ISEC flaTU

Android Platform Security

Mobile Security 2025

Florian Draschbacher
florian.draschbacher@tugraz.at

Some slides based on material by Johannes Feichtner

Outline

e Android Platform Fundamentals
e Low-level System Security

e Encryption System

e Android OS Security

e Key Management

e Rooting

275 million Android phones imperiled by

new code-execution exploit What?
Unpatched "Stagefright” vulnerability gives attackers a road map to hijack Bu gs in Android’s 1ibsta gef ri g ht
phones.

and 1libutils

DAN GOODIN - 3/18/2016, 9:26 PM

How?

e Attacker embeds shellcode in
harmless multimedia file

Ny e Message is downloaded (e.g. via
D - MMS)

1 : e Exploitis executed

-

Result

e Attacker can execute any code
on remote device

Drive-by email attack, go kittens!
"

Source: https://goo.al/9fgYSc

ISEC

T

Grazm

https://goo.gl/9fgYSc

SECURITY

CYBERSECURITY NEWS,INSIGHTS § ANALYSIS

What?
WOMLEANIRRLESS 18 vulnerabilities in baseband code of
Project Zero: Samsung Mobile Exynos SoC
Chipsets Vulnerable to Baseband Code 4 did not require special network access

Execution Exploits

Critical security flaws expose Samsung'’s Exynos modems to “Internet-to- HOW’
baseband remote code execution” attacks with no user interaction. Project Zero °

says an attacker only needs the victim’s phone number. ° AttaCker Send maliCiOUS Iy Crafted

: message
8 By Ryan Naraine > . .
| Maroh 16,2023 e Triggers heap overflow in baseband
code
Result

e Attacker can intercept and
manipulate cellular communication

T

Grazm

Source: securityweek.com |S EC

https://www.securityweek.com/project-zero-samsung-mobile-chipsets-vulnerable-to-baseband-code-execution-exploits/

Wwoo'1supz =23IN0S

=DNET @ Q

Do
oo
oo

Home / Tech f Security

8% of all Google Play apps
vulnerable to old security bug

Devs have not updated a crucial library inside their apps,
leaving users exposed to dangerous attacks. Some of the
vulnerable apps include Microsoft's Edge browser, Grindr,
OKCupid, and Cisco Teams.

Q Written by Catalin Cimpanu, Contributor on Dec. 3, 2020
~-_
£

O in @ f ¥

What?

Attackers could inject code into
Android apps

How?
e Vulnerabilities in Google Play Core
library

— Inject DEX file through unprotected
service

— Exploit path traversal to enforce
trust into DEX file

Result

e Remote code execution in context
of vulnerable app

e Needs to be patched by app d
ISEC

S
T

Grazm

https://www.zdnet.com/article/8-of-all-google-play-apps-vulnerable-to-old-security-bug/

StCURITY

CYBERSECURITY NEWS_INSIGHTS & ANALYSIS

Google Pixel Vulnerability Allows
Recovery of Cropped Screenshots

A vulnerability in Google Pixel phones allows for the recovery of an original, unedited
screenshot from the cropped version.

", By lonut Arghire n a a n
4

March 21, 2023

A vulnerability lurking in Google's Pixel phones for five years allows for the recovery
of an original, unedited screenshot from the cropped version of the image.

Referred to as aCropalypse and tracked as CVE-2023-21036, the issue resides in
Markup, the image-editing application on Pixel devices, which fails to properly truncate
edited images, making the cropped data recoverable.

Reverse engineers Simon Aarons and David Buchanan, who identified the bug, point
out that the bug has existed since 2018 and that it was the result of a code change that
Markup did not adhere to.

Specifically, when switching from Android 9 to Android 10, the parseMode() function

was modified to overwrite a file with a truncated one if the argument ‘wt’ was passed

What?

