Ty,

1. Introduction

March 7, 2024

Side-Channel Security
Graz University of Technology

Side-Channel Security

Software

Mobile Hardware

-a,'

Daniel Gruss Rishub Nagpal Lukas Giner

e 2 persons per team

— register via lukas.giner@iaik.tugraz.at until Wednesday March 15,
08:00am

— include name, email and matriculation number of both team members

lukas.giner@iaik.tugraz.at

e 2 persons per team

— register via lukas.giner@iaik.tugraz.at until Wednesday March 15,
08:00am

— include name, email and matriculation number of both team members
e 2 exercises, each 15 points
e submission via git tag
e points based on exercise interview

e minimum of 4 points per exercise sheet to pass

lukas.giner@iaik.tugraz.at

e aim for the best or drop out now!

e 26 of 30 points — 1

e aim for the best or drop out now!
e 26 of 30 points — 1
e 22 of 30 points — 2
e 18 of 30 points — 3
e 15 of 30 points — 4

e minimum of 4 points per exercise sheet to pass

Second Chance

e Same Task
e Deadline: 1 week after negative exercise interview

e No penalty to reach 50%, then 25% reduction!

Second Chance

e Same Task

Deadline: 1 week after negative exercise interview

No penalty to reach 50%, then 25% reduction!

e e.g., 5 points on ex] — missing 10 points on ex2:
No reduction until 10 points are achieved on ex2, then -25%

Exercises

Ex1: Software Security

e Presentation: Thursday, 07.03.
e Deadline 1: Wednesday, 20.03., 08:00am
e Deadline 2: Wednesday, 08.05., 08:00am

Exercises

Ex1: Software Security

e Presentation: Thursday, 07.03.
e Deadline 1: Wednesday, 20.03., 08:00am
e Deadline 2: Wednesday, 08.05., 08:00am

Ex2: Hardware Security

e Presentation: Thursday, 09.05.
e (Preliminary) Deadline: Wednesday, 26.06., 08:00am

Exercise 1

up to 15 points from:

e Task 1: Introduction [0.5 P]

e Task 2: Flush+Reload Attack on PIN Entry [3 P]
e Task 3: Covert Channel [5.5 P]

e Task 4: Spectre [3 P]

Task 5: KASLR is bad, please break it [3 P]

Exercise 1 — Task 1

Both team members:

e Clone your repo, pull from upstream (a few days after team registration, check

Discord to get started early)
https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

e Make a histogram (use F+R calibration tool in demo folder)

e Choose a good threshold (the tool will not tell you what is “good")

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

Exercise 1 — Task 2

e Flush+Reload attack on a PIN entry library
e Library checks each PIN digit and calls 1 of 2 functions

e Recover the key by checking which functions were called

Exercise 1 — Task 3

Cross-core cache covert channel

Real/random binary data
e Raw capacity, bit error rate — Lukas redrabbyte@Discord

e Speed records: https://www.iaik.tugraz.at/teaching/materials/
scs/exercises/ex1/ & Discord

https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/
https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/

Exercise 1 — Task 4

e Run a Spectre attack on a provided library
e Leak a secret string by exploiting speculative execution

e Be as fast as possible

Exercise 1 — Task 5

Break KASLR using one of the demonstrated approaches

Simplest approach: use timing of prefetch instructions

Bonus Points for using Data Bounce attack

Visualize the output of your program

e Use Intel if you can, or ask us about AMD!

e Lecture materials and exercise hints at

https://www.iaik.tugraz.at/scs/
e Discord: IAIK, SCS channel

https://www.iaik.tugraz.at/scs/
https://discord.com/invite/JdPPNT9

Getting started

e
\ \““8“'“,.

