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Overview www.tugraz.at

Recap

Non-Profiled Attacks

Profiled Attacks
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Recap



Last Time... www.tugraz.at

• Power consumption depends on

• Executed operation

• Processed data

• Now: Exploitation
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(Rough) Taxonomy www.tugraz.at
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• How many measurements (traces) do we have?

• One: Only a single execution of the cryptographic algorithm

• Many: Record many executions, each using different inputs

• Do we perform profiling?

• YES: Value x causes power consumption p

• NO: We use a model e.g. p(x) ≈ Hamming weight(x)
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(Rough) Taxonomy www.tugraz.at

Non-profiled

Attacks

Profiled

Attacks

One or few observations

with fixed data
Simple SCA Profiled simple SCA

Many observations

with varying data
Differential SCA Profiled differential SCA
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Non-Profiled Attacks



“Simple” Side-Channel Analysis www.tugraz.at
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• Derive key directly from one or very few power traces

• Often requires detailed knowledge about the implementation and more complex

statistical models

• No profiling

• But what about symmetric crypto?

• Constant control flow, only data leakage
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Preliminaries: AES www.tugraz.at

• Advanced Encryption Standard

• Block cipher with key size: 128/192/256 bit

• Symmetric

• State size: 128 bit

• Organized as 4× 4 bytes

• 4 round functions

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

• 10 rounds in total (+ initial round)
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Preliminaries: AES www.tugraz.at
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Preliminaries: AES www.tugraz.at

• Initial/first round

• Round key = k

• Other roundkeys are derived from AES key schedule

Sub
Bytes

pi
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for i in 0 . . . 15
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Preliminaries: Predicting Power Consumption www.tugraz.at

• Lets assume we “attack” an AES implementation with

a known key. . .

• We can:

• can request the encryption of a known plaintext

• calculate intermediate values of corresponding AES

computations

• For example v0 with v0 = SubBytes(p0 ⊕ k0)

• predict the power consumption of, e.g., MOV(v0) with a

power model

• Repeat these steps x-times using different plaintexts

• → x power traces with x corresponding predictions for

the power consumption of MOV(v0)
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Preliminaries: Testing Predictions of Power Consumption www.tugraz.at

• For each point in time we have in total x samples

• Corresponding to the x power traces

• We also have in total x power predictions of MOV(v0)

• Let’s correlate them!

• But when does the MOV(v0) occur in the power trace?

•

• Let’s just try all possible points in time:
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Preliminaries: Testing Predictions of Power Consumption www.tugraz.at

• We can model the power consumption of the processing of certain intermediate

values!

• But we require knowledge of the key to calculate v0 in first place. . .

• v0 = SubBytes(p0 ⊕ k0)

• So far, this is not useful for an attack. . .

• Maybe there is a way to test parts of the key using power side-channels. . .
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Preliminaries: Divide and Conquer www.tugraz.at

• Enumerating all 2128 possible keys of AES-128?

• @ 1 billion keys / second ⇒ (1 trillion) × (age of universe)

• Instead: Recover key parts individually

• 28 possibilities per key byte

• 16 bytes → 4 096 values to test

• But we can’t test just using plain/ciphertexts...

• Test them using side-channels!

• Use information on intermediate values that depend on 1 byte of key!
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Differential Power Analysis (DPA) Overview www.tugraz.at

1. Select target operation in the AES algorithm

• Dependence on inputs and small number of key bits (e.g. 8-bit subkey)

2. Query device with different inputs and measure power consumption

3. Enumerate all possible values of one subkey

• 28 = 256 possibilities (hypotheses)

4. Predict power consumption of targeted operation based on all inputs and the
current key hypothesis

• Use power model such as Hamming weight

5. Compare predictions with real measurements

• Key hypothesis that fits best is most likely correct

• What ”fits best”? → Correlation!
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Step 1: Select target operation in the AES algorithm www.tugraz.at

• Should depend on:

• Small number of key bits (enumerable, e.g. 8)

• Known and varying data (plain/ciphertext)

• Common choice is SubBytes output of first round

• Why not output of AddRoundKey? → later

Sub
Bytes

pi

ki

vi
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Step 2: Measure Power Consumption www.tugraz.at

• Query device

• Gather IO plain/ciphertext

• Measure power consumption of en/decryption

• Voltage over R (shunt resistor) ≈ current

• Oscilloscope measures voltage

• At least 1 sample per clock cycle

• Measurement must include the targeted operation
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Step 2: Measure Power Consumption www.tugraz.at
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• How to know what part is measured?

