Ty,

Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown and Spectre

Lukas Giner
March 21, 2024

Graz University of Technology

Vulnerability Assessment www.tugraz.at

‘:& o Meltdown[4] and Spectre [2] are two CPU vulnerabilities

Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

‘:& e Meltdown[4] and Spectre [2] are two CPU vulnerabilities
e Discovered in 2017 by 4 independent teams

Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

‘:& e Meltdown[4] and Spectre [2] are two CPU vulnerabilities
e Discovered in 2017 by 4 independent teams
e Due to an embargo, released at the beginning of 2018

Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

Meltdown[4] and Spectre [2] are two CPU vulnerabilities

&

Discovered in 2017 by 4 independent teams

Due to an embargo, released at the beginning of 2018

e News coverage followed by a lot of panic

Lukas Giner — Graz University of Technology

BLULSINESS

WRASHINGTON, D.C

1 ~NEWS INTEL REVEALS DESIGN FLAW THAT
oX\ »ALERT COULD ALLOW HACKERS TO ACCESS DATA

m%?% (f @ @FOXBUSI

COMPUTER CHIP SCARE
The bugs are known as 'Spectre' and 'Meltdown'

WORLD NEWS) s £:HKS 10.58 EURO:E 0.891

‘\I/- SECURITY FLAW REVEALED

l Intel (Prev)
45.26

[l Intel (After Hours)
| 44.85

SHROUT: ISSUE NOT UNIQUE TO
SARITA l INTEL, BUT IT'S AFFECTED THE MOST

M CcNnBC

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

9 e Which CPUs/vendors are affected?
a9

Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
9 e Which CPUs/vendors are affected?
anfD

. o e Are smartphones/loT devices affected?

Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
9 e Which CPUs/vendors are affected?
(1 14 ? e Are smartphones/loT devices affected?

e Can the vulnerabilities be exploited remotely?

Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
e Which CPUs/vendors are affected?
ﬂ?? e Are smartphones/loT devices affected?
e Can the vulnerabilities be exploited remotely?

e What data is at risk?

Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
e Which CPUs/vendors are affected?
“?? e Are smartphones/loT devices affected?
e Can the vulnerabilities be exploited remotely?

e What data is at risk?

How hard is it to exploit the vulnerabilities?

Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
e Which CPUs/vendors are affected?
“?? e Are smartphones/loT devices affected?
e Can the vulnerabilities be exploited remotely?

e What data is at risk?

How hard is it to exploit the vulnerabilities?

Is it already exploited?

Lukas Giner — Graz University of Technology

Let’s try to clarify these questions

MELTDOWN

Hardware Isolation www.tugraz.at

e Kernel is isolated from user space @ Userspace Kernelspace

Operating

Applications System Memory

Lukas Giner — Graz University of Technology

Hardware Isolation www.tugraz.at

e Kernel is isolated from user space @ Userspace Kernelspace

e This isolation is a combination of

hardware and software \

Operating

Applications System Memory

Lukas Giner — Graz University of Technology

rdware lIsolation

e Kernel is isolated from user space
e This isolation is a combination of
hardware and software

e User applications cannot access
anything from the kernel

@ Userspace

w

Applications

www.tugraz.at

Kernelspace

Operating

System CIohY

Lukas Giner — Graz University of Technology

Hardware Isolation

Kernel is isolated from user space

This isolation is a combination of
hardware and software
User applications cannot access

anything from the kernel

There is only a well-defined
interface — syscalls

@ Userspace

w

Applications

www.tugraz.at

Kernelspace

Operating

System CIohY

Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

e Breaks isolation between @ Userspace Kernelspace

applications and kernel
/ Operating

Applications System Memory

Lukas Giner — Graz University of Technology

www.tugraz.at

Meltdown Briefing

e Breaks isolation between @ Userspace Kernelspace

applications and kernel

e User applications can access kernel

addresses /

Operating

Applications System Memory

Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

e Breaks isolation between @ Userspace Kernelspace

applications and kernel

e User applications can access kernel

addresses /
e Entire physical memory is mapped

in the kernel "
Operating

Applications System Memory

Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

e Breaks isolation between @ Userspace Kernelspace
applications and kernel

e User applications can access kernel

addresses /
e Entire physical memory is mapped

in the kernel "
Operating

— Meltdown can read whole DRAM Applications System Memory

Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

e Only on Intel CPUs and some ARMs (e.g. Cortex
A15,A57,A72,A75)

Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

e Only on Intel CPUs and some ARMs (e.g. Cortex
A15,A57,A72,A75)

e AMD and other ARMs seem to be unaffected

Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

e Only on Intel CPUs and some ARMs (e.g. Cortex
A15,A57,A72,A75)

e AMD and other ARMs seem to be unaffected

e Common cause: permission check done in parallel to load

instruction

Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

e Only on Intel CPUs and some ARMs (e.g. Cortex
A15,A57,A72,A75)

e AMD and other ARMs seem to be unaffected

e Common cause: permission check done in parallel to load

instruction

e Race condition between permission check and dependent
operation(s)

Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

e Meltdown variant: read privileged registers

n Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

e Meltdown variant: read privileged registers

e Limited to some registers, no memory content

n Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

e Meltdown variant: read privileged registers
e Limited to some registers, no memory content

e Reported by ARM

n Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

Meltdown variant: read privileged registers

Limited to some registers, no memory content
Reported by ARM
Affects some ARMs (Cortex A15, A57, and A72)

n Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

e Meltdown requires code execution on the device (e.g. Apps)

