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Vulnerability Assessment www.tugraz.at

Meltdown[4] and Spectre [2] are two CPU vulnerabilities

&

Discovered in 2017 by 4 independent teams

Due to an embargo, released at the beginning of 2018

e News coverage followed by a lot of panic
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Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic
e Which CPUs/vendors are affected?
“?? e Are smartphones/loT devices affected?
e Can the vulnerabilities be exploited remotely?

e What data is at risk?

How hard is it to exploit the vulnerabilities?

Is it already exploited?
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Let’s try to clarify these questions



MELTDOWN
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e This isolation is a combination of
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Hardware Isolation

Kernel is isolated from user space

This isolation is a combination of
hardware and software
User applications cannot access

anything from the kernel

There is only a well-defined
interface — syscalls

@ Userspace

w

Applications

www.tugraz.at

Kernelspace

Operating

System CIohY
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Meltdown Briefing www.tugraz.at

e Breaks isolation between @ Userspace Kernelspace
applications and kernel

e User applications can access kernel

addresses /
e Entire physical memory is mapped

in the kernel "
Operating

— Meltdown can read whole DRAM Applications System  Memory
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Meltdown Requirements www.tugraz.at

e Only on Intel CPUs and some ARMs (e.g. Cortex
A15,A57,A72,A75)

e AMD and other ARMs seem to be unaffected

e Common cause: permission check done in parallel to load

instruction

e Race condition between permission check and dependent
operation(s)
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Meltdown Variant Requirements www.tugraz.at

Meltdown variant: read privileged registers

Limited to some registers, no memory content
Reported by ARM
Affects some ARMs (Cortex A15, A57, and A72)
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Meltdown requires code execution on the device (e.g. Apps)

Untrusted code can read entire memory of device
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Meltdown Exploitability www.tugraz.at

Meltdown requires code execution on the device (e.g. Apps)

Untrusted code can read entire memory of device

AL
e

Cannot be triggered remotely

ng &lo

e Proof-of-concept code available online

No info about environment required — easy to reproduce
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Spectre Briefing www.tugraz.at

e Mistrains branch prediction ¢ A
e CPU speculatively executes code which should not be executed
e Can also mistrain indirect calls

— Spectre “convinces’ program to execute code
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Spectre Requirements www.tugraz.at

On Intel and AMD CPUs
Some ARMs (Cortex R and Cortex A) are also affected

e Common cause: speculative execution of branches

Speculative execution leaves microarchitectural traces which leak

secret
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Spectre (typically) requires code execution on the device (e.g.

9\ (v Apps)
nie Untrusted code can convince trusted code to reveal secrets

]

ng &lo

Can be triggered remotely (e.g. in the browser, NetSpectre)

Proof-of-concept code available online

Info about environment required — hard to reproduce
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Background



I
- Out-of-order Execution



7. Serve with cooked |
| and peeled potatoes










Wait for an hour

v

;z LATENCY




vegetablea ’|
=' 2. Pick the basil leaves
| and set aside

W 3. Heat 2 tablespoons of
8 ocilinapan

8 4 Try vegetables until




4——-ﬁ— Parallelize

3. Heat 2 tablespoons of
\ cilin a pan <

1
|

4. Fry vegetables until




Out-of-order Execution www.tugraz.at

width = 10, height = 5;
diagonal = sqrt(width * width
+ height * height);

area = width * height;

printf ("Area %d x %d = %d\n", width, height, area);
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Parallelize

width,

9
]
U width = 10, height = 5;
c
Q diagonal = sqrt(width * width

+ height * height);
QqJ area = width * height;

height, area);

Cprintf("Area %d x %d = %d\n",
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Out-of-order execution A

s
L1 Instruction Cache

Branch Instruction Fetch & PreDecode

g LI Instruction Queue
E OP Cache 4-Way Decode
= I N O N
.
‘ Allocation Queue ‘
Lo Lo [or Low
con e T \ e Instructions are fetched and decoded in the front-end
0 R
‘ s‘d.edul‘:, — e |nstructions are dispatched to the backend

e |nstructions are processed by individual execution units

Store data et
AGU

Execution Engine

ALU, Branch

Execution Units

Load Buffer] [Store Buer]
5 [Losa Buter] [sore Bt
g3 brig] STLB. tH
5% | LlDataCache [— |
23 L2 Cache —
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Out-of-order execution A

s
L1 Instruction Cache

Branch Instruction Fetch & PreDecode

—g L Instruction Queue

E HOP Cache 4-Way Decode.