Cropped screenshots still contained
parts of uncropped contents

How?

e An Android update changed the
default value for an API

e File accesses through the
ContentProvider APl no longer
truncated file by default

Result

e Attacker could extract sensitive
information from cropped
screenshots

T

Grazm

ISEC

Source: securityweek.com

https://www.securityweek.com/google-pixel-vulnerability-allows-the-recovery-of-cropped-screenshots/

BLEEPINGCOMPUTER

Exploit released for Android local elevation flaw

impacting 7 OEMs
By Bill Toulas
January 31,2024 0215PM 2

A proof-of-concept (PoC) exploit for a local privilege elevation flaw impacting at least
seven Android original equipment manufacturers (OEMs) is now publicly available
on GitHub. However, as the exploit requires local access, its release will mostly be
helpful to researchers.

Tracked as CVE-2023-45779, the flaw was discovered by Meta's Red Team X in early ~ Source: bleepingcomputer.com ISEC

2 e

What?

Attackers could install malicious
updates to system modules

How?

e Multiple vendors used test keys to
sign APEX files

e These test keys are publicly
available in the Android source
code

Result

e Attackers could sign malicious
APEX files using keys accepted by
production devices

T

Grazm

https://www.bleepingcomputer.com/news/security/exploit-released-for-android-local-elevation-flaw-impacting-7-oems/

Android Platform
AGETIEES

Android

e Open-Source OS developed mainly by Google
— Linux kernel: GNU GPLv2, Rest: Apache 2.0
— Many implementation details can be studied from source code!

e Wide device support
— CPU architectures, hardware features, ...
— Used by various device manufacturers
— Proprietary additions, modifications, forks

e Compatibility Test Suite ensures compatibility
— Requirement for access to Google Mobile Services (Play Store, ...)

Source: source android.com

https://source.android.com/compatibility/overview

Android Device Architecture

e Most Android devices feature a main CPU and some secure environment
— Secure Key Storage
— Handling biometric unlock (Fingerprint, ...)

e ARM TrustZone
— Secure environment runs in a separate execution environment on main CPU

e Secure Element
— Secure environment runs on a dedicated CPU
— E.g. Google Titan M2 in Google devices starting from Pixel 6

Sources: security googleblog com, security googleblog com, developerandroid com

https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://developer.android.com/training/articles/keystore

System Apps

Dialer Calendar Camera

Android System Architecture

Java API Framework

Managers

Content Providers
Activity Location Package Notification

e Linux kernel
— Device drivers
- POSIX Intel’face Native C/C++ Libraries

View System Resource Telephony Window

Core Libraries

- LOW M em Ory Ki I Ier Media Framework OpenGL ES

Hardware Abstraction Layer (HAL)

e Userspace
— HAL (Hardware Abstraction Layer) Linux Kernel
— Android Runtime -
— System Services
— Application Framework

Picture: android.com / Apache 2.0

Binder (IPC) Display

Bluetooth Camera

Shared Memory

Power Management U
Jrazm

https://developer.android.com/guide/platform

Android Security Architecture

I
[Application } : [Application }

User Space Application Framework
Secure OS Services Optional

Native Libraries Android Runtime
(SSL, Bionic, WebKit, ...) [DRM] [KeyMaster] [StrongBox KeyMaster]

Linux Kernel Secure OS Kernel Secure Element OS

Hardware Secure Element

ISEC T

Grazm

Binder

Android-specific implementation of secure and efficient RPC

e Supports passing objects and file descriptors

e Manages memory life cycle of shared objects Kernel

e Kernel passes UID of calling process to callee sinderinterface
— Callee can check permissions of caller

e Proxy and Stub classes can be generated from AIDL
— Android Interface Definition Language

Binder Driver

e Intent, Parcel, Service, Context.getSystemService(),
— All based on Binder functionality!