AL
e

ng &lo

Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

e Meltdown requires code execution on the device (e.g. Apps)

01\ Rro e Untrusted code can read entire memory of device

=&

ng &lo

Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

e Meltdown requires code execution on the device (e.g. Apps)

01\ Rro e Untrusted code can read entire memory of device

]

e Cannot be triggered remotely

ng &lo

Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

Meltdown requires code execution on the device (e.g. Apps)

Untrusted code can read entire memory of device

AL
e

Cannot be triggered remotely

ng &lo

e Proof-of-concept code available online

Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

Meltdown requires code execution on the device (e.g. Apps)

Untrusted code can read entire memory of device

AL
e

Cannot be triggered remotely

ng &lo

e Proof-of-concept code available online

No info about environment required — easy to reproduce

Lukas Giner — Graz University of Technology

=)

SPECTRE

Spectre Briefing www.tugraz.at

e Mistrains branch prediction ¢ A

n Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

e Mistrains branch prediction ¢ A

e CPU speculatively executes code which should not be executed

n Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

e Mistrains branch prediction ¢ A
e CPU speculatively executes code which should not be executed

e Can also mistrain indirect calls

n Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

e Mistrains branch prediction ¢ A
e CPU speculatively executes code which should not be executed
e Can also mistrain indirect calls

— Spectre “convinces’ program to execute code

n Lukas Giner — Graz University of Technology

Spectre Requirements www. tugraz.at

e On Intel and AMD CPUs

n Lukas Giner — Graz University of Technology

Spectre Requirements www. tugraz.at

e On Intel and AMD CPUs
e Some ARMs (Cortex R and Cortex A) are also affected

n Lukas Giner — Graz University of Technology

Spectre Requirements www. tugraz.at

e On Intel and AMD CPUs
e Some ARMs (Cortex R and Cortex A) are also affected

e Common cause: speculative execution of branches

n Lukas Giner — Graz University of Technology

Spectre Requirements www.tugraz.at

On Intel and AMD CPUs
Some ARMs (Cortex R and Cortex A) are also affected

e Common cause: speculative execution of branches

Speculative execution leaves microarchitectural traces which leak

secret

n Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

e Spectre (typically) requires code execution on the device (e.g.

LA e
e

ng &lo

Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

e Spectre (typically) requires code execution on the device (e.g.

9\ (v Apps)
anee e Untrusted code can convince trusted code to reveal secrets

]

ng &lo

Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

e Spectre (typically) requires code execution on the device (e.g.

a o

L e Untrusted code can convince trusted code to reveal secrets
AL
-

ng &lo

e Can be triggered remotely (e.g. in the browser, NetSpectre)

Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

Spectre (typically) requires code execution on the device (e.g.

a o

L Untrusted code can convince trusted code to reveal secrets
AL
-

ng &lo

Can be triggered remotely (e.g. in the browser, NetSpectre)

Proof-of-concept code available online

Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

Spectre (typically) requires code execution on the device (e.g.

9\ (v Apps)
nie Untrusted code can convince trusted code to reveal secrets

]

ng &lo

Can be triggered remotely (e.g. in the browser, NetSpectre)

Proof-of-concept code available online

Info about environment required — hard to reproduce

Lukas Giner — Graz University of Technology

Background

I
- Out-of-order Execution

7. Serve with cooked |
| and peeled potatoes

Wait for an hour

v

;z LATENCY

vegetablea ’|
=' 2. Pick the basil leaves
| and set aside

W 3. Heat 2 tablespoons of
8 ocilinapan

8 4 Try vegetables until

4——-ﬁ— Parallelize

3. Heat 2 tablespoons of
\ cilin a pan <

1
|

4. Fry vegetables until

Out-of-order Execution www.tugraz.at

width = 10, height = 5;
diagonal = sqrt(width * width
+ height * height);

area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);

Lukas Giner — Graz University of Technology

Parallelize

width,

9
]
U width = 10, height = 5;
c
Q diagonal = sqrt(width * width

+ height * height);
QqJ area = width * height;

height, area);

Cprintf("Area %d x %d = %d\n",

Lukas Giner — Graz University of Technology

Out-of-order execution A

s
L1 Instruction Cache

Branch Instruction Fetch & PreDecode

g LI Instruction Queue
E OP Cache 4-Way Decode
= I N O N
.
‘ Allocation Queue ‘
Lo Lo [or Low
con e T \ e Instructions are fetched and decoded in the front-end
0 R
‘ s‘d.edul‘:, — e |nstructions are dispatched to the backend

e |nstructions are processed by individual execution units

Store data et
AGU

Execution Engine

ALU, Branch

Execution Units

Load Buffer] [Store Buer]
5 [Losa Buter] [sore Bt
g3 brig] STLB. tH
5% | LlDataCache [— |
23 L2 Cache —

Lukas Giner — Graz University of Technology

Out-of-order execution A

s
L1 Instruction Cache

Branch Instruction Fetch & PreDecode

—g L Instruction Queue

E HOP Cache 4-Way Decode.