• Visual inspection, trial&error, experience,...
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Step 2: Measure Power Consumption www.tugraz.at
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• Traces should be aligned → same operation at same instant in trace

• → Trigger on communication

• → Trigger on trace feature (distinctive pattern)

(with oscilloscope support or through post-alignment)
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Step 2: Measure Power Consumption www.tugraz.at

• Side-channels are noisy

1. Exploitable signal S

2. Noise N

• Common metric:

Signal-to-Noise-Ratio SNR = σ2
S/σ

2
N

• Higher SNR → Better attacks
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Step 2: Measure Power Consumption www.tugraz.at

• Averaging

• Run device multiple times with same inputs

• Average power consumption → reduce noise

• σ2
N goes down with 1 / #traces

(only for electrical / random noise)

• Filtering

• Power side-channel is slow, but sampling can be fast

• Lower frequencies more informative, higher frequencies more noisy

• Low-pass filtering analog/digital

• Lots of other signal-processing options...
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Step 3: Enumerate Subkeys www.tugraz.at

d0

d1

:

dD

k0 k1 .. kK

Crypto 
Algorithm

v0,0

v1,0

:

vD,0

v0,1

v1,1

:

vD,1

..

..

:

..

v0,K

v1,K

:

vD,K

Plain/
Ciphertext

Key
candidates

Hypothetical 
processed values

(D x K)

• D inputs (#measurements)

• K key hypotheses (K = 28)

• D × K hypothetical processed values

21 Rishub Nagpal — IAIK – Graz University of Technology



Step 4: Predict Power Consumption www.tugraz.at

v0,0

v1,0
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Hypothetical 
processed values

(D x K)                                                                                           (D x K)

Hypothetical power 
consumption

• Common power models

• Hamming weight (number of set bits)

• Hamming distance (Hamming weight of XOR difference between two values)
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Step 5: Comparison www.tugraz.at

• Trace matrix

• Each measurement has L samples

• Problems:

• L can be large

• We have no idea when targeted operation

occurs

• Simply test all locations!

Time (1..L)

Measurements
(1..D)

Power Consumption
(D x L)
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Step 5: Comparison www.tugraz.at
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Step 5: Comparison www.tugraz.at
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Step 5: Comparison www.tugraz.at

• Statistical Analysis via Pearson Correlation Coefficient ρ

• Linear relationship between 2 random variables

(how much do they change together)

• X : predictions corresponding to one key hypothesis

• Y : measured samples corresponding to one point in time

ρ =
Cov(X ,Y )√

Var(X ) · Var(Y )
=

E[(X − µX )(Y − µY )]

σxσy

Cov = Covariance,

Var = Variance,

E = Expected value,

σ = Standard deviation,

µ = Mean

• Estimate:

r =

∑
i (xi − x)(yi − y)√∑

i (xi − x)2
√∑

i (yi − y)2
x =

1

n

n∑
i=1

xi
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Exemplary Outcome www.tugraz.at
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Exemplary Outcome www.tugraz.at

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

Key Candidates

M
a
x.

C
or
r.

C
o
eff

.

