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e How many measurements (traces) do we have?

e One: Only a single execution of the cryptographic algorithm
e Many: Record many executions, each using different inputs
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e How many measurements (traces) do we have?

e One: Only a single execution of the cryptographic algorithm
e Many: Record many executions, each using different inputs

e Do we perform profiling?

e YES: Value x causes power consumption p
e NO: We use a model e.g. p(x) &~ Hamming weight(x)
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(ROUgh) Taxonomy www.tugraz.at

Non-profiled Profiled
Attacks Attacks
One or few observations | . 1o SCA | Profiled simple SCA

with fixed data
Many observations

. . Differential SCA | Profiled differential SCA
with varying data
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“Simple” Side-Channel Analysis RIVEEE EaZat
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e Derive key directly from one or very few power traces

Often requires detailed knowledge about the implementation and more complex
statistical models

No profiling

But what about symmetric crypto?
e Constant control flow, only data leakage
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(ROUgh) Taxonomy www.tugraz.at

Non-profiled Profiled
Attacks Attacks
One or few observations | o '\ ccp Profiled simple SCA

with fixed data

Many observations | . vial SCA | Profiled differential SCA

with varying data

n Rishub Nagpal — IAIK — Graz University of Technology



Preliminaries: AES www.tugraz.at

e Advanced Encryption Standard
Block cipher with key size: 128/192/256 bit

Symmetric
State size: 128 bit
e Organized as 4 x 4 bytes

4 round functions
e SubBytes
e ShiftRows
e MixColumns
e AddRoundKey

10 rounds in total (4 initial round)
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Preliminaries: AES

2. SubBytes

1. AddRoundKey
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3. ShiftRows 4. MixColumns
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Preliminaries: AES www.tugraz.at

e Initial /first round

e Round key = k
e Other roundkeys are derived from AES key schedule Bytes
foriin0...15

n Rishub Nagpal — IAIK — Graz University of Technology



Preliminaries: Predicting Power Consumption s

e Lets assume we “attack” an AES implementation with

a known key. ..

for iin0...15
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Preliminaries: Predicting Power Consumption www.tugraz.at

e Lets assume we “attack” an AES implementation with
a known key. ..

e We can: '—T'—|

e can request the encryption of a known plaintext 9
e calculate intermediate values of corresponding AES
computations

e For example vy with vo = SubBytes(po @ ko) BS)IE[Jb
es
e predict the power consumption of, e.g., MOV(vp) with a

power model

foriin0...15
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Preliminaries: Predicting Power Consumption www.tugraz.at

e Lets assume we “attack” an AES implementation with

a known key. .. l___|
pi
e We can:
e can request the encryption of a known plaintext 9
e calculate intermediate values of corresponding AES

computations
e For example vy with vo = SubBytes(po @ ko)
e predict the power consumption of, e.g., MOV(vp) with a
power model

e Repeat these steps x-times using different plaintexts

e — x power traces with x corresponding predictions for foriin0...15
the power consumption of MOV(vp)
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e For each point in time we have in total x samples

e Corresponding to the x power traces
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e For each point in time we have in total x samples

e Corresponding to the x power traces
e We also have in total x power predictions of MOV(vp)

e let's correlate them!
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

For each point in time we have in total x samples

e Corresponding to the x power traces

We also have in total x power predictions of MOV(v)

Let's correlate them!

But when does the MOV(vp) occur in the power trace?
o \_(VL_/"
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

Corr. Coeff.

e For each point in time we have in total x samples
e Corresponding to the x power traces
e We also have in total x power predictions of MOV(vp)
e Let's correlate them!
e But when does the MOV(vp) occur in the power trace?
o \_(V_/7
e Let's just try all possible points in time:
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e We can model the power consumption of the processing of certain intermediate

values!
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e We can model the power consumption of the processing of certain intermediate
values!
e But we require knowledge of the key to calculate vy in first place...
e vy = SubBytes(pg @ ko)
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e We can model the power consumption of the processing of certain intermediate
values!
e But we require knowledge of the key to calculate vy in first place...

e vy = SubBytes(pg @ ko)
e So far, this is not useful for an attack. ..
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Preliminaries: Testing Predictions of Power Consumption RIVEEE EaZat

e We can model the power consumption of the processing of certain intermediate
values!