= IS B e i

3
\ EmEaE | e Instructions are executed out-of-order
2
con e i Renl,derml"er i \ e |nstructions wait until their dependencies are ready
‘ s‘chedul‘:r — e Later instructions might execute prior earlier instructions

e Instructions retire in-order

Store data et
AGU

Execution Engine

ALU, Branch

e State becomes architecturally visible

Execution Units

Load Buffer] [Store Buer]
5 [Losa Buter] [sore Bt
g3 brig] STLB. tH
5% | LlDataCache [— |
23 L2 Cache —

Lukas Giner — Graz University of Technology

We are ready for the gory details of Meltdown

Building the Code www.tugraz.at

e Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms

ffffff£f£f81a000e0 R linux_banner

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

data = *(*) Oxffffffff81a000e0;
printf ("%c\n", data);

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Compile and run

\\\I segfault at fffffff£f81a000e0 ip
= 0000000000400535
,.) sp 00007ffce4a80610 error 5 in reader

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Compile and run

\\\I segfault at fffffff£f81a000e0 ip
= 0000000000400535
,.) sp 00007ffce4a80610 error 5 in reader

e Kernel addresses are of course not accessible

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Compile and run

\\\I segfault at fffffff£f81a000e0 ip
= 0000000000400535
,.) sp 00007ffce4a80610 error 5 in reader

e Kernel addresses are of course not accessible

e Any invalid access throws an exception — segmentation fault

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

i [
\"’ e Just catch the segmentation fault!

Y

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

i [
\"’ e Just catch the segmentation fault!

Y

e We can simply install a signal handler

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

i [
\"’ e Just catch the segmentation fault!

Y

e We can simply install a signal handler

e And if an exception occurs, just jump back and continue

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Just catch the segmentation fault!
e We can simply install a signal handler

e And if an exception occurs, just jump back and continue

Y

e Then we can read the value

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Just catch the segmentation fault!
e We can simply install a signal handler

e And if an exception occurs, just jump back and continue

Y

e Then we can read the value

Sounds like a good idea

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Still no kernel memory

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Still no kernel memory

e Maybe it is not that straight forward

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Still no kernel memory
e Maybe it is not that straight forward

e Privilege checks seem to work

Lukas Giner — Graz University of Technology

Building the Code

www.tugraz.at

Still no kernel memory
Maybe it is not that straight forward
Privilege checks seem to work

Are privilege checks also done when executing instructions out of order?

Lukas Giner — Graz University of Technology

Building the Code

www.tugraz.at

Still no kernel memory

Maybe it is not that straight forward

Privilege checks seem to work

Are privilege checks also done when executing instructions out of order?

Problem: out-of-order instructions are not visible

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Adapted code

* (*) 0;
array [0] = O;

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Adapted code

* (*) 03
array [0] = O;
.o "' e volatile because compiler was not happy
* *

warning: statement with no effect [-Wunused-value]

"

Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

e Adapted code

* (*x) 0;
array [0] = 0;
. ® "' e volatile because compiler was not happy
* *

warning: statement with no effect [-Wunused-value]

"

e Static code analyzer is still not happy

warning: Dereference of null pointer
* (*)0;

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array

500
400 T
300 J

Access time
[cycles]

Page

e “Unreachable” code line was actually executed

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array

500
400 T
300 J

Access time
[cycles]

Page

e “Unreachable” code line was actually executed

e Exception was only thrown afterwards

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Qut-of-order instructions leave microarchitectural traces

o
o

e

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Qut-of-order instructions leave microarchitectural traces

of e We can see them for example in the cache

e

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Qut-of-order instructions leave microarchitectural traces

of e We can see them for example in the cache

o X)
q ? e Give such instructions a name: transient instructions

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Qut-of-order instructions leave microarchitectural traces

o @ ° e We can see them for example in the cache
o ‘0 @ P
e Give such instructions a name: transient instructions
" e We can indirectly observe the execution of transient instructions

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

I,

e >3

e Combine the two things

data = *(*)Oxffffffff81a000e0;
array [data * 4096] = 0;

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

(‘k‘

L\'
-Q

e Combine the two things

data = *(*)Oxffffffff81a000e0;
array [data * 4096] = 0;

e Then check whether any part of array is cached

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array
500

400 T
300 J{

0 50 100 150 200 250

Access time
[cycles]

e Index of cache hit reveals data

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array

g — 500 T

= 9 400 -

=

g 2 300 J{

< 1 1 1 1 1
0 50 100 150 200 250

e Index of cache hit reveals data

e Permission check is in some cases not fast enough

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Using out-of-order execution, we can read data at any address

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Using out-of-order execution, we can read data at any address

e Privilege checks are sometimes too slow

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Using out-of-order execution, we can read data at any address
e Privilege checks are sometimes too slow

e Allows to leak kernel memory

Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

e Using out-of-order execution, we can read data at any address

Privilege checks are sometimes too slow

Allows to leak kernel memory

Entire physical memory is typically also accessible in kernel address space

Lukas Giner — Graz University of Technology

n '
s

THERE WAS I(EIINE[MEMBHY ALl

~OVER TIIEI'EIIMINA[B

RO W e

Terminal x

File Edit View Search Terminal Help
mschwarz@lab06:~/Documents$

e01d8150:
e01d8160:
e01d8170:
e01d8180:
e01d8190:
e01d8la0:
e01d81ho:
e0ld81co:
e01d81do:
e01d8le0:
e0ld8lfo:
e01d8200:
e01d8210:
e01d8220:
e01d8230:
e01d8240:
e01d8250:
e01d8260:
e01d8270:
eb01d8280:

69
20
74
20
65
61
72
4f
61
6f
Ze
6f
64
63
20
62
69
6e
72
be

(i]e
49
68
6e
73
79
65
70
74
be
Ba
6e
65
61
69
6f
be
67
65
20

69
be
65
6f
61
20
70
65
65
20
20
20
73
70
73
74
64
2e
be
75

63
63
20
20
E]
61
6C
be
64
47
2e
6f
20
61
20
68
69
20
64
73

6f
2e
61
63
20
20
61
47
20
72
Oa
66
47
62
63
20
72
20
65
65

6e
20
75
6cC
69
63
63
4c
7]
61
20
20
4c
69
61
64
65
46
73
20

20
20
74
61
73
6f
65
20
69
70
54
4d
58
6¢
70
69
63
6f
69
44

47
48
68
69
20
6d
6d
6f
74
68
68
65
20
69
61
72
74
72
be
52

72
6f
6f
6d
69
70
65
72
68
69
69
73
61
74
62
65
20
20
67
49

6l
i
2
20
6e
61
be
20
0a
63
73
61
be
69
(Yo
63
7o
64
2¢
OQa

70
65
73
74
20
74
74
61
20
75
20
20
64
65
65
74
65
69
20
20

68
76
20
68
61
69
20
73
53
2¢
76
70
20
73
20
20
6e
2
69
6d

69
65
6d
61
be
62
66
73
69
20
65
72
4
3a
6f
61
64
65
74
6f

63
12
61
74
79
6¢C
6f
6f
6¢C
49
72
6f
B2
20
66
6e
65
63
20
04

7i5)
26
6b
20
20
65
72
63
69
6e
3
76
fie]
69
Oa
64
72
74
63
Z5

2¢C
20
65
4d
77
20
20
69
63
63
69
69
20
74
20
20
69
20
61
6cC

|ilicon Graphics, |
| Inc. However, |
| the authors make|
| no claim that M|
|esa. is in any w|
|ay a compatible |
| replacement for |
|OpenGL or associ |
|ated with. Silic|
|on Graphics, Inc|
|.. .. This versi|
|on of Mesa provi|
|des GLX and DRI |
|capabilities: it|
| is capable of. |
|both direct and |
|indirect renderi|
|[ng. For direct |
| rendering, it ca|
|n use DRI. modul|

Details: Exception Handling www.tugraz.at

e Basic Meltdown code leads to a crash (segfault)

Lukas Giner — Graz University of Technology

Details: Exception Handling www.tugraz.at

e Basic Meltdown code leads to a crash (segfault)

e How to prevent the crash?

Lukas Giner — Graz University of Technology

Details: Exception Handling www.tugraz.at

e Basic Meltdown code leads to a crash (segfault)

e How to prevent the crash?

7 @A

Fault Fault Fault
Handling Suppression Prevention

Lukas Giner — Graz University of Technology

www.tugraz.at

Meltdown with Fault Suppression

e Intel TSX to suppress exceptions instead of signal handler

(xbegin() == XBEGIN_STARTED) {
secret = *(*) Oxffffffff81a000e0;
array [secret * 4096] = 0;
xend () ;
}
(size_t i = 0; i < 256; i++) {
(flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf ("%c\n", i);
}
}

Lukas Giner — Graz University of Technology

Meltdown with Fault Prevention www.tugraz.at

e Speculative execution to prevent exceptions

speculate = rand() % 2;
size_t address = (Oxffffffff81a000e0 * speculate) +
((size_t)&zero * (1 - speculate));
(!speculate) {
secret = *(*) address;
array[secret * 4096] = 0;

(size_t i = 0; i < 256; i++) {
(flush_and_reload (array + i * 4096) == CACHE_HIT) {
printf ("%c\n", 1i);

Lukas Giner — Graz University of Technology

m*m RETELLING ME

~ h - 4
4
o)

E & ,
=))

» YOU CANDUMETHE

.i I 119,
gy@;_rg_qnv STORED IH_=l1.

WIIAT IEITOLD YOU

\ \
' f

YOU CAN LEAK THE EH'I'IIIE MEMORY

mmmmmm

Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

Meltdown

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

Meltdown. And that's true, sort of:

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

Meltdown. And that's true, sort of:

! /‘\ e Experiment where a thread flushes the value constantly and a thread
on a different core reloads the value

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

Meltdown. And that's true, sort of:

! /‘\ e Experiment where a thread flushes the value constantly and a thread
on a different core reloads the value

e Target data is not in the L1 cache of the attacking core

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

.\ Meltdown. And that's true, sort of:
! /‘\ e Experiment where a thread flushes the value constantly and a thread
on a different core reloads the value

‘ e Target data is not in the L1 cache of the attacking core

e We can still leak the data at a lower reading rate, why?

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

Initial assumption: we can only read data stored in the L1 with

Meltdown. And that's true, sort of:

Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value
! e Target data is not in the L1 cache of the attacking core

b\)

We can still leak the data at a lower reading rate, why?

\
[]

— Original Meltdown only leaks from the L1

Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

Initial assumption: we can only read data stored in the L1 with

.\ Meltdown. And that's true, sort of:
/‘\ e Experiment where a thread flushes the value constantly and a thread
on a different core reloads the value

! e Target data is not in the L1 cache of the attacking core

We can still leak the data at a lower reading rate, why?