27 Rishub Nagpal — IAIK – Graz University of Technology



Some Notes on DPA
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Correlation Coefficient ρ www.tugraz.at

• −1 ≤ ρ(X ,Y ) ≤ 1

• If ρ is -1 or 1 then X is a “linearly scaled version” of Y

• Leakage behaves mostly linear

• ρ is simple and converges fast

• If X and Y are independent then ρ(X ,Y ) = 0

• Not necessarily true in other direction...
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Zero Correlation ̸= Independence www.tugraz.at
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Correlation Coefficient ρ www.tugraz.at
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• We care about the absolute correlation coefficient

→ Strong negative correlation is also good!
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Estimation of ρ www.tugraz.at
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• Estimating value of ρ requires certain amount of traces

• Wrong keys approach 0, correct key the real ρc
• Intuitive: The lower ρc the more traces are required
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Estimation of ρ www.tugraz.at

• There exists some fancy maths to determine #traces

• E.g., based on SNR

• Which we will not go into now...

• Simple rules for #traces

• Inversely quadratic in ρc : ρc/2 → #traces × 4

• Linear in noise: Noise variance × 2 → #traces × 2
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On the Targeted Operation www.tugraz.at

xi = SubBytes(ki ⊕ pi )
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• Intuition: “Similar” keys have similar xi = ki ⊕ pi

• Change 1 bit in ki → HW only changes by 1

• Flip all bits in ki → Correlation in other direction

• SubBytes: Changing 1 input bit affects all output bits in non-linear way
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On the Power Model www.tugraz.at

hi = HW(SubBytes(ki ⊕ pi ))
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hi = LSB(SubBytes(ki ⊕ pi ))
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• Choose power model that describes reality best

• Higher correlation → fewer traces
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DPA: Recap www.tugraz.at

• Requires little assumptions...

• On the attacked device (power models)

• On the concrete implementation (when does it leak?)

• Yet still effective

• But there are also downsides

• Simplifications that affect performance

• Not applicable to single traces or multiple traces with constant input

• Only target operations that depend on few key bits
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(Rough) Taxonomy www.tugraz.at

Non-profiled

Attacks

Profiled

Attacks

One or few observations

with fixed data
Simple SCA Profiled simple SCA

Many observations

with varying data
Differential SCA Profiled differential SCA

• Characterize (profile) power consumption of target device
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Profiled Attacks



Recall www.tugraz.at
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Why Profiling? www.tugraz.at

• DPA uses simplifications → not all information in trace is exploited

• Power models, leakage on single point in time, etc.

• Profiled attacks are more powerful → worst-case security evaluations

• DPA cannot be run on a single measurement

• “Differential” information between traces

• DPA requires prediction of values

• In some scenarios not possible (unknown or low amount inputs/outputs)

• Downsides

• Assumes attacker has access to same or similar device

• Can run it with known inputs (including key)

• Many profiling traces needed
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Basic Steps of a Profiled Attack www.tugraz.at

1. Pick an operation (e.g. MOV)

2. Characterize leakage

• Profile power consumption for each possible processed value v

• Record traces with all inputs known, group according to v

• We call a profile a “template”
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Basic Steps of a Profiled Attack www.tugraz.at

3. Attack phase

• Compare (match) measured traces to all templates

• Use v which best fits, process probabilities...

...

v = 0 v = 1 v = 255
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Templates and Probability Theory www.tugraz.at

• Profiling: Estimation/learning of a Probability Density Function (PDF)

• For each v and each trace t: estimate P(T = t|v)

• Attack: Evaluation of PDFs at measured samples

• Record trace ta
• Compute P(T = ta|v) for each v (probability that t is measured given v)

• Aka: Machine Learning
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Statistical Modeling of Traces www.tugraz.at
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• We still need some assumptions to allow efficient profiling

• Good approximation:

Traces follow (multivariate) Gaussian (i.e., normal) distribution N
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Univariate Case www.tugraz.at

• PDF characterized by

• Mean µ

• Std. dev. σ, variance σ2

• For each possible value v estimate:

• Means µ0,µ1, . . . ,µv

• Std. dev. σ0,σ1, . . . ,σv

• Intuitive interpretation

• µi = true power consumption of data i

• σi = noise

−5 0 5
0

0.2

0.4

0.6

f (x |µ,σ2) =
1√
2πσ2

exp−(x−µ)2/2σ2

Estimation: σ2 = 1
n−1

∑n
i=1(xi − x)2
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Multivariate Case www.tugraz.at

• Considers multiple samples

• PDF characterized by:

• Mean vector m = (m1,m2, . . .)
T

• Cov matrix C =

c1,1 c1,2 . . .

c2,1 c2,2 . . .
...

