
1. Introduction

March 7, 2024

Side-Channel Security

Graz University of Technology





Side-Channel Security

Software
Mobile Hardware



Team

Daniel Gruss Rishub Nagpal Lukas Giner



Rules

• 2 persons per team

→ register via lukas.giner@iaik.tugraz.at until Wednesday March 15,

08:00am

→ include name, email and matriculation number of both team members

• 2 exercises, each 15 points

• submission via git tag

• points based on exercise interview

• minimum of 4 points per exercise sheet to pass

lukas.giner@iaik.tugraz.at


Rules

• 2 persons per team

→ register via lukas.giner@iaik.tugraz.at until Wednesday March 15,

08:00am

→ include name, email and matriculation number of both team members

• 2 exercises, each 15 points

• submission via git tag

• points based on exercise interview

• minimum of 4 points per exercise sheet to pass

lukas.giner@iaik.tugraz.at


Grading

• aim for the best or drop out now!

• 26 of 30 points → 1

• 22 of 30 points → 2

• 18 of 30 points → 3

• 15 of 30 points → 4

• minimum of 4 points per exercise sheet to pass



Grading

• aim for the best or drop out now!

• 26 of 30 points → 1

• 22 of 30 points → 2

• 18 of 30 points → 3

• 15 of 30 points → 4

• minimum of 4 points per exercise sheet to pass



Second Chance

• Same Task

• Deadline: 1 week after negative exercise interview

• No penalty to reach 50%, then 25% reduction!

• e.g., 5 points on ex1 → missing 10 points on ex2:

No reduction until 10 points are achieved on ex2, then -25%



Second Chance

• Same Task

• Deadline: 1 week after negative exercise interview

• No penalty to reach 50%, then 25% reduction!

• e.g., 5 points on ex1 → missing 10 points on ex2:

No reduction until 10 points are achieved on ex2, then -25%



Exercises

Ex1: Software Security

• Presentation: Thursday, 07.03.

• Deadline 1: Wednesday, 20.03., 08:00am

• Deadline 2: Wednesday, 08.05., 08:00am

Ex2: Hardware Security

• Presentation: Thursday, 09.05.

• (Preliminary) Deadline: Wednesday, 26.06., 08:00am



Exercises

Ex1: Software Security

• Presentation: Thursday, 07.03.

• Deadline 1: Wednesday, 20.03., 08:00am

• Deadline 2: Wednesday, 08.05., 08:00am

Ex2: Hardware Security

• Presentation: Thursday, 09.05.

• (Preliminary) Deadline: Wednesday, 26.06., 08:00am



Exercise 1

up to 15 points from:

• Task 1: Introduction [0.5 P]

• Task 2: Flush+Reload Attack on PIN Entry [3 P]

• Task 3: Covert Channel [5.5 P]

• Task 4: Spectre [3 P]

• Task 5: KASLR is bad, please break it [3 P]



Exercise 1 – Task 1

Both team members:

• Clone your repo, pull from upstream (a few days after team registration, check

Discord to get started early)
https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

• Make a histogram (use F+R calibration tool in demo folder)

• Choose a good threshold (the tool will not tell you what is “good”)

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git


Exercise 1 – Task 2

• Flush+Reload attack on a PIN entry library

• Library checks each PIN digit and calls 1 of 2 functions

• Recover the key by checking which functions were called



Exercise 1 – Task 3

• Cross-core cache covert channel

• Real/random binary data

• Raw capacity, bit error rate → Lukas redrabbyte@Discord

• Speed records: https://www.iaik.tugraz.at/teaching/materials/

scs/exercises/ex1/ & Discord

https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/
https://www.iaik.tugraz.at/teaching/materials/scs/exercises/ex1/


Exercise 1 – Task 4

• Run a Spectre attack on a provided library

• Leak a secret string by exploiting speculative execution

• Be as fast as possible



Exercise 1 – Task 5

• Break KASLR using one of the demonstrated approaches

• Simplest approach: use timing of prefetch instructions

• Bonus Points for using Data Bounce attack

• Visualize the output of your program

• Use Intel if you can, or ask us about AMD!