\
[]

— Original Meltdown only leaks from the L1, but we can get data
there with load gadgets [6]

Lukas Giner — Graz University of Technology

-

I'LLJUST QUICKLY DUMP THE
ENTIRE MEI{IDRWIA MELTDOWN

imafip.com

Practical attacks www.tugraz.at

e Dumping the entire physical memory takes some time

Lukas Giner — Graz University of Technology

Practical attacks www.tugraz.at

e Dumping the entire physical memory takes some time

e Not very practical in most scenarios

Lukas Giner — Graz University of Technology

Practical attacks www.tugraz.at

e Dumping the entire physical memory takes some time

e Not very practical in most scenarios

e Can we mount more targeted attacks?

Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

) 1

e Open-source utility for disk encryption

VeraCrypt

Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

) 1

e Open-source utility for disk encryption

e Fork of TrueCrypt

VeraCrypt

Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

) 1

e Open-source utility for disk encryption
e Fork of TrueCrypt
VeraCrypt e Cryptographic keys are stored in RAM

Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

) 1

e Open-source utility for disk encryption
e Fork of TrueCrypt

VeraCrypt e Cryptographic keys are stored in RAM
e With Meltdown, we can extract the keys from DRAM

Lukas Giner — Graz University of Technology

attacker@meltdown ~/exploit %

Meltdown Root Cause www.tugraz.at

operation #n

y

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

y

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

data dependency

operation #n\—(i—2

A

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception

data 0

, operation #n\ﬁk2

data dependency

possibly

architectural transient execution

y

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception

data dependency

A 4

possibly

architectural transient execution

y

, operation #n\ﬁk2

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception

data —() Lo
—

data dependency

possibly

architectural transient execution

y

, operation #n\ﬁk2

time

Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

retire

exception raise

(0]
data () gLl s

data dependency

possibly

architectural transient execution

y

, operation #n\ﬁk2

time

Lukas Giner — Graz University of Technology

Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities

Lukas Giner — Graz University of Technology

Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities

e Not only the user-accessible check

Lukas Giner — Graz University of Technology

Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities
e Not only the user-accessible check

e |ooking closer at the check...

Lukas Giner — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

Lukas Giner — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

Lukas Giner — Graz University of Technology

www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames using page
tables

Lukas Giner — Graz University of Technology

Address Translation on x86-64 www.tugraz.at

PML4
CR3
PML4E 0
PML4E 1
: PDPT
N PML4I
4 #: PDPTE 0
- PDPTE 1
PML4E 511 :
y #.PDPTI Page Directory
: PDE 0
: PDE 1
PDPTE 511 :
\"PDE -#PDI Page Table
9 : PTE 0
: PTE 1
PDE 511 :

g 4 KiB P:
s PTE #PTI IS

- Byte O

. Byte 1

PTE 511 :

Offset

[PML4I (9b) [PDPTI(9b) | PDI(9b) [PTI(9b) | Offset (12b) | Byte 4095

48-bit virtual address

Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P IRWIUS |WT|UC| R |D|S |G Ignored
Dhyv/cieal D e N Um mhe
I 1ryoicdl 1 5 INUTItTioye
Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed

Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P IRW|USWT|UC|R|D|]S|G Ignored

D ~

O
3

N Hm mhber
A D€

Q.
0
0))

age

Ignored X

Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P IRW|USWT|UC|R|D|]S|G Ignored

D ~ N Hm mhber
A D€

O
3

m
Q

age

wn

Ignored

e Present bit is the next obvious bit

Lukas Giner — Graz University of Technology

Foreshadow- www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF

Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
e Exploitable from VMs

Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
e Exploitable from VMs

e Allows leaking data from the L1 cache

Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
= e Exploitable from VMs

Allows leaking data from the L1 cache

e Same mechanism as Meltdown

Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
= e Exploitable from VMs

Allows leaking data from the L1 cache
e Same mechanism as Meltdown

Just a different bit in the PTE

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

PTE #PTI

PTE 511

L1
Cache

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

present

PTE #PTI

~

PTE 511

L1
Cache

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1
: present Guest Physical
PTE #PTI y
I'to Host Physical
PTE 511

L1
Cache

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1
: present Guest Physical
PTE #PTI > S i
i I'to Host Physical | s
: Page
PTE 511
L1 looku
1 K P
Cach with
ache physical address

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table
PTE O
PTE 1

: not present
PTE #PTI

PTE 511

L1
Cache

Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE O

PTE 1

: not present
PTE #PTI
PTE 511
L1 looku
. P > L1
with
. Cache
virtual address

Lukas Giner — Graz University of Technology

Admin

Unlock

[Booting from ROM...

early console in extract_kernel
input_data: Ox0000000001e0a2?6
input_len: Ox00000000003d448f8

putput: Ox0000000001000000
putput_len: OxO00000000011bc258
kernel_total_size: Ox0000000000deeO000
booted via startup_320)
[Physical KASLR using RDTSC...

irtual KASLR using RDTSC...

ecompressing Linux... Parsing
ooting the kernel.

Performing relocations...