Android Fragmentation

e Android is shipped by many different device manufacturers
— Different CPU architectures, HW peripherals, Ul modifications, ...

e Releasing OS update for a device used to be time-consuming
— Obtaining updated firmware from peripheral vendors
— Porting modifications to new base

e Situation improved with Project Treble (Android 8.0 / 2017)
— Low-level vendor implementation untouched in Android updates

e Further improvements with Project Mainline (Android 10.0 / 2019)
— System components can be updated through Google Play

Sources: andrald-developers googleblog com, source android.com

https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://source.android.com/devices/architecture/modular-system

Generic Kernel Image

e Originally, every Android vendor maintained its own Linux kernel tree
— Very slow until security updates trickled down to product kernel

> Long Term Supported (LTS) (e.g., 4.19.y) >

@ |\1 HHH LoJD)

Android Common Kernel (ACK) (e.g., android-4.19)

| |
® J,Hm LIS AU

Vendor kernel >

a
® I [| HHL{}MH

Product kernel >

git clone git merge git cherry-pick

Sources: source android com

https://source.android.com/docs/core/ota/modular-system
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://source.android.com/docs/core/ota/modular-system

Generic Kernel Image

e Kernel split into Core Kernel and Vendor Modules
— All devices run this same Core Kernel
— Kernel Module Interface for vendor modules

e GKI mandatory for modern phones (running Android 12+ and Linux Kernel 5.10+)
e Result: Kernel can be updated as Project Mainline module

Stable Interfaces

Y Lo Unstable Interfaces

Sources: source android com 4l ernel Module Interface (KMI)
' (stable between Android Platform Releases)

https://source.android.com/docs/core/ota/modular-system
https://source.android.com/docs/core/architecture/kernel
https://source.android.com/docs/core/ota/modular-system

PY PY ANDR?{E‘; I’I.A":FDIIM API LEVEL [;: HRLI'Bmil
Android Fragmentation Today — ..
More than 50% of devices run an OS release that is older ::;fs:a"m

Nougat
than 4 years! =

Oreo

Oreo

The situation is probably not that bad though

Pie

Android Security Updates

Major manufacturers release monthly security

updates even after the last Android version
update

Still, many devices run legacy OS versions
:
— Particularly cheap devices

— Known vulnerabilities!

Last updated: May 1, 2024
Source: Android Studio IS EC T

Grazm

Hardware information

Android Security Bulletins

Android security patch level
. . . . ecember 1, 2016
e Google publishes recent security fixes on a monthly basis -

— First disclosed to vendors for publishing device updates m

- Then pUb“Shed on AndrOid WebSite Source: hitps:/source.android.com/docs/security/bulletin/asb-overview

e S 00 QO # v d D410
e Security Patch Level can be seen in Android settings on device «giseicyewonayei
e However: Some vendors skip individual fixes S

Claimed patch level: 2018-03-05

— SPL not always accurate indicator for device security
— Source: https:/www.srlabs.de/blog-post/android-patch-gap

e Test your device: SnoopSnitch e P

2017-06 NN NN _j
4.}

https://source.android.com/docs/security/bulletin/asb-overview
https://www.srlabs.de/blog-post/android-patch-gap

Low-Level
System Security

Verified Boot

Chain of Trust from lowest-level bootloader to system partition

1. Device vendor embeds Root of Trust certificate in read-only storage
2. Bootloader checks signature of boot partition against Root of Trust
3. Kernel checks signature of system, vendor (& oem) partitions

How to efficiently check the signature of relatively large partitions?
e Use the Device Mapper verity (dm-verity) feature in Linux kernel

e Transparent real-time integrity checking of block devices
- Prevent persistent rootkits

Verified Boot Flow

Start
boot

Device in
LOCKED state?

Valid OS found?
(Accept only

Valid OS found?
(Accept verification

embedded or user-
settable root of trust)

Cannot boot

Recovery needed

errors and any root
of trust)

vy

Warn about OS not
being verified
Dismiss after 10 seconds

Boot
0S

Source: source. android.com

This flow is simplified

e Some devices allow changing Root of Trust
e Additionally: Rollback protection

e dme-verity error may reboot device

Device / bootloader state

e LOCKED/UNLOCKED

e Unlocking effectively disables signature check
e State changes erase all user data

