
Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown and Spectre

Lukas Giner

March 21, 2024

Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Lukas Giner — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Lukas Giner — Graz University of Technology

Let’s try to clarify these questions

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Lukas Giner — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Lukas Giner — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Lukas Giner — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Lukas Giner — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Lukas Giner — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Lukas Giner — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Lukas Giner — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Lukas Giner — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Lukas Giner — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Lukas Giner — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Lukas Giner — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Lukas Giner — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Lukas Giner — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Lukas Giner — Graz University of Technology

Background

Out-of-order Execution

Wait for an hour

Wait for an hour

LATENCY

Parallelize
D

ep
en

de
nc

y

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

11 Lukas Giner — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

11 Lukas Giner — Graz University of Technology

Out-of-order execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units

12 Lukas Giner — Graz University of Technology

Out-of-order execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible

13 Lukas Giner — Graz University of Technology

We are ready for the gory details of Meltdown

Building the Code www.tugraz.at

• Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner

14 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

15 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Lukas Giner — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

20 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

20 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

22 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

22 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Lukas Giner — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at any address

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Lukas Giner — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Lukas Giner — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Lukas Giner — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Lukas Giner — Graz University of Technology

Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

26 Lukas Giner — Graz University of Technology

Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

27 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown

. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1

, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. And that’s true, sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We can still leak the data at a lower reading rate, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [6]

28 Lukas Giner — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Lukas Giner — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Lukas Giner — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Lukas Giner — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

operation #n+2

data dependency

data

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception

time

31 Lukas Giner — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception raise

time

31 Lukas Giner — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Lukas Giner — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Lukas Giner — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Lukas Giner — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Lukas Giner — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Lukas Giner — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Lukas Giner — Graz University of Technology

Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

34 Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed

35 Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• Present bit is the next obvious bit

36 Lukas Giner — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• Present bit is the next obvious bit

36 Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Lukas Giner — Graz University of Technology

Foreshadow-NG [7] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

L1

Cache

38 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present

L1

Cache

38 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical

L1

Cache

38 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical
Physical

Page

L1 lookup

with

physical address

L1

Cache

38 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1

Cache

38 Lukas Giner — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1 lookup

with

virtual address

L1

Cache

38 Lukas Giner — Graz University of Technology

»A table for 6 please«

Speculative Cooking

»A table for 6 please«

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

46 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Speculate

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

D

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

T

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

T

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K
K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K
K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

K

47 Lukas Giner — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Execute

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

K

47 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

48 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order

→ need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

49 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim Attacker

function()

...

RSB

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

Attacker

reg = dummy

function()

...

RSB

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

function()

...

RSB

&victim

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

50 Lukas Giner — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

50 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline on
wrong prediction

time

51 Lukas Giner — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline on
wrong prediction

time

51 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

Victim

Victim

branch

52 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

52 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Shared Branch Prediction State

52 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Attacker

Shared Branch Prediction State

52 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

cross address space/

in place

Attacker

Shadow

branch

Shared Branch Prediction State

52 Lukas Giner — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

cross address space/

in place

cross address space/

out of place

Attacker

Shadow

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Shared Branch Prediction State

52 Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Transient

cause?

Spectre-type

microarchitec-

tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

mistraining

strategy
Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM

Meltdown-MPX

Meltdown-BND

prediction

fault

Meltdown-US-L1

Meltdown-US-L3

Meltdown-US-LFB

53 Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

54 Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

54 Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

54 Lukas Giner — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

54 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

55 Lukas Giner — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

56 Lukas Giner — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

56 Lukas Giner — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

56 Lukas Giner — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

57 Lukas Giner — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

57 Lukas Giner — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

57 Lukas Giner — Graz University of Technology

Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown and Spectre

Lukas Giner

March 21, 2024

Graz University of Technology

References i www.tugraz.at

[1] Jann Horn. speculative execution, variant 4: speculative store bypass. 2018.

[2] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and

Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.

[3] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack

Buffer”. In: WOOT. 2018.

[4] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX

Security. 2018.

58 Lukas Giner — Graz University of Technology

References ii www.tugraz.at

[5] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution Using Return Stack

Buffers”. In: CCS. 2018.

[6] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. “Speculative

Dereferencing of Registers: Reviving Foreshadow”. In: arXiv:2008.02307 (2020).

[7] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,

Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom. Foreshadow-NG:

Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution. 2018.

url: https://foreshadowattack.eu/foreshadow-NG.pdf.

59 Lukas Giner — Graz University of Technology

https://foreshadowattack.eu/foreshadow-NG.pdf