=)

MELTDOWN SPECTRE

=)

MELTDOWN SPECTRE

>A table for & pleasec<

Speculative Cooking

>A table for & pleasec<

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs

Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs

¢ @ b e Branch taken/not taken (PHT)

Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs
e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)

Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs

e Branch taken/not taken (PHT)
¢ @ b e Call/Jump destination (BTB)

e Function return destination (RSB)

Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs

Branch taken/not taken (PHT)
Call/Jump destination (BTB)
e Function return destination (RSB)

v e Load matches previous store (STL)

o
©
Vv

Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs
Branch taken/not taken (PHT)
¢ @ b Call/Jump destination (BTB)
v e Load matches previous store (STL)

e Function return destination (RSB)
e Most are even shared among processes

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

if (index < 4)

Shared Memory X e Memory
datal[0]

A|lB
(CIDE datal[1]
lyph[datalind

T glyph[datal[index]] {} e
HJK datal[3]
L M N LLLLL]

O|P|Q = —

R|IS|T — -

U |V W

| V2 ITTTT1

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory X e Memory
datal[0]

A|B
C|D|E . Speculate data[1]
lyphldat d
=l glyph[datal[index]] {} e
I J K datal[3]
L |MN Liiill
O|P|Q = -
R|S|T — o
U|V|W
| | 2 ITTTT1

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index <

Shared Memory recute €8 Memory
datal[0]

A|B
L glyph[data[index]] data[1]
. G = IE‘ datal[2]
: J < datal[3]
L MR 111111
o[P[0 N B
R|S|T) -
U|V|W
XY HERRR

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index <

Shared Memory recute €8 Memory
B datal[0]

A
c@ glyph[data[lndex]] data[1]
d G = IE‘ datal[2]
: J < datal[3]
LM 111111
OlP|Q - o
R[s|T - -
U|V|W
ALELE HERRR

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory recute €8 e Memory
A B datal[0]
C{DE ../\ data[1]
", glyphldatal[index]] {}
]F G H .’0‘. IE‘ datal[2]
I J K .""‘ datal[3]
L [M[N LLLLl
@ P Q 0"’ — p—
R[S|T S, = -
U V W ..llll
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

if (index < 4)

Shared Memory X e Memory
datal[0]

A|B
(CIDE datal[1]
lyphldatalind

T glyph[datal[index]] {} e
HJK datal[3]
L MN L1111l

O|P|Q = —

R{S|T — e

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory
A B datal[0]
(C D E datal[1]
lyph[datalindex]]
]F G H et aratindex {} datal[2]
I1JIK data[3]
L M|N AEEEN
R|S|T - =
UV W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] {} ety

F|G|H data[2]

IlJ|K data[3]

L M|N AEEEN

O|P|Q — -

R|S|T - o

U |V W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A datal[0]
(C D E \ . datal[1]
=l glyph[datal[index]] {} e
I J K datal[3]
L M|N AEEEN
O|P|Q = -
R|S|T — e
U|V|W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A F o, \ data[0]
CDE .""glyph[data[index]] {} e
F|G|H -, data[2]
IJ|K “"\‘ datal[3]
L |M|N LILLll
o[P|Q L9 -
R|S|T e, - -
oy Tw
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index <

Shared Memory recute €8 Memory
datal[0]

A|B
CDE datal[1]
lyphldat d

FlG|H glyphldatalindex]] U datal2]
I1JIK data[3]
L M|N AEEEN

O|P|Q - —

R|S|T - —

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

if (index < 4)

Shared Memory speculate e e Memory
A B datal[0]
(C D E datal[1]
lyph[datalindex]]
]F G H et aratindex {} datal[2]
I1JIK data[3]
L M|N AEEEN
R|S|T - =
UV W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] {} ety

F|G|H data[2]

IlJ|K data[3]

L M|N AEEEN

O|P|Q — -

R|S|T - o

U |V W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] {} ety

F|G|H data[2]

IlJ|K data[3]

L M|N AEEEN

O|P|Q — -

R|S [T — =

U |V W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory e & ey
o datal[0]
C|D|E glyph[data[index]] & i
SHE data[2]
o[data[3]
TN Liilll
O|P|Q = =
R[S ... — =
ST ——
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index <

Shared Memory recute €8 Memory
datal[0]

A|B
CDE datal[1]
lyphldat d

FlG|H glyphldatalindex]] U datal2]
I1JIK data[3]
L M|N AEEEN

O|P|Q - —

R|S|T - —

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

if (index < 4)

Shared Memory speculate e e Memory
A B datal[0]
(C D E datal[1]
lyph[datalindex]]
]F G H et aratindex {} datal[2]
I1JIK data[3]
L M|N AEEEN
R|S|T - =
UV W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] {} ety

F|G|H data[2]

IlJ|K data[3]

L M|N AEEEN

O|P|Q — -

R|S|T - o

U |V W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A datal[0]
(C D E \ . datal[1]
=l glyph[datal[index]] {} e
I J K datal[3]
L M|N AEEEN
O|P|Q = -
R|S|T — e
U|V|W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A F o, \ data[0]
CDE .""glyph[data[index]] {} e
F|G|H -, data[2]
IJ|K “"\‘ datal[3]
L |M|N LILLll
o[P|Q L9 -
R|S|T e, - -
oy Tw
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index <

Shared Memory recute €8 Memory
datal[0]