= IS B e i

3
\ EmEaE | e Instructions are executed out-of-order
2
con e i Renl,derml"er i \ e |nstructions wait until their dependencies are ready
‘ s‘chedul‘:r — e Later instructions might execute prior earlier instructions

e Instructions retire in-order

Store data et
AGU

Execution Engine

ALU, Branch

e State becomes architecturally visible

Execution Units

Load Buffer] [Store Buer]
5 [Losa Buter] [sore Bt
g3 brig] STLB. tH
5% | LlDataCache [— |
23 L2 Cache —
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We are ready for the gory details of Meltdown



Building the Code www.tugraz.at

e Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms

ffffff£f£f81a000e0 R linux_banner
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Building the Code www.tugraz.at

data = *( *) Oxffffffff81a000e0;
printf ("%c\n", data);

Lukas Giner — Graz University of Technology



Building the Code www.tugraz.at

e Compile and run

\\\I segfault at fffffff£f81a000e0 ip
= 0000000000400535
,.) sp 00007ffce4a80610 error 5 in reader
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Building the Code www.tugraz.at

e Compile and run

\\\I segfault at fffffff£f81a000e0 ip
= 0000000000400535
,.) sp 00007ffce4a80610 error 5 in reader

e Kernel addresses are of course not accessible

e Any invalid access throws an exception — segmentation fault
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i [
\"’ e Just catch the segmentation fault!

Y
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e Just catch the segmentation fault!
e We can simply install a signal handler

e And if an exception occurs, just jump back and continue

Y

e Then we can read the value
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Building the Code www.tugraz.at

e Just catch the segmentation fault!
e We can simply install a signal handler

e And if an exception occurs, just jump back and continue

Y

e Then we can read the value

Sounds like a good idea
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Building the Code

www.tugraz.at

Still no kernel memory

Maybe it is not that straight forward

Privilege checks seem to work

Are privilege checks also done when executing instructions out of order?

Problem: out-of-order instructions are not visible
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Building the Code www.tugraz.at

e Adapted code

* ( *) 0;
array [0] = O;
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e Adapted code

* ( *) 03
array [0] = O;
.o "' e volatile because compiler was not happy
* *

warning: statement with no effect [-Wunused-value]

"
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Building the Code www.tugraz.at

e Adapted code

* ( *x) 0;
array [0] = 0;
. ® "' e volatile because compiler was not happy
* *

warning: statement with no effect [-Wunused-value]

"

e Static code analyzer is still not happy

warning: Dereference of null pointer
* ( *)0;
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e Flush+Reload over all pages of the array

500
400 T
300 J

Access time
[cycles]

Page

e “Unreachable” code line was actually executed
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Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array

500
400 T
300 J

Access time
[cycles]

Page

e “Unreachable” code line was actually executed

e Exception was only thrown afterwards
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e Qut-of-order instructions leave microarchitectural traces

o
o
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Building Meltdown www.tugraz.at

e Qut-of-order instructions leave microarchitectural traces

o @ ° e We can see them for example in the cache
o ‘0 @ P
e Give such instructions a name: transient instructions
" e We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

I,

e >3

e Combine the two things

data = *( *)Oxffffffff81a000e0;
array [data * 4096] = 0;
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Building Meltdown www.tugraz.at

(‘k‘

L\'
-Q

e Combine the two things

data = *( *)Oxffffffff81a000e0;
array [data * 4096] = 0;

e Then check whether any part of array is cached
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Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array
500

400 T
300 J{

0 50 100 150 200 250

Access time
[cycles]

e Index of cache hit reveals data
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Building Meltdown www.tugraz.at

e Flush+Reload over all pages of the array

g — 500 T

= 9 400 -

=

g 2 300 J{

< 1 1 1 1 1
0 50 100 150 200 250

e Index of cache hit reveals data

e Permission check is in some cases not fast enough
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e Using out-of-order execution, we can read data at any address
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Building Meltdown www.tugraz.at

e Using out-of-order execution, we can read data at any address

Privilege checks are sometimes too slow

Allows to leak kernel memory

Entire physical memory is typically also accessible in kernel address space

Lukas Giner — Graz University of Technology
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Details: Exception Handling www.tugraz.at

e Basic Meltdown code leads to a crash (segfault)

e How to prevent the crash?

