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Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic
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Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?
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Let’s try to clarify these questions





Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory
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Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM
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Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)
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Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)
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Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce
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Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code
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Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret
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Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce
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Background



Out-of-order Execution







Wait for an hour



Wait for an hour

LATENCY
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Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);
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Out-of-order execution www.tugraz.at
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• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units
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• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible
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We are ready for the gory details of Meltdown



Building the Code www.tugraz.at

• Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner
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Building the Code www.tugraz.at

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

15 Lukas Giner — Graz University of Technology



Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault
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Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea
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Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible
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Building the Code www.tugraz.at

• Adapted code

*( volatile char*) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

*(char*) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

*( volatile char*)0;
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Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space
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Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention
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Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}
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Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

(( size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}
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Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown

. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]
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Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?
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VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM
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Meltdown Root Cause www.tugraz.at

operation #n

time
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Meltdown Root Cause www.tugraz.at
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Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...
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Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables
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Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed
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Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• Present bit is the next obvious bit
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Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE
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Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

L1

Cache
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Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes
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Spectre-PHT (Variant 1) www.tugraz.at
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data[3]

Shared Memory
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C D E
F G H
I J K
L M N
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U V W
X Y Z

index = 0index = 0 if (index < 4)

glyph[data[index]] {}

the
n else
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Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order

→ need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall
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Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance
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When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications
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Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise
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