\\ o - "%ov
0"

-

[

National Geographic

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed

e does not mean safe execution

Side channels

safe software infrastructure — no bugs, e.g., Heartbleed

does not mean safe execution

information leaks because of the hardware it runs on

e no “bug” in the sense of a mistake — lots of performance optimizations

Side channels

e safe software infrastructure — no bugs, e.g., Heartbleed
e does not mean safe execution
e information leaks because of the hardware it runs on

e no “bug” in the sense of a mistake — lots of performance optimizations

— crypto and sensitive info., e.g., keystrokes and mouse movements

Shared hardware

Shared hardware

/\

Memory x86 CPU

N T

Memory Memory DRAM Branch Arithmetic Data and
deduplication bus row prediction logic instruction
buffer unit unit cache

Why targeting the cache?

e shared across cores

e fast

Why targeting the cache?

e shared across cores
e fast

— fast cross-core attacks!

e caches improve performance

e SRAM is expensive — small caches
e different timings for memory accesses

e data is cached — cache hit — fast
e data is not cached — cache miss — slow

Measuring timing leakage

Mesuring timing leakage

How every timing attack works:

e learn timing of different corner cases

Mesuring timing leakage

How every timing attack works:

e learn timing of different corner cases

e |ater, we recognize these corner cases by timing only

Calibration

git clone
https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

cd library2/demos/calibration/fr
make

./calibration

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!

build two cases: cache hits and cache misses
time each case many times (get rid of noise)

we have a histogram!

o=

find a threshold to distinguish the two cases

Step 1.1. Cache hits

1. measure time

2. access variable (always cache hit)
3. measure time
4

. update histogram with delta

Step 1.2. Cache misses

Loop:

. measure time

. access variable (always cache miss)

1
2
3. measure time
4. update histogram with delta
5

. flush variable (c1£flush instruction)

Step 2. Accurate timings

e very short timings
e rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function ()

rdtsc

[...]

Step 2. Accurate timings

e do you measure what you think you measure?

e out-of-order execution — what is really executed

rdtsc rdtsc rdtsc
function () [...] rdtsc
[...] rdtsc function ()

rdtsc function () [...]

Step 2. Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)

Step 2. Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)

e and/or use serializing instructions like cpuid

Step 2. Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)
e and/or use serializing instructions like cpuid

e and/or use fences like mfence

Step 2. Accurate timings

e use pseudo-serializing instruction rdtscp (recent CPUs)
e and/or use serializing instructions like cpuid

e and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.

Timing differences

0
[
]
0
0]
[v]
®
4| N
o« 1
o0
A
[
o)
S
>
=2

00 cache hits

10t m NHMHHHHHHH HHHHHHHHHHHHHH ot 000 setllalls 8 o 00 & %

50 100 150 200 250 300 350 400
Access time [CPU cycles]

Step 4. Find threshold

e as high as possible
e most cache hits are below

e no cache miss below

Exploiting timing leakage

Type of attacks

e cache attacks — exploit timing differences of memory accesses

Type of attacks

e cache attacks — exploit timing differences of memory accesses

e attacker monitors which lines are accessed, not the content

Type of attacks

e cache attacks — exploit timing differences of memory accesses

e attacker monitors which lines are accessed, not the content

e covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

Type of attacks

cache attacks — exploit timing differences of memory accesses

attacker monitors which lines are accessed, not the content

covert channel: two processes communicating with each other
e not allowed to do so, e.g., across VMs

side-channel attack: one malicious process spies on benign processes
e e.g., steals crypto keys, spies on keystrokes

Side-channel attack on user input

e |ocate key-dependent memory accesses

e with cache template attacks

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Cache is empty

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Shared 0x0

Attacker triggers an event

Profiling Phase: one event

Attacker address space

Shared 0x0

Cache

Shared 0x0

Victim address space

Shared 0x0

Attacker checks one address for cache hits (“Reload")

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Shared 0x0

Update number of cache hits per event

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x0

"/I/s/, Shared 0x0

Shared 0x0

Attacker flushes shared memory

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x0

Shared 0x0

Repeat for higher accuracy

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x40

Shared 0x40

Continue with next address

Profiling Phase: one event

Attacker address space Victim address space

Cache

Shared 0x80

Shared 0x80

Continue with next address

What to profile?

ps A | grep gedit

cat /proc/pid/maps

00400000-00489000 r-xp 00000000 08:11 396356
/usr/bin/gedit

7£5a96991000-7£5a296a51000 r-xp 00000000 08:11 399365
/usr/1lib/x86_64-1inux-gnu/libgdk-3.50.0.1400.14

memory range, access rights, offset, —, —, file name

Profiling a single event

cd cta_examples/profiling/generic_low_frequency_example

the first parameter is the cache miss threshold

./spy
start the targeted program
sleep 2; ./spy 200 400000-489000 —- 20000

-— —— /usr/bin/gedit

. and hold down key in the targeted program
save addresses with peaks!