A|B
CDE datal[1]
lyphldat d

FlG|H glyphldatalindex]] U datal2]
I1JIK data[3]
L M|N AEEEN

O|P|Q - —

R|S|T - —

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

if (index < 4)

Shared Memory speculate e e Memory
A B datal[0]
(C D E datal[1]
lyph[datalindex]]
]F G H et aratindex {} datal[2]
I1JIK data[3]
L M|N AEEEN
R|S|T - =
UV W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] ety

F|G|H data[2]

171K (~~~~~~~~ - datal[3]

L M|N AEEEN

O|P|Q —

R|S|T -

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory

A|B data[0]

L] e glyph[datal[index]] ety

F|G|H data[2]

117K (~~~~~~~~ - datal[3]

L M|N AEEEN

O|P|Q —

R|S|T -

U|V|W

X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory speculate e e Memory
A B datal[0]

ata[1]

(g g IIPEH glyph[datal[index]] e
datal[2]

I|J K. T = data[3]

L M|N AEEEN

OlP|Q =

R|S|T o, ™

U V W llllll

X|\Y|Z

Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

it (index < 4)

Shared Memory X e Memory
datal[0]

A|B
(C D|E . Execute data[1]
lyphldat d
=l glyph[datal[index]] {} e
I J K datal[3]
L MN AEEEN
O|P|Q = —
R{S|T — e
U|V|W
X|Y|Z

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
& <;;5> %%U
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
& <;;5> %%b
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
& <;;5> %%U
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
& @ %”0
Prediction
LUT[data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
N fly() M
D Y ?9
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
N fly() M
) Y)
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = bird;

a->move ()
N fly() M
D Y ?9
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = fish;

a->move ()
N fly() M
D Y ?9
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = fish;

a->move ()
Q %,
& fly() %b
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = fish;

a->move ()
N fly() M
D Y ?9
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = fish;

a->move ()
Q %,
o fly() %
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Animal* a = fish;

a->move ()
& <;;5> %%U
Prediction
LUT [data[a->m] *] 0

Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

e Loads can be executed out-of-order

Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

Lukas Giner — Graz University of Technology

Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

Lukas Giner — Graz University of Technology

Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

Lukas Giner — Graz University of Technology

Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

e no store: bypass check

Lukas Giner — Graz University of Technology

Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

e no store: bypass check
e stall

Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

function()

I

Victim Attacker

RSB

Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

function()
Victim Attacker
reg = secret reg = dummy
RSB

Lukas Giner — Graz University of Technology

Spectre-RSB (Val’i www.tugraz.at

function()
Victim Attacker
reg = secret reg = dummy
call function(SHORT)
RSB
&victim

Lukas Giner — Graz University of Technology

Spectre-RSB (Vari

www.tugraz.at

Victim

reg = secret

call function(SHORT)

function()

RSB

Attacker

reg = dummy
call function(LONG)
datal[reg * 4096]

&attacker

&victim

Lukas Giner — Graz University of Technology

Spectre-RSB (Vari

www.tugraz.at

Victim

reg = secret

call function(SHORT)

function()

RSB

Attacker

reg = dummy
call function(LONG)
datalreg * 4096]

&attacker

&victim

Lukas Giner — Graz University of Technology

Spectre-RSB (Val’i www.tugraz.at

function()

Victim Attacker

reg = secret reg = dummy

call function(SHORT) call function(LONG)

datalreg * 4096]

RSB

&victim

Lukas Giner — Graz University of Technology

Spectre-RSB (Val’i www.tugraz.at

function()
Victim Attacker
reg = secret zlx reg = dummy
call function(SHORT) ‘%HE_ call function(LONG)
.
datalreg * 4096]
RSB
&victim

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

y

time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

y

time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

\ 4

operation #n+2

L

time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

predict
CF/DF

> operation #n+2

possibly
architectural ! transient execution

y

time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

retire

prediction

predict
CF/DF

> operation #n+2

possibly
architectural ! transient execution

y

time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

9]
operation #n g
p # o flush pipeline on
wrong prediction
- et
prediction =
+ Ll : 1
N 1 1
3o !
50— operation #n+2 |
possibly :
architectural : transient execution : R
[R ~
time

Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

9]
operation #n g
p # o flush pipeline on
wrong prediction
- et
prediction =
+ Ll : 1
N 1 1
3o e
50> operation #n+2 | |5
possibly : =
architectural : transient execution : R
[R ~
time

Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

Victim
same address space/ Victim
in place branch

Lukas Giner — Graz University of Technology

Mistraining Location

www.tugraz.at

same address space/
out of place

same address space/
in place

Victim

Congruent
branch

Address
collision

Victim
branch

Lukas Giner — Graz University of Technology

www.tugraz.at

Mistraining Location

Victim
same address space/ Congruent
out of place branch

al <
¢|.e
3|2
<|8
same address space/ Victim
in place branch

Shared Branch Prediction State

Lukas Giner — Graz University of Technology

www.tugraz.at

Mistraining Location

Victim Attacker

same address space/ Congruent
out of place branch

al <

¢|.e

3|2

<|8
same address space/ Victim
in place branch

Shared Branch Prediction State

Lukas Giner — Graz University of Technology

Mistraining Location

www.tugraz.at

same address space/
out of place

same address space/
in place

Victim Attacker
Congruent
branch
§|8
<|2
2|8
Victim Shadow
branch branch

Shared Branch Prediction State

cross address space/
in place

Lukas Giner — Graz University of Technology

www.tugraz.at

Mistraining Location

Victim Attacker

same address space/ Congruent Congruent cross address space/
out of place branch branch out of place

al al

3.2 3.2

3|2 3|2

<|8 <|8
same address space/ Victim Shadow cross address space/
in place branch branch in place