Info

• Lecture materials and exercise hints at

https://www.iaik.tugraz.at/scs/

• Discord: IAIK, SCS channel

https://www.iaik.tugraz.at/scs/
https://discord.com/invite/JdPPNT9








Getting started

Measuring timing leakage

Exploiting timing leakage

CPU caches

Cache attacks



National Geographic



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution

• information leaks because of the hardware it runs on

• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements



Shared hardware

Shared hardware

x86 CPU

Data and

instruction

cache

Arithmetic

logic

unit

Branch

prediction

unit

Memory

DRAM

row

buffer

Memory

bus

Memory

deduplication



Why targeting the cache?

• shared across cores

• fast

→ fast cross-core attacks!



Why targeting the cache?

• shared across cores

• fast

→ fast cross-core attacks!



Timing differences

• caches improve performance

• SRAM is expensive → small caches

• different timings for memory accesses

• data is cached → cache hit → fast

• data is not cached → cache miss → slow



Getting started

Measuring timing leakage

Exploiting timing leakage

CPU caches

Cache attacks



Mesuring timing leakage

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only



Mesuring timing leakage

How every timing attack works:

• learn timing of different corner cases

• later, we recognize these corner cases by timing only



Calibration

git clone

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git

cd library2/demos/calibration/fr

make

./calibration

https://git.teaching.iaik.tugraz.at/scs/scs24/upstream.git


Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases



Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases



Steps

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

3. we have a histogram!

4. find a threshold to distinguish the two cases



Step 1.1. Cache hits

Loop:

1. measure time

2. access variable (always cache hit)

3. measure time

4. update histogram with delta



Step 1.2. Cache misses

Loop:

1. measure time

2. access variable (always cache miss)

3. measure time

4. update histogram with delta

5. flush variable (clflush instruction)



Step 2. Accurate timings

• very short timings

• rdtsc instruction: cycle-accurate timestamps

[...]

rdtsc

function()

rdtsc

[...]



Step 2. Accurate timings

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc

function()

[...]

rdtsc

rdtsc

[...]

rdtsc

function()

rdtsc

rdtsc

function()

[...]



Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence



Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence



Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence



Step 2. Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures

White Paper, December 2010.



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u
m
b
er

of
ac
ce
ss
es

cache hits



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

N
u
m
b
er

of
ac
ce
ss
es

cache hits cache misses



Step 4. Find threshold

• as high as possible

• most cache hits are below

• no cache miss below



Getting started

Measuring timing leakage

Exploiting timing leakage

CPU caches

Cache attacks



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Type of attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes



Side-channel attack on user input

• locate key-dependent memory accesses

• with cache template attacks



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty



Profiling Phase: one event

Attacker address space

Cache

Victim address space

A

Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update number of cache hits per event

Shared 0x0

Shared 0x0

Shared 0x0



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40



Profiling Phase: one event

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80



What to profile?

# ps -A | grep gedit

# cat /proc/pid/maps

00400000-00489000 r-xp 00000000 08:11 396356

/usr/bin/gedit

7f5a96991000-7f5a96a51000 r-xp 00000000 08:11 399365

/usr/lib/x86_64-linux-gnu/libgdk-3.so.0.1400.14

...

memory range, access rights, offset, –, –, file name



Profiling a single event

cd cta_examples/profiling/generic_low_frequency_example

# the first parameter is the cache miss threshold

./spy

# start the targeted program

sleep 2; ./spy 200 400000-489000 -- 20000

-- -- /usr/bin/gedit

... and hold down key in the targeted program

save addresses with peaks!



Exploitation phase

cd cta_examples/exploitation/generic

./spy threshold file offset









Getting started

Measuring timing leakage

Exploiting timing leakage

CPU caches

Cache attacks



Memory accesses are cached

• Every memory reference goes through the cache

• Transparent to OS and programs



Directly mapped cache

Memory Address



Directly mapped cache

Memory Address Cache



Directly mapped cache

Memory Address Cache

Tag Data



Directly mapped cache

Memory Address Cache

Tag Data



Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes



Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index



Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache lines



Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss



Directly mapped cache

Memory Address Cache

Tag Datab bits

2b bytes

n bits

Cache Index

2n cache linesf

=?