e But we require knowledge of the key to calculate vy in first place...
e vy = SubBytes(pg @ ko)
e So far, this is not useful for an attack. ..

e Maybe there is a way to test parts of the key using power side-channels. ..
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Preliminaries: Divide and Con www.tugraz.at

e Enumerating all 2128 possible keys of AES-1287?
e Q1 billion keys / second = (1 trillion) x (age of universe)
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Preliminaries: Divide and Conquer RIVEEE EaZat

e Enumerating all 2128 possible keys of AES-1287?

e Q1 billion keys / second = (1 trillion) x (age of universe)
e Instead: Recover key parts individually

o 28 possibilities per key byte

e 16 bytes — 4096 values to test

e But we can't test just using plain/ciphertexts...
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Preliminaries: Divide and Conquer RIVEEE EaZat

e Enumerating all 2128 possible keys of AES-1287?

e Q1 billion keys / second = (1 trillion) x (age of universe)
e Instead: Recover key parts individually

o 28 possibilities per key byte

e 16 bytes — 4096 values to test

e But we can't test just using plain/ciphertexts...

e Test them using side-channels!

e Use information on intermediate values that depend on 1 byte of key!
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Differential Power Analysis (DPA) Overview A

1. Select target operation in the AES algorithm
e Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
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Differential Power Analysis (DPA) Overview Rarystazet

1. Select target operation in the AES algorithm
e Dependence on inputs and small number of key bits (e.g. 8-bit subkey)

2. Query device with different inputs and measure power consumption
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e 28 — 256 possibilities (hypotheses)
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Differential Power Analysis (DPA) Overview Rarystazet

1. Select target operation in the AES algorithm
e Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
2. Query device with different inputs and measure power consumption
3. Enumerate all possible values of one subkey
e 28 — 256 possibilities (hypotheses)
4. Predict power consumption of targeted operation based on all inputs and the
current key hypothesis
e Use power model such as Hamming weight
5. Compare predictions with real measurements

e Key hypothesis that fits best is most likely correct
e What "fits best”? — Correlation!
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Step 1: Select target operation in the AES algorithm A

e Should depend on: 9
e Small number of key bits (enumerable, e.g. 8)
e Known and varying data (plain/ciphertext)
. . Sub
e Common choice is SubBytes output of first round

e Why not output of AddRoundKey? — later
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Step 2: Measure Power Consumption s

e Query device Oscilloscope
e Gather 10 plain/ciphertext

e Measure power consumption of en/decryption
e Voltage over R (shunt resistor) ~ current
e Oscilloscope measures voltage
e At least 1 sample per clock cycle DC
e Measurement must include the targeted operation

Device

Rishub Nagpal — IAIK — Graz University of Technology



Step 2: Measure Power Consumption A

Power

|
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Sample .10%

e How to know what part is measured?

e Visual inspection, trial&error, experience,...
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Step 2: Measure Power Consumption

Rl | HW | | ‘ ‘ 0| M W if A\
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Sample

e Traces should be aligned — same operation at same instant in trace
e — Trigger on communication

e — Trigger on trace feature (distinctive pattern)

(with oscilloscope support or through post-alignment)
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Step 2: Measure Power Consumption

e Side-channels are noisy

1. Exploitable signal S M 1

2. Noise N q;J OWWIWWW

\ \ \ \
0 200 400 600 800
Sample
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Step 2: Measure Power Consumption s

e Side-channels are noisy 2 MM MU“ H S
1. Exploitable signal N 'ﬂ“ j “ “‘U
2. Noise Nb ’ E 0%{"' ”m‘ W Mmﬂwﬂ M“ ‘M‘ Ji

e Common metric:
Signal-to-Noise-Ratio SNR = 0% /03, 22

0 200 400 600 800
Sample
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Step 2: Measure Power Consumption

www.tugraz.at

e Side-channels are noisy

1. Exploitable signal S
2. Noise N

e Common metric:
Signal-to-Noise-Ratio SNR = 0% /03,

e Higher SNR — Better attacks

Power
o
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=
—
r——
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0 200 400 600 800
Sample