...
. . .



• Again for each possible value:

• Means m0,m1, . . . ,mv

• Cov Matrixes C0,C1, . . . ,Cv

Bivariate Gaussian
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f (x) =
1√

(2π)n · det(C)
exp

(
−
1

2
(x−m)T · C−1(x−m)

)
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Practical Limitations in Template Attacks www.tugraz.at

• Can’t model the entire trace as multivariate Gaussian

• C is (L× L) matrix . . .

• C tends to be badly conditioned (it is close to being singular)

→ numerical problems with matrix inversions

• Solution 1: Dimensionality reduction

• Generic techniques such as Principal Component Analysis (PCA)

• Selecting a subset of samples: Points-Of-Interest (POI)

• Solution 2: Reduced templates

• Assume “independent” samples
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Selecting Points of Interest (POI) www.tugraz.at

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.2

0.4

0.6

0.8

Sample

C
or
r.

C
o
eff

.

• Only small set of samples has information about v

• As seen during DPA

• “Feature Selection” in Machine Learning
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Selecting Points of Interest (POI) www.tugraz.at

1. Use points of highest correlation

• Does not capture non-HW leakages

• Does not capture leakages for f (v)
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2. Welch t-test

• Statistical test if two populations have same

mean

• Use points where means significantly differ

mi −mj√
σ2
i
ni

+
σ2
j

nj
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Selecting POIs using t-tests www.tugraz.at

• Create multiple groups of traces corresponding to different cipher inputs

• Each group consists of the same amount of traces

• E.g.: 2 groups: random inputs, some fixed input

• E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., . . .

• For each group of traces, and each point in time, pre-compute mean m and std. dev. σ

• For each point in time:

• Perform pair-wise t-tests between all groups

• Sum up the squares of t-scores → SOST

• If you only use 2 groups this boils down to the

t-test formula from before

#groups∑
i ,j=1

 mi −mj√
σ2
i
ni

+
σ2
j

nj


2

for i ≥ j

• Captures all first-moment (mean) leakage

• Automatically captures f(v)

49 Rishub Nagpal — IAIK – Graz University of Technology



Selecting POIs using t-tests www.tugraz.at

• Create multiple groups of traces corresponding to different cipher inputs

• Each group consists of the same amount of traces

• E.g.: 2 groups: random inputs, some fixed input

• E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., . . .

• For each group of traces, and each point in time, pre-compute mean m and std. dev. σ

• For each point in time:

• Perform pair-wise t-tests between all groups

• Sum up the squares of t-scores → SOST

• If you only use 2 groups this boils down to the

t-test formula from before

#groups∑
i ,j=1

 mi −mj√
σ2
i
ni

+
σ2
j

nj


2

for i ≥ j

• Captures all first-moment (mean) leakage

• Automatically captures f(v)

49 Rishub Nagpal — IAIK – Graz University of Technology



Selecting POIs using t-tests www.tugraz.at

• Create multiple groups of traces corresponding to different cipher inputs

• Each group consists of the same amount of traces

• E.g.: 2 groups: random inputs, some fixed input

• E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., . . .

• For each group of traces, and each point in time, pre-compute mean m and std. dev. σ

• For each point in time:

• Perform pair-wise t-tests between all groups

• Sum up the squares of t-scores → SOST

• If you only use 2 groups this boils down to the

t-test formula from before

#groups∑
i ,j=1

 mi −mj√
σ2
i
ni

+
σ2
j

nj


2

for i ≥ j

• Captures all first-moment (mean) leakage

• Automatically captures f(v)

49 Rishub Nagpal — IAIK – Graz University of Technology



Comparison www.tugraz.at

DPA
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• t-test also captures key addition = f (v)

• t-test has similar peaks, but different relative heights
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A Word of Caution www.tugraz.at

• Don’t select too many points!