Boot state
e GREEN/ / /RED
e Yellow (Not displayed): Custom Root of Trust

e Onlyred stops boot
T

Grazm

ISEC

https://source.android.com/security/verifiedboot/boot-flow

dm-verity - Insight

Idea: Look at block device and storage layer of file system using a hash tree

e Hash values stored in tree of pages
— Only ,root hash” must be trusted to verify rest of tree
e Hash of a page is checked by kernel when it is accessed (aways or first time)

e Modification of any 4k-block would
change the ,root hash”

-root hash

4k

— 1
e Verify signature of ,root hash” using ak ak ak ak ax
public key included on boot partition e

- Confirm that device's system dk [e [ok) k[Ak [k] gk | k] k] %k
oy . ——— | —— ——— S— Y A—— | —— | —] ——— S— | a——
partition is unchanged ak | ak | ak |4k | ak [ak | ak [ak | ak 2k | 4k ak | ak | ak | ak | ak | ak 4K |2k | 2K

Picture: source android.com / Apache 2.0

Source: source android com

ISEC T

Grazm

https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity

Encryption
Systems

Android Data Encryption Systems

e Full-Disk Encryption (FDE)

— Encrypts complete user data partition
— Using key derived from user passcode
— Passcode must be entered before the device can fully boot

e File-Based Encryption (FBE)
— Every file is individually encrypted using different keys

— If hardware support: Additional encryption of file metadata

— Device can boot without requiring passcode (Direct Boot)
= Limited context until passcode provided

File-Based Encryption

Two Areas

e Device Encrypted (DE)
— Immediately available after device turn-on
— ,Direct boot” mode: Receive phone calls, set alarms, ...

e Credential Encrypted (CE)

— Available after user entered authentication
credentials

Keys stored in /data/misc/vold/user_keys
—> Different subdirectory in ce and de per Android user id

$ 1s -R /data/misc/vold/user_keys
+ ce/0@/current:

+ de/0O:

encrypted key
keymaster_ key blob
salt
secdiscardable
stretching

version

encrypted key
keymaster_ key blob
secdiscardable
stretching

version

T

Grazm

ISEC

File-Based Encryption

The exact encryption process is highly configurable
e Differs between vendors and Android versions

Core principles
e Lowest-level file encryption is implemented using fscrypt

— Common Linux kernel API for file encryption across different file systems
— Encryption metadata stored as FS attributes

e File name and contents encrypted using separate keys
— Derived from master key and a file-specific nonce

e Master keys here: DE and CE class keys

File-Based Encryption (Simplified)

User Credential

File Nonce

CE Class Key

Device-bound

key File Data Key

Credential-Encrypted Data File Name Key

Device-bound

File Metadata
key

DE Class Key

» Class Key Identifier
» File Nonce

Device-Encrypted Data

T

Grazm

ISEC

File-Based Encryption: Flaw 1

From Android’s developer documentation:

Credential encrypted storage is only available after the user has successfully unlocked the
device, up until when the user restarts the device again. If the user enables the lock screen
after unlocking the device, this doesn't lock credential encrypted storage.

e CE keys are not evicted until the next reboot!

e Protection is only really effective
— While device is completely shut down
— Between boot and first unlock

e Key difference to how iOS Data Protection works!

T

Grazm

Source: developerandroid.com ISEC

https://developer.android.com/training/articles/direct-boot

File-Based Encryption: Flaw 2 Fle Metadiats

» Class Key Identifier
File Nonce

e Early implementations: File metadata not encrypted
— File size, creation and access date

e Solution: Metadata Encryption

— Similar scheme as FDE, but only for file system metadata
— Metadata decrypted at boot time
— Wrapped key stored on special partition

— Key protected by TEE, only unlocked if Verified Boot succeeds
— Mandatory in Android 11 and later

Source: source android.com

https://source.android.com/security/encryption/metadata

File Nonce

File-Based Encryption: Flaw 3

File Data
Key

e Class keys derived inside TEE
— ARM TrustZone
— Device-bound key cannot be extracted