Rishub Nagpal — IAIK — Graz University of Technology



Step 2: Measure Power Consumption s

e Averaging
e Run device multiple times with same inputs
e Average power consumption — reduce noise
e 03 goes down with 1 / #traces
(only for electrical / random noise)
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Step 2: Measure Power Consumption s

e Averaging
e Run device multiple times with same inputs
e Average power consumption — reduce noise
e 03 goes down with 1 / #traces
(only for electrical / random noise)
e Filtering
e Power side-channel is slow, but sampling can be fast
e Lower frequencies more informative, higher frequencies more noisy
e Low-pass filtering analog/digital
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Step 2: Measure Power Consumption s

e Averaging
e Run device multiple times with same inputs
e Average power consumption — reduce noise
e 03 goes down with 1 / #traces
(only for electrical / random noise)

e Filtering

e Power side-channel is slow, but sampling can be fast
e Lower frequencies more informative, higher frequencies more noisy
e Low-pass filtering analog/digital

e Lots of other signal-processing options...
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Step 3: Enumerate Subkeys www.tugraz.at

Key
candidates
kol ki| .. |k«
do Voo Vo] .. |Vok
) d Viovia| .. Vik
Plain/ C
. rypto
Ciphertext X
; Algorithm
do Voo Vb1| .. |Vbk
Hypothetical
processed values
(DxK)

e D inputs (#measurements)
e K key hypotheses (K = 28)

e D x K hypothetical processed values
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www.tugraz.at

Step 4: Predict Power Consumption

voolvoal .. Jvox hoolhoa| .. Jhox
ViojVvia] .. V1K Power h1,o h1,1 .. h1,K
Model
voo|vo1] .. Jvok hoolhoa] .. |hok
Hypothetical Hypothetical power
processed values consumption
(D x K) (D xK)

e Common power models

e Hamming weight (number of set bits)
e Hamming distance (Hamming weight of XOR difference between two values)
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Step 5: Comparison www.tugraz.at

e Trace matrix Time (1..L)

e Each measurement has L samples

e Problems:

Measurements
e [ can be large (1..D)

e We have no idea when targeted operation

occurs

Power Consumption

e Simply test all locations! OxL)
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Comparison www.tugraz.at

Time (1..L) Key Hypothesis (1..K)

Measurements
(1..D)

Measurements
(1..D)

Statistical
Analysis

Power Consumption
(DxL)

Hypothetical power
consumption (D x K)

Time (1..L)

Key Hypothesis
(1.K)

Score (Kx L)
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Comparison www.tugraz.at

Time (1..L) Key Hypothesis (1..K)
— =

Measurements
(1..D)

Measurements
(1..D)

Statistical
Analysis

Power Consumption
(DxL)

Hypothetical power
consumption (D x K)

Time (1..L)

Key Hypothesis
(1.K)

Score (K x L)
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Step 5: Comparison www.tugraz.at

e Statistical Analysis via Pearson Correlation Coefficient p
e Linear relationship between 2 random variables
(how much do they change together)
e X: predictions corresponding to one key hypothesis
e Y: measured samples corresponding to one point in time

Cov = Covariance,

COV(X, y) E[(X _ MX)(Y _ My)] Var = Variance,
P = = E = Expected value,
\/Var(X) . Var( Y) Ox0y o = Standard deviation,
@ = Mean
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Step 5: Comparison www.tugraz.at

e Statistical Analysis via Pearson Correlation Coefficient p
e Linear relationship between 2 random variables
(how much do they change together)
e X: predictions corresponding to one key hypothesis
e Y: measured samples corresponding to one point in time

Cov = Covariance,

COV(X y) E[(X _ MX)(Y _ My)] Var = Variance,
= E = Expected value,
\/\/ar Var Y) OxTy o = Standard deviation,
@ = Mean
e Estimate:

D e 1
N Vilxi = X)2/ (v — ¥)? n g
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Exemplary Outcome www.tugraz.at
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Exemplary Outcome www.tugraz.at

0.8 T I
—— Correct key
Wrong key
0.6 [~ N
5
o
“ 04 |
5
)
0.2 N
0= M\’”“»"MI\AA“ﬁ\ﬂ"wwmmfW\“J' M. ﬂ’f"”ﬂwwﬂ er’ A‘W m‘\MuWA il ‘A‘M'«I Pl IW“'\M“/}M M\J 'W M Mﬂl
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Sample