• Don’t use points close to each other

• High linear dependency

→ badly conditioned C

• Some simple guides for power SCA

• Only 1 point per clock cycle (power is slow)

• Only use distinctive peaks of t-score
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Further Simplifications www.tugraz.at

• Reduced Templates

• Assume samples are linearly independent → all covariances are 0

• Normalize traces: Divide by σ at each point in time → σ = 1 at all times

→ C becomes identity matrix I

• Reduces complexity of profiling and attacking

• But somewhat worse performance (or complete failure)

• Combine templates with power models

• Build templates for Hamming weights instead of values

• e.g., 9 instead of 256 templates
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Attack Phase www.tugraz.at

• Goal: Evaluate PDFs at observed power

• Evaluate Gaussian, where x is the power, for each template:

f (x) =
1√

(2π)n · det(C)
exp

(
−1

2
(x−m)T · C−1(x−m)

)
• Receive p(t|vi ) for i = 1 . . .V → likelihood

• Alternatively compute ln(p(t|vi )), i.e., the log-likelihood:

ln p(t|(v , k)) = −1

2

(
ln((2π)n · det(C)) + (t−m)T · C−1 · (t−m)

)
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Attack Phase www.tugraz.at

• vi with highest likelihood = most likely value

• Reduced templates: minimal ||(x−m)||2 = most likely value

vector norm: ||x||2 = x21 + x22 + x23 + . . .

• From v to k

• p is known

• Each possible value of k → exactly one value of v

• p(t|k) = p(t|v = SubBytes(k ⊕ p))

• Caution: Likelihood ̸= probability

• We might want p(vi |t) or p(ki |t)
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• vi with highest likelihood = most likely value

• Reduced templates: minimal ||(x−m)||2 = most likely value

vector norm: ||x||2 = x21 + x22 + x23 + . . .

• From v to k

• p is known

• Each possible value of k → exactly one value of v

• p(t|k) = p(t|v = SubBytes(k ⊕ p))

• Caution: Likelihood ̸= probability

• We might want p(vi |t) or p(ki |t)

Sub
Bytes

pi

ki

vi
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p(k |t) with Bayes Theorem www.tugraz.at

• Bayes: Update probabilities of A given new observation B

• General form

• P(A|B) = posterior probability

• P(B|A) = likelihood

• P(A) = prior probability

P(A|B) = P(B|A) · P(A)
P(B)

• In our case:

• p(t|kj) = likelihood from before

• p(kj) = prior (uniform)

• denom = “normalization”

p(kj |t′i ) =
p(t′i |kj) · p(kj)∑K

l=1(p(t
′
i |kl) · p(kl))
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(Rough) Taxonomy www.tugraz.at

Non-profiled

Attacks

Profiled

Attacks

One or few observations

with fixed data
Simple SCA Profiled simple SCA

Many observations

with varying data
Differential SCA Profiled differential SCA
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Template-Based “DPA” www.tugraz.at

• Thus far we used a single attack trace

• Extension to multi-trace setting: Bayesian Updating

• Update beliefs given new information

• Use Bayes theorem iteratively

• Posterior after previous trace

= prior for next trace

• Update key probabilities for each new trace

p(kj |t′i ) =
p(t′i |kj) · p(kj)∑K

l=1(p(t
′
i |kl) · p(kl))
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Closed Form Expression www.tugraz.at

p(kj |t′i ) =
p(t′i |kj) · p(kj)∑K

l=1(p(t
′
i |kl) · p(kl))

=⇒ p(kj |T) =

(∏D
i=1 p(t

′
i |kj)

)
· p(kj)∑K

l=1

((∏D
i=1 p(t

′
i |kl)

)
· p(kl)

)

• Caution: numerical problems

• Use log-likelihood

• Or do iterative updates
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Reduced Template-Based “DPA” www.tugraz.at

• For reduced templates (C = I) simplification possible

• Determine most likely key using least-square test

• Single trace: Most likely key → minimal ||(x−m)||2

vector norm: ||x||2 = x21 + x22 + x23 + . . .

• Multiple traces: Minimal sum ||(x−m)||2 over all traces
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Questions?
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