Exploitation phase

cd cta_examples/exploitation/generic
./spy threshold file offset

CPU caches

Memory accesses are cached

e Every memory reference goes through the cache

e Transparent to OS and programs

Directly mapped cache

Memory Address

Directly mapped cache

Memory Address Cache

Directly mapped cache

Memory Address Cache

’ ‘ Tag Data

Directly mapped cache

Memory Address Cache

’ ‘ | Tog Data

Directly mapped cache

Memory Address Cache

’ ‘ b bits | Tag Data

N —

2b bytes

Directly mapped cache

Memory Address Cache

’ ‘ n bits | b bits | Tag Data

Cache Index

N —

2b bytes

Directly mapped cache

Memory Address Cache

’ ‘ n bits | b bits | Tag Data

2" cache lines

Cache Index k

N —

2b bytes

Directly mapped cache

Memory Address Cache

’ ‘ n bits | b bits | Tag Data

2" cache lines

Cache Index k

N —

2b bytes

Hit/Miss

Directly mapped cache

Memory Address Cache

’ ‘ n bits | b bits | Tag Data

2" cache lines

Cache Index k

N —

2b bytes

Hit/Miss

Problem: working on congruent addresses

2-way set associativity

Memory Address Cache

n bits | b bits | Tag Data

L]

Cache Index k

2-way set associativity

Memory Address Cache
. . Way 1 Tag Way 1 Data
’ ‘ n bits | bbits | Way 2 Tag Way 2 Data
K 2" cache sets
Cache Index

(

2-way set associativity

Memory Address

o [o]

2" cache sets

Cache

Way 1 Tag
Way 2 Tag

Way 1 Data
Way 2 Data

Cache Index

2-way set associativity

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ n bits l b bits l Way 2 Tag Way 2 Data

2" cache sets

Cache Index k
e 2 {

2-way set associativity

Memory Address Cache

Way 1 Tag Way 1 Data

’ ‘ n bits l b bits l Way 2 Tag Way 2 Data

2" cache sets

Cache Index k
e 2 {

— replacement policy

Caches today

core 0 core 1 core 2 core 3
1 1 1 1
‘ Lll ‘ ‘ Lll ‘ ‘ LII ‘ ‘ Lll ‘ e L1 and L2 are private
‘ L2 ‘ ‘ L2 ‘ ‘ L2 ‘ ‘ L2 ‘ e last-level cache:

ring bus

‘ ‘ ‘ : 4/ e divided in slices

e shared across cores

e inclusive
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

Cache levels: Latency comparison

On current Intel CPUs:

Cache levels: Latency comparison

On current Intel CPUs:

e L1 cache: 4 cycles

Cache levels: Latency comparison

On current Intel CPUs:

e L1 cache: 4 cycles

e L2 cache: 12 cycles

Cache levels: Latency comparison

On current Intel CPUs:

e L1 cache: 4 cycles
e L2 cache: 12 cycles
e L3 cache: 26-31 cycles

Cache levels: Latency comparison

On current Intel CPUs:

e L1 cache: 4 cycles

e L2 cache: 12 cycles

e L3 cache: 26-31 cycles

e DRAM memory: >120 cycles

(Unprivileged) cache maintainance

User programs can optimize cache usage:

e prefetch: suggest CPU to load data into cache

e clflush: throw out data from all caches

... based on virtual addresses

Cache attacks

CPU cache attacks

cache-based keylogging

crypto key recovery
e various implementations (AES, RSA, ECC, ...)
e up to 97% key bits recovered after 1 encryption

cross-VM, cross-core, even cross-CPU

any CPU vendor

Cross-core attacks?

e using the inclusive property

Cross-core attacks?

e using the inclusive property

e last-level cache is a superset of L1 and L2

Cross-core attacks?

e using the inclusive property
o l|ast-level cache is a superset of L1 and L2

e data evicted from last-level cache — evicted from L1 and L2

Cross-core attacks?

using the inclusive property

last-level cache is a superset of L1 and L2

data evicted from last-level cache — evicted from L1 and L2

e a core can evict lines in the private L1 of another core

Access-driven attacks

Attacker monitors its own activity to find sets accessed by victim.