Rishub Nagpal — IAIK — Graz University of Technology



Exemplary Outcome
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Exemplary Outcome
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Exemplary Outcome

www.tugraz.at
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Some Notes on DPA
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Correlation Coefficient p www.tugraz.at

e —1<p(X,Y)<1

e If pis-1or1then X isa “linearly scaled version” of Y
e Leakage behaves mostly linear

e p is simple and converges fast

e If X and Y are independent then p(X, Y) =0

e Not necessarily true in other direction...
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Zero Correlation # Independence www.tugraz.at

1.0 0.8 0.4
1.0 1.0 1.0
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Correlation Coefficient p

www.tugraz.at
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e We care about the absolute correlation coefficient
— Strong negative correlation is also good!
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Estimation of P www.tugraz.at

0.8 —

0.6 N

0.4 -

Corr. Coeff.

Wrong keys
Correct key

0 T T | | | | | |
2 4 8 16 32 64 128 256 512 1024

# Traces

0.2

e Estimating value of p requires certain amount of traces

e Wrong keys approach 0, correct key the real p.
e Intuitive: The lower p. the more traces are required
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Estimation of P www.tugraz.at

e There exists some fancy maths to determine #traces

e E.g., based on SNR
e Which we will not go into now...
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Estimation of P www.tugraz.at

e There exists some fancy maths to determine #traces

e E.g., based on SNR
e Which we will not go into now...

e Simple rules for #traces

e Inversely quadratic in p. : pc/2 — #traces x 4
e Linear in noise: Noise variance x 2 — #traces x 2
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On the Targeted Operation www.tugraz.at

Xj = SubBytes(k; ) p,') X;i = ki ® p;
1 \ \ \ \ 1 | \ |
£ 038 =
o o
) |9
o 06 o
S 04 S
X X
T T
= =
0 50 100 150 200 250 0 50 100 150 200 250
Key Candidates Key Candidates

e Intuition: “Similar” keys have similar x; = k; @ p;
e Change 1 bit in k; — HW only changes by 1
e Flip all bits in k; — Correlation in other direction

e SubBytes: Changing 1 input bit affects all output bits in non-linear way
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On the Power Model

www.tugraz.at

hi = HW(SubBytes(k; @ p;))
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—— Correct key
0 T T | | | |

2 4 8 16 32 64 128 256 5121024
# Traces

Corr. Coeff.

hi = LSB(SubBytes(k; @ p;))
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e Choose power model that describes reality best

e Higher correlation — fewer traces
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D PA Reca p www.tugraz.at

e Requires little assumptions...
e On the attacked device (power models)
e On the concrete implementation (when does it leak?)
o Yet still effective
e But there are also downsides
e Simplifications that affect performance
e Not applicable to single traces or multiple traces with constant input
e Only target operations that depend on few key bits
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(ROUgh) Taxonomy www.tugraz.at

Non-profiled Profiled
Attacks Attacks

One or few observations

. . Simple SCA Profiled simple SCA
with fixed data

Many observations Differential SCA | Profiled differential SCA

with varying data

e Characterize (profile) power consumption of target device
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Profiled Attacks




www.tugraz.at
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Why Prof|l|ng7 www.tugraz.at

e DPA uses simplifications — not all information in trace is exploited

e Power models, leakage on single point in time, etc.
e Profiled attacks are more powerful — worst-case security evaluations
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Why Prof|l|ng7 www.tugraz.at

e DPA uses simplifications — not all information in trace is exploited
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Why Prof|l|ng7 www.tugraz.at

e DPA uses simplifications — not all information in trace is exploited
e Power models, leakage on single point in time, etc.
e Profiled attacks are more powerful — worst-case security evaluations
e DPA cannot be run on a single measurement
e “Differential” information between traces
e DPA requires prediction of values
e In some scenarios not possible (unknown or low amount inputs/outputs)
e Downsides

e Assumes attacker has access to same or similar device
e Can run it with known inputs (including key)
e Many profiling traces needed
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Basic Steps of a Profiled Attack www.tugraz.at