File Name
Key

»

e However, class keys may be processed by the main CPU
— For deriving file-specific keys in kernel
— May be compromised by vulnerable kernel

e Solution: Some devices employ Hardware-Wrapped Keys
— Ephemerally wrap all keys as they pass through CPU

— Requires inline crypto hardware for storage accesses

Source: source android com |S EC ﬂTU
Grazm

https://source.android.com/security/encryption/hw-wrapped-keys

File Nonce

File-Based Encryption: Flaw 4

File Data
Key
e Insecure KDF for deriving file keys File Name
Key

DEK; = AESy§nce A(MK)

e Which can be inverted as
MK = AESEEB | ~(DEKj)

e Attack: Identify and collect all noncer and DEK, from memory dump
— (Assumes Hardware Key Wrapping and Metadata Encryption is not used)
— From dump it's not obvious which of the noncer and DEK; belong together

— Calculate all potential MK candidates
— If the same potential MK is found for two combinations of noncer and DEK;
= Actual MK found!

Source: Tabias Grolb et al - One key to rule them all Recovering the master key from RAM to break Android’s file-based encryption ISEC ﬂ-l;g_

https://reader.elsevier.com/reader/sd/pii/S266628172100007X?token=34DC7A2DBFB1CCE0C32C3397415C69A9DBB84DE740E22BE81A780BAA48C47F7FD8B21A5D664597D907D0DC34785D2C77&originRegion=eu-west-1&originCreation=20220316084927

User
Credential CE Class

Device- Key
bound key

File-Based Encryption: Flaw 5

e |n some implementations, the CE key is not cryptographically bound to the
user credentials

Checks user credentials Releases CE Key

|
|
|
Gatekeeper | KeyMaster :
|
| (simplified)

e Problem: If vulnerability in TEE found = Release CE key without credentials

e Solution: Ensure there is a cryptographic relation between user credentials and
CE Class key (via KDF)

TU

Source: gualcomm com ISEC
Grazm

https://www.qualcomm.com/media/documents/files/file-based-encryption.pdf

Android 0S
Security

Android Security Model

e Kernel-based application sandbox
— DAC (UID, GID-based access control) and MAC (SELinux type enforcement)
— Dedicated, per-application Linux User ID

e Secure IPC (Binder, Intents, Local Sockets)
e Package Signing

— Application packages (APKs)

— OS update packages (OTA packages)

— Project Mainline Modules (APEX)

e Permissions: System and custom (per app)

App Sandbox

e Android assigns unique Linux user ID to each application - separate processes
- Kernel-level application sandbox

e Security enforced at process level through standard Linux facilities (UID, GID)

e Sandbox at kernel level

- Security model extends to App1 App2 system_server
native code and OS applications too

Dalvik Dalvik Dalvik
Process Process Process
. . . UID 10000 UiD 10001 uID 1001
e FS permissions as a mechanism to o : : e
keep files / folders separate
v
(/data/.../..app1) (/data/.../...app2) Usys!*) (dev*)
Linux kernel

T

Grazm

ISEC

App Sandbox

e Installing new apps

— Creates new directory /data/data/<Package name>/
= E.g. /data/data/com.whatsapp/

$ 1s -1 /data/data/
drwx------ 4 u@_a97 ue_ag7 4096 2017-01-18 14:27 com.android.calendar
drwx------ 6 ud_al2e uoe al2e 4096 2017-01-19 12:54 com.android.chrome

e Accessing other apps’ directory - needs same UID
— Apps signed with same developer certificate
— And explicitly sharing same UID in AndroidManifest.xml

<maniftest android="http: f/schemas.android.com/apk/res/fandroid"
package="com.android.nfc"

sharedUserId="android.uid.nfc">

T

Grazm

ISEC

SELinux

Mandatory Access Control: Deny any access that is not explicitly allowed
Subjects are unable to modify the policy (cf. Discretionary Access Control!)

e Implemented as Linux Security Module: Hooks into kernel syscall code

Subject: A Linux process

Object: A system resource (file, socket, ...)