/\

Flush-+Reload Prime+-Probe
Gullasch et al. [3] Percival [7]
Yarom and Falkner [8] Liu et al. [5]

Gruss et al. [2] Maurice et al. [6]

Same techniques for covert and side channels

Flush4+Reload: Building Blocks

e Shared Library / load binary twice / page deduplication

Flush4+Reload: Building Blocks

e Shared Library / load binary twice / page deduplication
e clflush throws data out of cache

— We can throw other shared code out of the cache

Flush4+Reload: Building Blocks

e Shared Library / load binary twice / page deduplication
e clflush throws data out of cache

— We can throw other shared code out of the cache
e rdtsc / rdtscp give accurate timing information

— We can measure whether shared code is in the cache

Flush4+Reload: First steps

e Measure timing of cached memory
e Measure timing of non-cached memory (flush before measuring)

e Draw a histogram

Flush+Reload

Attacker Cach Victim
address space ache address space

step 0: attacker maps shared library — shared memory, shared in cache

Flush+Reload

Attacker Cach Victim
address space ache address space

Cached cached

Ve

step 0: attacker maps shared library — shared memory, shared in cache

Flush+Reload

Attacker
address space

Cache

flushes

Victim
address space

step 0: attacker maps shared library — shared memory, shared in cache

step 1: attacker flushes the shared line

Flush+Reload

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

Flush+Reload

Attacker Cach Victim
address space ache address space

reloads data

step 0: attacker maps shared library — shared memory, shared in cache
step 1: attacker flushes the shared line
step 2: victim loads data while performing encryption

step 3: attacker reloads data — fast access if the victim loaded the line

Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs c1flush instruction (not available e.g., in JS)

2. needs shared memory

Variants of Flush+Reload

e Flush+Flush [1]
e Evict+Reload [2] on ARM [4]

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker
address space

Cache

loads data

Victim
address space

|

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker
address space

Cache

loads data

Victim
address space

|

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

loads data

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Attacker Cach Victim
address space ache address space

-
3,
e
o
(o
%
%

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Attacker Cach Victim
address space ache address space

step 0: attacker fills the cache (prime)
step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Pros: less restrictive

1. no need for c1flush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)

Issues with Prime+Probe

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

Ty

1. Introduction

March 7, 2024

Side-Channel Security
Graz University of Technology

[1] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. (2016). Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA'16.

[2] Gruss, D., Spreitzer, R., and Mangard, S. (2015). Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX
Security Symposium (USENIX Security'15).

[3] Gullasch, D., Bangerter, E., and Krenn, S. (2011). Cache Games — Bringing Access-Based Cache Attacks on AES to Practice. In IEEE
Symposium on Security and Privacy (S&P’11).

[4] Lipp, M., Gruss, D., Spreitzer, R., and Mangard, S. (2015). ARMageddon: Last-Level Cache Attacks on Mobile Devices. ArXiv e-prints.

[5] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015). Last-Level Cache Side-Channel Attacks are Practical. In [EEE Symposium on
Security and Privacy (S&P'15).

[6] Maurice, C., Neumann, C., Heen, O., and Francillon, A. (2015). C5: Cross-Cores Cache Covert Channel. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA'15).

[7] Percival, C. (2005). Cache Missing for Fun and Profit. URL: http://daemonology.net/hyperthreading-considered-harmful/.

[8] Yarom, Y. and Falkner, K. (2014). FLUSH-+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security
Symposium (USENIX Security’14).

http://daemonology.net/hyperthreading-considered-harmful/