1. Pick an operation (e.g. MOV)
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Basic Steps of a Profiled Attack www.tugraz.at

1. Pick an operation (e.g. MOV)
2. Characterize leakage

e Profile power consumption for each possible processed value v
e Record traces with all inputs known, group according to v
e We call a profile a “template”

v=0 v=1 v=255

ANUIAWE
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Basic Steps of a Profiled Attack www.tugraz.at

3. Attack phase

e Compare (match) measured traces to all templates
e Use v which best fits, process probabilities...

v=0 v=1 v=255

SN -
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3. Attack phase
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e Use v which best fits, process probabilities...
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Basic Steps of a Profiled Attack www.tugraz.at

3. Attack phase

e Compare (match) measured traces to all templates
e Use v which best fits, process probabilities...

v=0 v=1 v=255

AUIANE
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Templates and Probability Theory www.tugraz.at

e Profiling: Estimation/learning of a Probability Density Function (PDF)

e For each v and each trace t: estimate P(T = t|v)
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e Profiling: Estimation/learning of a Probability Density Function (PDF)
e For each v and each trace t: estimate P(T = t|v)
e Attack: Evaluation of PDFs at measured samples

e Record trace t,
e Compute P(T = t,|v) for each v (probability that t is measured given v)
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Templates and Probability Theory www.tugraz.at

e Profiling: Estimation/learning of a Probability Density Function (PDF)
e For each v and each trace t: estimate P(T = t|v)

e Attack: Evaluation of PDFs at measured samples
e Record trace t,

e Compute P(T = t,|v) for each v (probability that t is measured given v)

e Aka: Machine Learning
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Statistical Modeling of Traces www.tugraz.at

e We still need some assumptions to allow efficient profiling

e Good approximation:
Traces follow (multivariate) Gaussian (i.e., normal) distribution N/
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variate Case www.tugraz.at

0.6
e PDF characterized by
e Mean p 041 h
e Std. dev. o, variance o2
0.2+ -
oL ;
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0.6
e PDF characterized by
e Mean p 041 h
e Std. dev. o, variance o2
e For each possible value v estimate: 0.2} -
e Means pg, ft1, - - -, fhy
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variate Case www.tugraz.at

0.6
e PDF characterized by
e Mean s U b
e Std. dev. o, variance o2
e For each possible value v estimate: 0.2 N
e Means pg, ft1, - - -, fhy
e Std. dev. 0g,01,...,0, oLt ‘
.- . . . _5 0 5
e Intuitive interpretation
e 1 = true power consumption of data i f(x|p, 0%) = 1 eXp—(X—u)z/%2
® 0; = noise V2mo?
. . . _ 1 —
Estimation: 02 = —L- 37 | (x; — X)?
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Multivariate Case www.tugraz.at

Bivariate Gaussian

e Considers multiple samples
e PDF characterized by:
e Mean vector m = (mq, my,...)"
11 Q2

e Covmatrix C= | 21 2
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Multivariate Case www.tugraz.at

Bivariate Gaussian

e Considers multiple samples
e PDF characterized by:
e Mean vector m = (mq, my,...)"
11 Q2

e Covmatrix C= | 21 2

e Again for each possible value:

e Means mg,mq, ..., m,
e Cov Matrixes Cy,Cy,...,C, f(x) =
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Practical Limitations in Template Attacks R A P

e Can't model the entire trace as multivariate Gaussian

e Cis (L x L) matrix ...
e C tends to be badly conditioned (it is close to being singular)
— numerical problems with matrix inversions
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Practical Limitations in Template Attacks R A P

e Can't model the entire trace as multivariate Gaussian

e Cis (L x L) matrix ...
e C tends to be badly conditioned (it is close to being singular)
— numerical problems with matrix inversions

e Solution 1: Dimensionality reduction

e Generic techniques such as Principal Component Analysis (PCA)
e Selecting a subset of samples: Points-Of-Interest (POI)

e Solution 2: Reduced templates

e Assume “independent” samples
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Selecting Points of Interest (POI)

www.tugraz.at

0.8
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0.4

Corr. Coeff.

