ¢?
" @ =AG(T1A\Ty) x

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 2/4 isec.tugraz.at

= Doesitholdthat M = ¢?
" @ =AG(T1A\Ty) x

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 2/4 isec.tugraz.at

= Doesitholdthat M = ¢?
" @ =AG(T1A\Ty) x

= §; ..reachable states from an initial state after i steps

Mutual Exclusion - 2/4 isec.tugraz.at

= Doesitholdthat M = ¢?

" @ =AG(T1A\Ty) x

= Model checker returns a counterexample

Mutual Exclusion - 3/4 isec.tugraz.at

= Doesitholdthat M = ¢?

Mutual Exclusion - 4/4 isec.tugraz.at

= Doesitholdthat M = ¢?

. (p — AG EF (Tl)
: it 1s always possible to reach the state labeled with T;.

CTL MC Algorithm isec.tugraz.at M

" DoesM E f?

= MC algorithm works iteratively on sub-formulas of f

= For checking AG(request — AF grant)
» Check grant, request
= Then check AF grant
= Next check request — AF grant
* Finally check AG(request — AF grant)

CTL MC Algorithm isec.tugraz.at M

" DoesM E f?

= MC algorithm works iteratively on sub-formulas of f

= For every sub-formula g of f:
*= Add g to label(s) for every state s that satisfies g
»* gelabel(s) e M,sEg

= label(s) = set of sub-formulas of f that are trueins
» M = fifand only if f € label(s) for all initial states s € S, of M

= MC algorithm needs to handle AP and —, v, EX, EU, EG

CTL MC Algorithm: Checking AP, -,V - Formulas isec.tugraz.at M

= label(s) = set of sub-formulas of f that are truein s

= Procedure for labeling the states:
* Forp € AP: p € label(s)ifandonlyifp € L(s)
= For subformulas f; and f, that have already been checked

» —f, addtolabel(s)ifandonlyif f,¢ label(s)
= f.vf, addtolabel(s)ifandonlyif f e labels(s) or f,e label(s)

CTL MC Algorithm: Checkingg = EX f, isec.tugraz.at M

= Procedure for labeling the states satisfying g = EXf:
= Add g to label(s) if and only if s has a successor t such that f, € label(t)

procedure CheckEX (f,)
T:={t|f, e label(t) }
while T#© do
chooset eT; T:=T\({t};
forall s such that R(s,t) do
if EXf, ¢ label(s) then
label(s) : = label(s) U { EXf,};

CTL MC Algorithm: Checking g = E(f1Uf>) isec tugraz.at

= Exercise: Procedure for labeling the states satisfying g = E(f,U)
* Hint: Rewrite the procedure CheckEX

procedure CheckEX (f,) procedure CheckEU (f,,f,)
T:={t|f, e label(t) } T:={t|f, label(t) }
forallteT do
label(t) := label(t) U { E(f, Uf,) }

sinlle -2 el while T =@ do

chooset eT; T:=T\({t}; chooset eT; T:=T\{t};

forall's such that R(s,t) do forall s such that R(s,t) do

if EXf, ¢ label(s) then if E(f; Uf,) ¢ label(s) and f; € label(s) then
label(s) .= label(s) U { EX fl}> label(s) .= label(s)) {E(fl U f2) },

T:=Tu/{s}

CTL MC: Checking g = E(f1 UfZ) isec.tugraz.at M

= Doesitholdthat M = E(aUb)?

procedure CheckEU (f,,f,)
T:={t|f, € label(t) }

forallteT do
label(t) := label(t) U {E(f, Uf,)}

while T#O do
chooset eT; T:=T\({t};
forall s such that R(s,t) do
if E(f, Uf,) ¢ label(s) and f; € label(s) then
label(s) : = label(s) U {E(f, Uf,) };
T:=Tu/{s}

CTL MC: Checking g = E(f1 UfZ) isec.tugraz.at M

= Doesitholdthat M = E(aUb)?

procedure CheckEU (f,,f,)
T:={t|f, € label(t) }

forallteT do
label(t) := label(t) U {E(f, Uf,)}

while T#O do
chooset eT; T:=T\({t};
forall s such that R(s,t) do
if E(f, Uf,) ¢ label(s) and f; € label(s) then
label(s) : = label(s) U {E(f, Uf,) };
T:=Tu/{s}

CTL MC: Checking g = E(f1 UfZ) isec.tugraz.at M

= Doesitholdthat M = E(aUb)?

procedure CheckEU (f,,f,)
T:={t|f, € label(t) }

forall teT do
label(t) := label(t) U {E(f, Uf,)}

while T#O do
chooset eT; T:=T\({t};
forall s such that R(s,t) do
if E(f, Uf,) ¢ label(s) and f; € label(s) then
label(s) : = label(s) U {E(f, Uf,) };
T:=Tu/{s}