Domain: Label identifying a process or set of processes

Modes: Permissive (only log violations), Enforcing (disallow violations)
Policy: Define allowed operations for a subject/domain and specific object

Source: source android com |S EC ﬂTU
Grazm

https://source.android.com/security/selinux

SELinux on Android

Goal: Limit the power of privilege-escalation attacks

Example: If process netd (running as root) is compromised, still do not allow it to access
files only intended for process system_server

Since Android 5.0: Enforcing Mode

Harden Android Sandbox

More than 60 different domains

Policies improved with every new OS release

Source: source android com

https://source.android.com/security/selinux

SELinux on Android - Sample Rules

e No unlabeled files

e No ptrace

e No device node creation

e Norawl/O

e No mmap zero

e No mac_override

e No setting security properties

e No access to /data/security and
/data/misc/keystore

e No /dev/mem or /dev/kmem access
e No /proc usermode helpers
e No ptrace of init

e No access to generically labeled
/dev/block files

e Restrictions on mounting filesystems

Meanwhile > 250 Rules

No execute of files from outside of
/system

No access to /data/properties

No writing to /system or rootfs

No registering of unknown services
No entering init domain

No /sys/kernel/debug read access
No apps acquiring capabilities

No raw app access to camera, microphone,
NFC, radio, etc.

No app-generic socket access

No app/proc access to different security
domains

No access to GPS files
Cannot disable SELinux

T

Grazm

ISEC

Hardware Abstraction Layers (HAL)

e Android runs on a multitude of different devices
— Still: Share as much code between them as possible

e Solution: Android defines abstract hardware interfaces (HALS)
— Vendors implement them for their specific hardware
— Higher-level components do not have to deal with hardware specifics

Abstract Interface Interface Implementation

€ N (¢ N (4) /devi (g N\
A System Binder R Binder Hardware-Specific file Kernel Kermel
PP Frameworks “ ystem serve “ Service 0 Module

App Process System Process System Service Kernel

g J g J ____Frocess - J

ISEC il TU

Hardware Abstraction Layers (HAL)

e SELinux prevents apps from directly interacting with kernel device drivers
— They have to use Binder and go via the System Server and a HAL Service

e However: The IPC is too much overhead for performance-sensitive HW

e Solution: Same Process HAL
— Used e.g. for GPU (OpenGL/Vulkan) or NPUs

N\ /devi* (g \
System Native Library with Vendor-Specific file Kernel Kernel
Frameworks Abstract Interface Native Library 0 Module

App Process Kernel

_ J

ISEC il TU

Hardware Abstraction Layers (HAL)

Same Process HALs are detrimental to security

Apps have direct access to kernel attack surface
Complex logic and therefore likely vulnerabilities
Device drivers are maintained by chip/device vendors

SP HALs are actively exploited by attackers
— Local Privilege Escalation (LPE)
— From unprivileged app to kernel compromise

Project Zero

News and updates from the Project Zero team at Google

(Move to ...) v

Driving forward in Android drivers

Posted by Seth Jenkins, Google Project Zero

Introduction

Android's open-source ecosystem has led to an incredible
diversity of manufacturers and vendors developing software that
runs on a broad variety of hardware. This hardware requires
supporting drivers, meaning that many different codebases carry
the potential to compromise a significant segment of Android
phones. There are recent public examples of third-party drivers
containing serious vulnerabilities that are exploited on Android.
While there exists a well-established body of public (and In-the-
Wild) security research on Android GPU drivers, other chipset
components may not be as frequently audited so this research
sought to explore those drivers in greater detail.

Source: Google Project Zero

ISEC

T

Grazm

https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html?m=1

Multi-User support

e Originally for tablets only, now for phones too (> Android 5.0)
e Usersisolated by UID / GID and SELinux

e Separate settings & app data directories
— System directory: /data/system/users/<user ID>/
— App data directory: /data/user/<user ID>/<pkg name>/

e Apps have different UID and install state for each user
— App UID: uid = userId * 10000 + (appId % 10000)
— Shared Apps: Install state in per-user package-restrictions.xml

e External storage isolation

ISEC il TU

User Types

e Primary user (owner)
— Full control over device

Set up new user

e Secondary users

You have been added to this phone. — Restricted profile

Important: = Share apps with primary user

- The phone’s owner can uninstall u Only on tablets

your apps Or remove your space)

completely. — Managed profile

-Any other user can accept updated = Separate apps and data but share Ul with primary user

app permissions on your behalf.