0.2

200 400 600 800 1,000 1,200 1,400 1,600 1,800
Sample

e Only small set of samples has information about v
e As seen during DPA

e "Feature Selection” in Machine Learning
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Selecting Points of Interest (POI)

www.tugraz.at

1. Use points of highest correlation

e Does not capture non-HW leakages
e Does not capture leakages for f(v)
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Selecting Points of Interest (POI)

www.tugraz.at

0.8
t‘..q—)' 0.6
1. Use points of highest correlation S v
e Does not capture non-HW leakages £ 02
(@) c
e Does not capture leakages for f(v)
Sample
2. Welch t-test
mj — myj
e Statistical test if two populations have same e
o* g~
J
mean =+

e Use points where means significantly differ
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Selecting POls using t-tests www.tugraz.at

e Create multiple groups of traces corresponding to different cipher inputs
e Each group consists of the same amount of traces
e E.g.: 2 groups: random inputs, some fixed input
e E.g.: 256 groups: 0x0000. .., 0x0100. .., 0x0200..., ...

e For each group of traces, and each point in time, pre-compute mean m and std. dev. o
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Selecting POls using t-tests

e Create multiple groups of traces corresponding to different cipher inputs

e Each group consists of the same amount of traces
e E.g.: 2 groups: random inputs, some fixed input
e E.g.: 256 groups: 0x0000. .., 0x0100. .., 0x0200..., ...
e For each group of traces, and each point in time, pre-compute mean m and std. dev. o

e For each point in time: 2
e Perform pair-wise t-tests between all groups ~ #8groups mi — m; o
e Sum up the squares of t-scores — SOST T for 1>
e If you only use 2 groups this boils down to the 7J/=1 % + %

t-test formula from before
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Selecting POls using t-tests

e Create multiple groups of traces corresponding to different cipher inputs

e Each group consists of the same amount of traces
e E.g.: 2 groups: random inputs, some fixed input
e E.g.: 256 groups: 0x0000. .., 0x0100. .., 0x0200..., ...
e For each group of traces, and each point in time, pre-compute mean m and std. dev. o

e For each point in time: 2
e Perform pair-wise t-tests between all groups ~ #8groups mi — m; o
e Sum up the squares of t-scores — SOST T for 1>
e If you only use 2 groups this boils down to the 7J/=1 % + %

t-test formula from before

e Captures all first-moment (mean) leakage

e Automatically captures f(v)
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Comparison www.tugraz.at

t-test
1 DPA 107
I 6 T =

0.8 B
& 4l i
8 0.6
[e)
¥ 2
§ 0.4 oo B

0.2 J{

0 ML bR L Vod WMt ! 0 | i | |
0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000
Sample

. Sample
e t-test also captures key addition = f(v)

e t-test has similar peaks, but different relative heights
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A Word of Caution www.tugraz.at

e Don't select too many points!

SOST

\ \ \ \ \
1,740 1,760 1,780 1,800 1,820

Sample
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A Word of Caution www.tugraz.at

e Don't select too many points!

e Don't use points close to each other

e High linear dependency
— badly conditioned C
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A Word of Caution www.tugraz.at

e Don't select too many points!

e Don't use points close to each other

e High linear dependency
— badly conditioned C

SOST

e Some simple guides for power SCA

e Only 1 point per clock cycle (power is slow)

e Only use distinctive peaks of t-score

\ \ \ \ \
1,740 1,760 1,780 1,800 1,820

Sample
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www.tugraz.at

e Reduced Templates

e Assume samples are linearly independent — all covariances are 0

e Normalize traces: Divide by o at each point in time — ¢ =1 at all times
— C becomes identity matrix |

e Reduces complexity of profiling and attacking

e But somewhat worse performance (or complete failure)
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Further Simplifications www.tugraz.at

e Reduced Templates

e Assume samples are linearly independent — all covariances are 0
e Normalize traces: Divide by o at each point in time — ¢ =1 at all times
— C becomes identity matrix |

e Reduces complexity of profiling and attacking
e But somewhat worse performance (or complete failure)

e Combine templates with power models

e Build templates for Hamming weights instead of values
e e.g., 9 instead of 256 templates
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Attack Phase www.tugraz.at

e Goal: Evaluate PDFs at observed power
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Attack Phase www.tugraz.at

e Goal: Evaluate PDFs at observed power

e Evaluate Gaussian, where x is the power, for each template:

_ ! e m)T e x
)= (27r)”~det(C)eXp( 3= m) - m))
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e Evaluate Gaussian, where x is the power, for each template:
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Attack Phase www.tugraz.at

e Goal: Evaluate PDFs at observed power

e Evaluate Gaussian, where x is the power, for each template:

_ ! e m)T e x
)= (27r)”~det(C)eXp( 3= m) - m))

e Receive p(t|v;) for i=1...V — likelihood

e Alternatively compute In(p(t|v;)), i.e., the log-likelihood:

In p(t|(v, k) = —% (In((2m)" - det(C)) + (¢t~ m) -1 (& —m))
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Attack Phase www.tugraz.at

e v; with highest likelihood = most likely value

e Reduced templates: minimal ||(x — m)||?> = most likely value

vector norm: |[x||? = x¥ +x3 + x3 + ...
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Attack Phase www.tugraz.at

e v; with highest likelihood = most likely value

e Reduced templates: minimal ||(x — m)||?> = most likely value I—T'—I
vector norm: |[x||? = x¥ +x3 + x3 + ... 9
e From v to k
e pis known
e Each possible value of k — exactly one value of v Bytes

e p(tlk) = p(t|v = SubBytes(k & p))
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Attack Phase www.tugraz.at

e v; with highest likelihood = most likely value
e Reduced templates: minimal ||(x — m)||?> = most likely value I—T'—I
vector norm: |[x||? = x¥ +x3 + x3 + ... 9

e From v to k
e pis known
e Each possible value of k — exactly one value of v Bytes
e p(tlk) = p(t|v = SubBytes(k & p))

e Caution: Likelihood # probability

e We might want p(v;|t) or p(k;i|t)
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p(k|t) with Bayes Theorem www.tugraz.at

e Bayes: Update probabilities of A given new observation B

e General form
e P(A|B) = posterior probability P(A|B) = P(B|A) - P(A)
e P(B|A) = likelihood P(B)
e P(A) = prior probability
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www.tugraz.at

p(k|t) with Bayes Theorem

e Bayes: Update probabilities of A given new observation B

e General form

e P(A|B) = posterior probability P(A|B) = P(B|A) - P(A)
e P(B|A) = likelihood P(B)
e P(A) = prior probability
e In our case: ,
e p(t|k;) = likelihood from before p(kjlt;) = Kp(ti|kjl) - plk)
e p(k;) = prior (uniform) > =1 (p(tilkr) - p(k1))
e denom = “normalization”
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(ROUgh) Taxonomy www.tugraz.at

Non-profiled Profiled
Attacks Attacks
f .
One or few observations | ..\ 5 Profiled simple SCA

with fixed data

Many observations | 1y ential SCA | Profiled differential SCA

with varying data
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Template-Based “DPA” www.tugraz.at

e Thus far we used a single attack trace

e Extension to multi-trace setting: Bayesian Updating

e Update beliefs given new information
/
e Use Bayes theorem iteratively p(k-\t'-) _ P(ti’kj) ) P(kj)
e Posterior after previous trace S Z,K:l(p(tﬂk/) - p(kp))

= prior for next trace

Update key probabilities for each new trace
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Closed Form Expression www.tugraz.at

_ p(tlk) - p(k) — (Hfilp(ﬂlkj))-p(kj)
S k) o) p(kJ'T)_z:‘_l((n,-’ilp(tqk,))-p(k,))

p(kj[t7)
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Closed Form Expression www.tugraz.at

_ p(tlk) - p(k) — (Hfilp(ﬂlkj))-p(kj)
S k) o) p(k"T)_z:‘_l((n,-'ilp(tqk,))-p(k,))

p(kj[t7)

e Caution: numerical problems

e Use log-likelihood
e Or do iterative updates
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www.tugraz.at

Reduced Template-Based “DPA”

e For reduced templates (C = I) simplification possible
e Determine most likely key using least-square test
e Single trace: Most likely key — minimal ||(x — m)
vector norm: [|x|[2 =xZ +x3 +x3 + ...
e Multiple traces: Minimal sum ||(x — m)||? over all traces

17
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Questions?
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