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Exercise 1

up to 15 points from:

• Task 1: Introduction [0.5 P]

• Task 2: Flush+Reload Attack on PIN Entry [3 P]

• Task 3: Covert Channel [5.5 P]

• Task 4: Spectre [3 P]

• Task 5: KASLR is bad, please break it [3 P]



Exercise 1 – Task 1

Both team members:

• Clone your repo, pull from upstream (a few days after team registration, check

Discord to get started early)
https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

• Make a histogram (use F+R calibration tool in demo folder)

• Choose a good threshold (the tool will not tell you what is “good”)

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git


Exercise 1 – Task 2

• Flush+Reload attack on a PIN entry library

• Library checks each PIN digit and calls 1 of 2 functions

• Recover the key by checking which functions were called



Exercise 1 – Task 3

• Cross-core cache covert channel

• Real/random binary data

• Raw capacity, bit error rate → Lukas redrabbyte@Discord

• Speed records: https://www.iaik.tugraz.at/teaching/materials/

scs/exercises/ex1/ & Discord

https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/
https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/


Exercise 1 – Task 4

• Run a Spectre attack on a provided library

• Leak a secret string by exploiting speculative execution

• Be as fast as possible



Exercise 1 – Task 5

• Break KASLR using one of the demonstrated approaches

• Simplest approach: use timing of prefetch instructions

• Bonus Points for using Data Bounce attack

• Visualize the output of your program

• Use Intel if you can, or ask us about AMD!



Info

• Lecture materials and exercise hints at

https://www.iaik.tugraz.at/scs/

• Discord: IAIK, SCS channel

https://www.iaik.tugraz.at/scs/
https://discord.com/invite/JdPPNT9
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Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Why targeting the cache?

• shared across cores

• fast

→ fast cross-core attacks!
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Timing differences

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow
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Mesuring timing leakage

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only
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Calibration

git clone

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

cd library2/demos/calibration/fr

make

./calibration

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git


Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases
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Step 1.1. Cache hits

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta



Step 1.2. Cache misses

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)



Step 2. Accurate timings

• very short timings

• rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]



Step 2. Accurate timings

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc
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rdtsc

function()

rdtsc

rdtsc

function()

[...]



Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence
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Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.
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Step 4. Find threshold

• as high as possible

• most cache hits are below

• no cache miss below
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Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Side-channel attack on user input

• locate key-dependent memory accesses

• with cache template attacks



Profiling Phase: one event

Attacker address space
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Victim address space
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Profiling Phase: one event
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Profiling Phase: one event
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Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80



What to profile?

# ps -A | grep gedit

# cat /proc/pid/maps

00400000-00489000 r-xp 00000000 08:11 396356

/usr/bin/gedit

7f5a96991000-7f5a96a51000 r-xp 00000000 08:11 399365

/usr/lib/x86_64-linux-gnu/libgdk-3.so.0.1400.14

...

memory range, access rights, offset, –, –, file name



Profiling a single event

cd cta_examples/profiling/generic_low_frequency_example

# the first parameter is the cache miss threshold

./spy

# start the targeted program

sleep 2; ./spy 200 400000-489000 -- 20000

-- -- /usr/bin/gedit

... and hold down key in the targeted program

save addresses with peaks!



Exploitation phase

cd cta_examples/exploitation/generic

./spy threshold file offset
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Memory accesses are cached

• Every memory reference goes through the cache

• Transparent to OS and programs



Directly mapped cache
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Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Problem: working on congruent addresses



2-way set associativity
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2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy



Caches today

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2
ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles
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(Unprivileged) cache maintainance

User programs can optimize cache usage:

• prefetch: suggest CPU to load data into cache

• clflush: throw out data from all caches

... based on virtual addresses
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CPU cache attacks

• cache-based keylogging

• crypto key recovery

• various implementations (AES, RSA, ECC, ...)

• up to 97% key bits recovered after 1 encryption

• cross-VM, cross-core, even cross-CPU

• any CPU vendor



Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core
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Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core



Access-driven attacks

Attacker monitors its own activity to find sets accessed by victim.

Prime+Probe

Percival [7]

Liu et al. [5]

Maurice et al. [6]

Flush+Reload

Gullasch et al. [3]

Yarom and Falkner [8]

Gruss et al. [2]

Same techniques for covert and side channels



Flush+Reload: Building Blocks

• Shared Library / load binary twice / page deduplication

• clflush throws data out of cache

→ We can throw other shared code out of the cache

• rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache
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• Shared Library / load binary twice / page deduplication
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• rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache



Flush+Reload: First steps

• Measure timing of cached memory

• Measure timing of non-cached memory (flush before measuring)

• Draw a histogram
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step 0: attacker maps shared library → shared memory, shared in cache
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Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data → fast access if the victim loaded the line

reloads data



Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory



Variants of Flush+Reload

• Flush+Flush [1]

• Evict+Reload [2] on ARM [4]



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed
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Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

slow
access



Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)



Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?
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