7 @A

Fault Fault Fault
Handling Suppression Prevention
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www.tugraz.at

Meltdown with Fault Suppression

e Intel TSX to suppress exceptions instead of signal handler

(xbegin() == XBEGIN_STARTED) {
secret = *( *) Oxffffffff81a000e0;
array [secret * 4096] = 0;
xend () ;
}
(size_t i = 0; i < 256; i++) {
(flush_and_reload(array + i * 4096) == CACHE_HIT) {
printf ("%c\n", i);
}
}
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Meltdown with Fault Prevention www.tugraz.at

e Speculative execution to prevent exceptions

speculate = rand() % 2;
size_t address = (Oxffffffff81a000e0 * speculate) +
((size_t)&zero * (1 - speculate));
(!speculate) {
secret = *( *) address;
array[secret * 4096] = 0;

(size_t i = 0; i < 256; i++) {
(flush_and_reload (array + i * 4096) == CACHE_HIT) {
printf ("%c\n", 1i);
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Uncached memory www.tugraz.at

e Initial assumption: we can only read data stored in the L1 with

Meltdown
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Uncached memory www.tugraz.at

Initial assumption: we can only read data stored in the L1 with

.\ Meltdown. And that's true, sort of:
/‘\ e Experiment where a thread flushes the value constantly and a thread
on a different core reloads the value

! e Target data is not in the L1 cache of the attacking core

We can still leak the data at a lower reading rate, why?

\
[ ]

— Original Meltdown only leaks from the L1, but we can get data
there with load gadgets [6]

Lukas Giner — Graz University of Technology
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Practical attacks www.tugraz.at

e Dumping the entire physical memory takes some time

e Not very practical in most scenarios

e Can we mount more targeted attacks?

Lukas Giner — Graz University of Technology
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VeraCrypt www.tugraz.at

) 1

e Open-source utility for disk encryption
e Fork of TrueCrypt

VeraCrypt e Cryptographic keys are stored in RAM
e With Meltdown, we can extract the keys from DRAM

Lukas Giner — Graz University of Technology
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operation #n

retire

exception raise

(0]
data () gLl s

data dependency

possibly

architectural transient execution

y

,  operation #n\ﬁk2

time

Lukas Giner — Graz University of Technology



Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities

Lukas Giner — Graz University of Technology



Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities

e Not only the user-accessible check

Lukas Giner — Graz University of Technology



Generalization wwwitugraz.at

e Meltdown is a whole category of vulnerabilities
e Not only the user-accessible check

e |ooking closer at the check...

Lukas Giner — Graz University of Technology
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www.tugraz.at

e CPU uses virtual address spaces to isolate processes

e Physical memory is organized in page frames

e Virtual memory pages are mapped to page frames using page
tables

Lukas Giner — Graz University of Technology



Address Translation on x86-64 www.tugraz.at

PML4
CR3
PML4E 0
PML4E 1
: PDPT
N PML4I
4 #: PDPTE 0
- PDPTE 1
PML4E 511 :
y #.PDPTI Page Directory
: PDE 0
: PDE 1
PDPTE 511 :
\"PDE -#PDI Page Table
9 : PTE 0
: PTE 1
PDE 511 :

g 4 KiB P:
s PTE #PTI IS

- Byte O

. Byte 1

PTE 511 :

Offset

[ PML4I (9b) [ PDPTI(9b) | PDI(9b) [ PTI(9b) |  Offset (12b) | Byte 4095

48-bit virtual address

Lukas Giner — Graz University of Technology
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P IRWIUS |WT|UC| R |D|S |G Ignored
Dhyv/cieal D e N Um mhe
I 1ryoicdl 1 5 INUTItTioye
Ignored X

e User/Supervisor bit defines in which privilege level the page can be accessed
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P IRW|USWT|UC|R|D|]S|G Ignored

D ~

O
3

N Hm mhber
A D€

Q.
0
0))

age

Ignored X
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Page Table Entry www.tugraz.at

P IRW|USWT|UC|R|D|]S|G Ignored

D ~ N Hm mhber
A D€

O
3

m
Q

age

wn

Ignored

e Present bit is the next obvious bit

Lukas Giner — Graz University of Technology



Foreshadow- www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF

Lukas Giner — Graz University of Technology



Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
e Exploitable from VMs

Lukas Giner — Graz University of Technology



Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
e Exploitable from VMs

e Allows leaking data from the L1 cache

Lukas Giner — Graz University of Technology



Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
= e Exploitable from VMs

Allows leaking data from the L1 cache

e Same mechanism as Meltdown

Lukas Giner — Graz University of Technology



Foreshadow-NG [7] www.tugraz.at

e An even worse bug — Foreshadow-NG/L1TF
= e Exploitable from VMs

Allows leaking data from the L1 cache
e Same mechanism as Meltdown

Just a different bit in the PTE

Lukas Giner — Graz University of Technology
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Page Table
PTE O
PTE 1