= Managed by Device Policy Client (DPC)

- As with any computer, you should only
share this phone with people you trust.

(® Continue

O Quit

e (Guest user
— Temporary, restricted access to device

NEXT > — Data (session) can be deleted T

Grazm

ISEC

Key Management

Android KeyStore

e System-managed, secure cryptographic key store
— Hardware-backed: Trusted Execution Environment (ARM TEE)
— Optionally: Additional Secure Element (,StrongBox")
— Accessible to apps through Java Crypto APIs
— Import keys, perform crypto operations without exposing key material
— Strict separation between keys of different applications

e Android OS defines the KeyMaster HAL interface
— Vendors either provide their own KeyMaster Trusted Application (TA)
— Or adopt the open-source Trusty OS reference implementation

Source: source android.com

https://source.android.com/security/keystore

KeyStore: Access Control

e Developers can limit how a new key may be accessed
— Limit operations: E.g. only use key for signatures
— Require user authentication (fingerprint or PIN)
— Specify key expiration date
— Request delay between accesses

e Some requirements are only checked in software
— Depending on implementation

Source: source android com

https://source.android.com/security/selinux
https://source.android.com/security/keystore/features
https://source.android.com/security/selinux

Key Store: Key Attestation

Goal: Cryptographically proof that a particular public key is hardware-backed
i.e. the corresponding private key can not be extracted

e KeyMaster can generate an X.509 certificate chain for the key
— Also includes information on the device state, key access control, and caller app

e Chainincludes device-specific certificate
e Root of chain: Google Hardware Attestation Root certificate

e Best practice:

— Include the attestation certificate chain in communication to backend server
— Only serve requests if chain successfully validated

Source: developerandroid com ISEC ﬂTU
Grazm

https://developer.android.com/training/articles/security-key-attestation

Key Store: Fingerprint Authentication

e Developers can require Fingerprint Authentication for sensitive operation
— E.g. authorizing banking transactions

e Many app developers implement this insecurely

BiometricPrompt prompt = new BiometricPrompt.Builder(context).build();

prompt.authenticate(cryptoObject, executor, new BiometricPrompt.AuthenticationCallback() {
@Override

public void onAuthenticationSucceeded(BiometricPrompt.AuthenticationResult result) {
// Authenticated!?

// Only if we utilize the cryptographic result in result.getCryptoObject()!!!
}

1)

e Root attacker may modify app to just call the success callback

e Solution: Use the private key unlocked by the successful authentication
— Sign server challenge, check on server, ensures TEE was actually involved

Source: Antonio Bianchi et al - Broken Fingers, On the Usage of the Fingerprint AP in Android ISEC

T

Grazm

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03B-1_Bianchi_paper.pdf

Certificates & PKI

e Android-specific trust store for TLS certificates

e Trust anchors (Root CAs)
— Pre-installed (,system certificates”)
— User-installed (,user certificates”)

e User certificates can be installed, but
— Must be explicitly confirmed by user
— May be rejected by individual apps

12:18

& Trusted credentials

SYSTEM USER

AC Camerfirma S.A. ®
Chambers of Commerce Root - 2008

AC Camerfirma S.A. @
Global Chambersign Root - 2008

ACCV

ACCVRAIZ1 .
Actalis S.p.A./03358520967 ®

Actalis Authentication Root CA

AddTrust AB .
AddTrust External CA Root

AffirmTrust o
AffirmTrust Commercia

AffirmTrust)
AffirmTrust Networking

AffirmTrust ®
AffirmTrust Premium

AffirmTrust @
AffirmTrust Premiu m ECC

Agencia Catalana de Certificacio (NIF

Q-0801176-1) .
EC-ACC
Amazon .