Tag

Hit/Miss

Problem: working on congruent addresses



2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

2n cache linesf



2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data



2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag



2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data



2-way set associativity

Memory Address Cache

Tag Datab bitsn bits

Cache Index

f 2n cache sets

Way 2 Tag Way 2 Data

Way 1 Tag Way 1 Data

=?

=?Tag

Data

→ replacement policy



Caches today

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2
ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache:

• divided in slices

• shared across cores

• inclusive



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles



Cache levels: Latency comparison

On current Intel CPUs:

• L1 cache: 4 cycles

• L2 cache: 12 cycles

• L3 cache: 26-31 cycles

• DRAM memory: >120 cycles



(Unprivileged) cache maintainance

User programs can optimize cache usage:

• prefetch: suggest CPU to load data into cache

• clflush: throw out data from all caches

... based on virtual addresses



Getting started

Measuring timing leakage

Exploiting timing leakage

CPU caches

Cache attacks



CPU cache attacks

• cache-based keylogging

• crypto key recovery

• various implementations (AES, RSA, ECC, ...)

• up to 97% key bits recovered after 1 encryption

• cross-VM, cross-core, even cross-CPU

• any CPU vendor



Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core



Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core



Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core



Cross-core attacks?

• using the inclusive property

• last-level cache is a superset of L1 and L2

• data evicted from last-level cache → evicted from L1 and L2

• a core can evict lines in the private L1 of another core



Access-driven attacks

Attacker monitors its own activity to find sets accessed by victim.

Prime+Probe

Percival [7]

Liu et al. [5]

Maurice et al. [6]

Flush+Reload

Gullasch et al. [3]

Yarom and Falkner [8]

Gruss et al. [2]

Same techniques for covert and side channels



Flush+Reload: Building Blocks

• Shared Library / load binary twice / page deduplication

• clflush throws data out of cache

→ We can throw other shared code out of the cache

• rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache



Flush+Reload: Building Blocks

• Shared Library / load binary twice / page deduplication

• clflush throws data out of cache

→ We can throw other shared code out of the cache

• rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache



Flush+Reload: Building Blocks

• Shared Library / load binary twice / page deduplication

• clflush throws data out of cache

→ We can throw other shared code out of the cache

• rdtsc / rdtscp give accurate timing information

→ We can measure whether shared code is in the cache



Flush+Reload: First steps

• Measure timing of cached memory

• Measure timing of non-cached memory (flush before measuring)

• Draw a histogram



Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache



Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache

cached cached



Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache

step 1: attacker flushes the shared line

flushes



Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

loads data



Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library → shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data → fast access if the victim loaded the line

reloads data



Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory



Variants of Flush+Reload

• Flush+Flush [1]

• Evict+Reload [2] on ARM [4]



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

fast
access



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

slow
access



Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)



Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?



1. Introduction

March 7, 2024

Side-Channel Security

Graz University of Technology



[1] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. (2016). Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA’16.

[2] Gruss, D., Spreitzer, R., and Mangard, S. (2015). Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX

Security Symposium (USENIX Security’15).

[3] Gullasch, D., Bangerter, E., and Krenn, S. (2011). Cache Games – Bringing Access-Based Cache Attacks on AES to Practice. In IEEE

Symposium on Security and Privacy (S&P’11).

[4] Lipp, M., Gruss, D., Spreitzer, R., and Mangard, S. (2015). ARMageddon: Last-Level Cache Attacks on Mobile Devices. ArXiv e-prints.

[5] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015). Last-Level Cache Side-Channel Attacks are Practical. In IEEE Symposium on

Security and Privacy (S&P’15).

[6] Maurice, C., Neumann, C., Heen, O., and Francillon, A. (2015). C5: Cross-Cores Cache Covert Channel. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’15).

[7] Percival, C. (2005). Cache Missing for Fun and Profit. URL: http://daemonology.net/hyperthreading-considered-harmful/.

[8] Yarom, Y. and Falkner, K. (2014). FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security

Symposium (USENIX Security’14).

http://daemonology.net/hyperthreading-considered-harmful/