PTE #PTI

PTE 511

L1
Cache
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Page Table
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PTE 511
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Page Table
PTE O
PTE 1
: present Guest Physical
PTE #PTI y
# I'to Host Physical
PTE 511

L1
Cache
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Page Table
PTE O
PTE 1
: present Guest Physical
PTE #PTI > S i
i I'to Host Physical | s
: Page
PTE 511
L1 looku
1 K P
Cach with
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Foreshadow-NG www.tugraz.at

Page Table

PTE O

PTE 1

: not present
PTE #PTI
PTE 511
L1 looku
. P > L1
with
. Cache
virtual address

Lukas Giner — Graz University of Technology



Admin

Unlock

[Booting from ROM...

early console in extract_kernel
input_data: Ox0000000001e0a2?6
input_len: Ox00000000003d448f8

putput: Ox0000000001000000
putput_len: OxO00000000011bc258
kernel_total_size: Ox0000000000deeO000
booted via startup_320)
[Physical KASLR using RDTSC...

irtual KASLR using RDTSC...

ecompressing Linux... Parsing
ooting the kernel.

Performing relocations...
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A e Many predictors in modern CPUs

Branch taken/not taken (PHT)
Call/Jump destination (BTB)
e Function return destination (RSB)

v e Load matches previous store (STL)

o
©
Vv
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Speculation Causes www.tugraz.at

A e Many predictors in modern CPUs
Branch taken/not taken (PHT)
¢ @ b Call/Jump destination (BTB)
v e Load matches previous store (STL)

e Function return destination (RSB)
e Most are even shared among processes

Lukas Giner — Graz University of Technology
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if (index < 4)

Shared Memory X e Memory
datal[0]

A|lB
(CIDE datal[1]
lyph[datalind

T glyph[datal[index]] {} e
HJK datal[3]
L M N LLLLL]

O|P|Q = —

R|IS|T — -

U |V W

| V2 ITTTT1
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it (index < 4)

Shared Memory X e Memory
datal[0]

A|B
C|D|E . Speculate data[1]
lyphldat d
=l glyph[datal[index]] {} e
I J K datal[3]
L |MN Liiill
O|P|Q = -
R|S|T — o
U|V|W
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it (index <

Shared Memory recute €8 Memory
datal[0]

A|B
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it (index <

Shared Memory recute €8 Memory
B datal[0]

A
c@ glyph[data[lndex]] data[1]
d G = IE‘ datal[2]
: J < datal[3]
LM 111111
OlP|Q - o
R[s|T - -
U|V|W
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it (index < 4)

Shared Memory recute €8 e Memory
A B datal[0]
C{DE ../\ data[1]
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Shared Memory X e Memory
datal[0]
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it (index < 4)
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it (index < 4)
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it (index < 4)
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it (index < 4)
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Shared Memory X e Memory
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Animal* a = bird;

a->move ()
& <;;5> %%U
Prediction
LUT [data[a->m] * ] 0
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a->move ()
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Prediction
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Lukas Giner — Graz University of Technology



Spectre-STL (Variant 4) [1] www.tugraz.at

e Loads can be executed out-of-order

Lukas Giner — Graz University of Technology



Spectre-STL (Variant 4) [1] www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

Lukas Giner — Graz University of Technology



Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

Lukas Giner — Graz University of Technology



Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

Lukas Giner — Graz University of Technology



Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

e no store: bypass check

Lukas Giner — Graz University of Technology



Spectre-STL (Va www.tugraz.at

e Loads can be executed out-of-order — need to check for previous
stores

e Check is time consuming

e Optimization: Speculate whether a store happened or not

e no store: bypass check
e stall
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function()

Victim Attacker

reg = secret reg = dummy

call function(SHORT) call function(LONG)

datalreg * 4096]

RSB

&victim
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function()
Victim Attacker
reg = secret zlx reg = dummy
call function(SHORT) ‘%HE_ call function(LONG)
.
datalreg * 4096]
RSB
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. We have ignored software side-channels for many many years:
e attacks on crypto — “software should be fixed"”
—_— e attacks on ASLR — “ASLR is broken anyway”
:: e attacks on SGX and TrustZone — “not part of the threat model”

— for years we solely optimized for performance
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After learning about a side channel you realize:
— e the side channels were documented in the Intel manual
: e only now we understand the implications
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e Underestimated microarchitectural attacks for a long time
—— e Meltdown, Spectre and Foreshadow exploit performance optimizations
) — e Allow to leak arbitrary memory
v—

e CPUs are deterministic - there is no noise
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