ISEC

T

Grazm

MDM

AM O W 12:59 e Device security policy can be set by admin

Activate device administrator?

— Password / PIN policy
Google Apps Device Policy — Device |0Ck/ UnIOCk

Touch Activate to set this application as the o Storage en C ry ptl On
devicg policy manager or touch Cancel to
unregister — Camera access

Activating this administrator will allow the
app Device Policy to perform the following
operations:

Erase all data e Needs to be activated by user

Erase the phone's data without warning by
performing a factory data reset.

Change the screen lock
Change the screen lock.

i e Cannot be directly uninstalled

Control the length and the characters
allowed in screen lock passwords and
PINs.

Monitor screen-unlock attempts

Monitor the number of incorrect passwords ® May be reqUIred tO SynC aCCOU nt data

typed. when unlocking the screen, and lock

— Microsoft Exchange (EAS)

CANCEL ACTIVATE

oo o [

T

Grazm

ISEC

Rooting

Android Rooting

Rooting refers to the process of obtaining root permissions — ie. the ability to run
code (usually a shell) with superuser privileges.

e |f bootloader unlockable:
— Rooting doesn’t require any privilege escalation exploits
— Unlike jailbreaking on iOS
— Simplest form of rooting: Flashing ROM that contains a su application

e Otherwise: Need privilege escalation exploit
— “Soft-rooting”: Obtain root permission by exploiting vulnerable privileged process

— Only possible on legacy Android versions
= SELinux

ISEC il TU

Systemless Root

e Problem: SELinux prevents any process from obtaining full root permissions
— Even processes that run as root are restricted to a subset of capabilities

e Problem: Verified Boot requires the system partition to be read-only

e Solution: Start superuser daemon before SELinux is fully started
— Set a custom init program that spawns SU daemon
— Then hand over to Android’s original init program

e This can be accomplished by just modifying the boot partition

— System partition is untouched: OTA updates can still be installed
= dm-verity hashes are unaffected

— Example: Magisk

e 21.03.2025
— Application Security on Android |

e 04.04.2025
— Application Security on Android Il

	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Android
	Slide 10: Android Device Architecture
	Slide 11: Android System Architecture
	Slide 12: Android Security Architecture
	Slide 13: Binder
	Slide 14: Android Fragmentation
	Slide 15: Generic Kernel Image
	Slide 16: Generic Kernel Image
	Slide 17: Android Fragmentation Today
	Slide 18: Android Security Bulletins
	Slide 19
	Slide 20: Verified Boot
	Slide 21: Verified Boot Flow
	Slide 22: dm-verity – Insight
	Slide 23
	Slide 24: Android Data Encryption Systems
	Slide 25: File-Based Encryption
	Slide 26: File-Based Encryption
	Slide 27: File-Based Encryption (Simplified)
	Slide 28: File-Based Encryption: Flaw 1
	Slide 29: File-Based Encryption: Flaw 2
	Slide 30: File-Based Encryption: Flaw 3
	Slide 31: File-Based Encryption: Flaw 4
	Slide 32: File-Based Encryption: Flaw 5
	Slide 33
	Slide 34: Android Security Model
	Slide 35: App Sandbox
	Slide 36: App Sandbox
	Slide 37: SELinux
	Slide 38: SELinux on Android
	Slide 39: SELinux on Android – Sample Rules
	Slide 40: Hardware Abstraction Layers (HAL)
	Slide 41: Hardware Abstraction Layers (HAL)
	Slide 42: Hardware Abstraction Layers (HAL)
	Slide 43: Multi-User support
	Slide 44: User Types
	Slide 45
	Slide 46: Android KeyStore
	Slide 47: KeyStore: Access Control
	Slide 48: Key Store: Key Attestation
	Slide 49: Key Store: Fingerprint Authentication
	Slide 50: Certificates & PKI
	Slide 51: MDM
	Slide 52
	Slide 53: Android Rooting
	Slide 54: Systemless Root
	Slide 55: Outlook