CTL MC: Checking g = E(f1 UfZ) isec.tugraz.at M

= Doesitholdthat M = E(aUb)? \/

procedure CheckEU (f,,f,)
T:={t|f, € label(t) }

forall teT do
label(t) := label(t) U {E(f, Uf,)}

while T#O do
chooset eT; T:=T\({t};
forall s such that R(s,t) do
if E(f, Uf,) ¢ label(s) and f; € label(s) then
label(s) : = label(s) U {E(f, Uf,) };
T:=Tu/{s}

CTL MC Algorithm: Checking g = EGf, isec tugraz.at

" s = EGf, iffthereisa path nstartingats, suchthatn =G f;

iff thereisa pathfromsto a ,
where all states satisfy f;

= An SCCis asubgraph Cs.t. every node in Cis reachable from any other nodein C
= Cisnontrivial if it contains at least one edge. Otherwise, it is trivial.

= An SCC Cis maximal (MSCC) if it is not contained in any other SCC
= Possible to find all MSCC in linear time O(|S|+|R|)

CTL MC Algorithm: Checking g = EGf, isec tugraz.at

1. Remove from M all states such that f; & labels(s)

2. Resulting model: M’ = (S',R', L")
» S"={s | M,s E f}
= R'=("XS)NR
= ['(s’) = L(s") foreverys' € §

3. Theorem:M,s EEG f; ifand only if
= s €S and
* thereisa path in M' from s to some state t in a nontrivial MSCC of M'.

CTL MC Algorithm: Checkingg = EGf, isec.tugraz.at M

procedure CheckEG (f,)

S":={s|f, € label(s) }

MSCC:={C| Cisanontrivial MSCC of M" }
T:=Uc cmsccis|s e Cl

forallteT do
label(t) := label(t) U { EG f,}

while Tz do
chooset eT; T:=T\({t}
forall s €S’ such that R’(s,t) do
if EG f; ¢ label(s) then
label(s) : = label(s) U {EG f};
T:=Tu/{s}

CTL MC Algorithm: Complexity isec.tugraz.at

= Steps per sub-formula:

= MC atomic propositions: O(|S|) steps

= MC —, v formulas O(|S|) steps

» MCg=EX f; O(|S| + |R|) steps

= MCg = E(f1U f2) O(|S|+[R])

= MCg = EGfy
= Computing M'": O (|S| +|R|)
= Computing MSCCs using Tarjan’s algorithm: O (|S'| +|R'|)
= Labeling all states in MSCCs: O (|S'])
» Backward traversal: O (S| +[R'|)

= =>Qverall steps per subformula: O (|S| +|R|)

CTL MC Algorithm: Complexity isec.tugraz.at

= Complexity of CTL MC:

= Steps per sub-formula: O (/S| +|R|)
* Number of sub-formulasinf: O([f|)
= Total: O(|M| x |f])

= For comparison
= Complexity of LTL MCis O(|[M| x 2lf])

Model Checking Example isec.tugraz.at

* Does M & f with f = —E(true U (start AN EG —Heat))

open cook

done

warmup

Model Checking Example isec.tugraz.at

= Does M = f with f = —E(true U (start A EG —heat))

open cook
en

[start] ={2,5,6,7} 1
[-heat] ={1,2,3,5,6}

Start
Close
Error

warmup

Model Checking Example isec.tugraz.at

"= Does M & f with f = —E(true U (start A EG —heat))

_ MSCC with —Heat
start] ={2,5,6,7}
—heat] ={1,2,3,5,6}
(EG —heat] ={1,2,3,5}
start open cook
close l Topen
2 ’ done
Close
close l Topen reset tart
> Start °
Cl:ste Start

Close

Model Checking Example isec.tugraz.at

* Does M & f with f = —E(true U (start A EG —heat))
[start A EG —heat] ={2, 5}

open cook
en

start] ={2,5,6,7} 1
—heat] ={1,2,3,5,6}
(EG —heat] ={1,2,3,5}

Start
Close
Error

warmup

Model Checking Example isec.tugraz.at

* Does M & f with f = wE(true U (start A EG —heat))

[start A EG —heat] ={2, 5}
[E (true U (Start A EG —Heat))] =

‘ {13273,4’5)6)7}
\ cook
en

start] ={2,5,6,7} 1
—heat] ={1,2,3,5,6}
(EG —heat] ={1,2,3,5}

Start
Close
Error

warmup

Model Checking Example isec.tugraz.at

* Does M & f with f = —E(true U (start A EG —heat))

[start A EG —heat] ={2, 5}
[E (true U (Start A EG —Heat))] =

‘ {1,2,3’4,5,6,7}
[t]=C
open cook
T open

start] ={2,5,6,7} 1
—heat] ={1,2,3,5,6}
(EG heat]={1,2,3,5}

Start
Close
Error

warmup

isec.tugraz.at H

ﬂ‘%&;fé;
ANY é

QUESTIONS&

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