Shared Branch Prediction State

Lukas Giner — Graz University of Technology

Transient Execution Attacks

www.tugraz.at

in-place (IP) vs., out-of-place (OP)

mistraining
strategy

Cross-address-space

Same-add

PHT-CA-IP
PHT-SA-IP

pace

Spectre-PHT

Spectre-BTB

microarchitec-
tural buffer

PHT-SA-OP

BTB-CA-IP

BTB-CA-OP

Spectre-RSB Cross-address-space

BTB-SA-IP

Spectre-type

Same-add pace

BTB-SA-OP D

Spectre-STL)

Cross-address-space

Same-address-space

RSB-CA-OP
RSB-SA-OP

Meltdown-US

Meltdown-US-L1

Meltdown-US-L3

Meltdown-P

Meltdown-type

" Meltdown-XD)

- 7Me7\ta(;wn—SNT B 7‘\

Meltdown-MPX)

Meltdown-GP__) Meltdown-BND)

Meltdown-US-LFB.

Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection
s
o
©
s
]
=
o
g J
D <\ L -.'!;’
% <

Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection
s
c
e}
s
[}
= |
s
i
e

Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

8
& {/
©
© &
=
g]
<\ .!1
i

Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

S

s 0/

I

© &

>

‘gﬁ‘ ’ %3'/,
~\ -
_3.%{ ,’l\

Lukas Giner — Graz University of Technology

Learn from it

www.tugraz.at

We have ignored software side-channels for many many years:

Lukas Giner — Graz University of Technology

We have ignored software side-channels for many many years:

e attacks on crypto

Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

. We have ignored software side-channels for many many years:
-
e attacks on crypto — “software should be fixed"”
v—
v—

Lukas Giner — Graz University of Technology

www.tugraz.at

. We have ignored software side-channels for many many years:
-
e attacks on crypto — “software should be fixed"”
— e attacks on ASLR
v—
v—

Lukas Giner — Graz University of Technology

www.tugraz.at

. We have ignored software side-channels for many many years:
-
e attacks on crypto — “software should be fixed"”
—— e attacks on ASLR — “ASLR is broken anyway”
v—
v—

Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

. We have ignored software side-channels for many many years:
e attacks on crypto — “software should be fixed"”
—_— e attacks on ASLR — “ASLR is broken anyway”
:: e attacks on SGX and TrustZone

Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

. We have ignored software side-channels for many many years:
e attacks on crypto — “software should be fixed"”
—_— e attacks on ASLR — “ASLR is broken anyway”
:: e attacks on SGX and TrustZone — “not part of the threat model”

Lukas Giner — Graz University of Technology

www.tugraz.at

. We have ignored software side-channels for many many years:
e attacks on crypto — “software should be fixed"”
—_— e attacks on ASLR — “ASLR is broken anyway”
:: e attacks on SGX and TrustZone — “not part of the threat model”

— for years we solely optimized for performance

Lukas Giner — Graz University of Technology

hen you read the manuals... www.tugraz.at

After learning about a side channel you realize:

Lukas Giner — Graz University of Technology

hen you read the manuals... www.tugraz.at

- . . .
After learning about a side channel you realize:
— e the side channels were documented in the Intel manual
v—
v—

Lukas Giner — Graz University of Technology

hen you read the manuals... www.tugraz.at

After learning about a side channel you realize:
— e the side channels were documented in the Intel manual
: e only now we understand the implications

Lukas Giner — Graz University of Technology

Conclusion

www.tugraz.at

e Underestimated microarchitectural attacks for a long time

Lukas Giner — Graz University of Technology

Conclusion www.tugraz.at

e Underestimated microarchitectural attacks for a long time
—— e Meltdown, Spectre and Foreshadow exploit performance optimizations
) — e Allow to leak arbitrary memory
v—

Lukas Giner — Graz University of Technology

Conclusion www.tugraz.at

e Underestimated microarchitectural attacks for a long time
—— e Meltdown, Spectre and Foreshadow exploit performance optimizations
) — e Allow to leak arbitrary memory
v—

e CPUs are deterministic - there is no noise

Lukas Giner — Graz University of Technology

Ty,

Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown and Spectre

Lukas Giner
March 21, 2024

Graz University of Technology

References i www.tugraz.at

[1] Jann Horn. speculative execution, variant 4: speculative store bypass. 2018.

[2] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.

[3] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack
Buffer". In: WOOT. 2018.

[4] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX
Security. 2018.

Lukas Giner — Graz University of Technology

References ii www.tugraz.at

[5] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution Using Return Stack
Buffers”. In: CCS. 2018.

[6] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. “Speculative
Dereferencing of Registers: Reviving Foreshadow". In: arXiv:2008.02307 (2020).

[7] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom. Foreshadow-NG:
Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution. 2018.
URL: https://foreshadowattack.eu/foreshadow-NG.pdf.

Lukas Giner — Graz University of Technology

https://foreshadowattack.eu/foreshadow-NG.pdf

