Operating Systems

File Systems

Daniel Gruss
2023-11-14

SRS s M 0072

e 2

007~

RAM too small - persistent data - share data among processes

store stuff on disks, no longer dependent on processes

store stuff on disks, no longer dependent on processes

Storage Device

0TB

18 TB

—A
o
‘e%\

Stor%g@ﬁevice
oot

0TB

18 TB

like page manager? like malloc? something else?

Daniel Gruss

Daniel Gruss

Daniel Gruss

e User does not want to see, know and understand

Daniel Gruss

e User does not want to see, know and understand
< where and

Daniel Gruss

e User does not want to see, know and understand

< where and
? how

Daniel Gruss

e User does not want to see, know and understand

< where and
? how

e data is stored

Daniel Gruss

e User does not want to see, know and understand

< where and
? how

e data is stored

e must be able to refer to data

Daniel Gruss

e User does not want to see, know and understand

< where and
? how

e data is stored
e must be able to refer to data

— we need names

Daniel Gruss

Bild 5117 Produkte

Samsung RDIMM 16GB, DDR3L-1600, CL11-11-11, reg ECC (M393B2G70BHO0-YKO)

Typ: DDR3L RDIMM 240-Pin, reg ECC » Takt: 1600MHz » Module: 1x 16GB » JEDEC: PC3L-12800R s+ Ranks/Banke: dual rank, x4 «
CAS Latency CL: 11 (entspricht ~13.75ns) = Row-to-Column Delay tRCD: 11 (entspricht ~13.75ns) « Row Precharge Time tRP: 11 ...

Samsung RDIMM 16GB, DDR3L-1600, CL11-11-11, reg ECC (M393B2G70DBO0-YK0)

Typ: DDR3L RDIMM 240-Pin, reg ECC » Takt: 1600MHz Module: 1x 16GB ¢ JEDEC: PC3L-12800R ¢ Ranks/Banke: dual rank, x4 e
CAS Latency CL: 11 (entspricht ~13.75ns) = Row-to-Column Delay tRCD: 11 (entspricht ~13.75ns) » Row Precharge Time tRP: 11 ...

Samsung LRDIMM 32GB, DDR3-1866, CL13-13-13, ECC (M386B4G70DMO0-CMA)

Typ: DDR3 LRDIMM 240-Pin, ECC » Takt: 1866MHz « Module: 1x 32GB » JEDEC: PC3-14900L » Ranks/Banke: quad rank, x4 s CAS
Latency CL: 13 (entspricht ~13.93ns) « Row-to-Column Delay tRCD: 13 (entspricht ~13.93ns) = Row Precharge Time tRP: 13

Samsung RDIMM 32GB, DDR4-2133, CL15-15-15, reg ECC (M393A4K40BB0-CPB)

Typ: DDR4 RDIMM 288-Pin, reg ECC » Takt: 2133MHz « Module: 1x 32GB « JEDEC: PC4-17000R « Ranks/Banke: dual rank, x4 « CAS
Latency CL: 15 (entspricht ~14.06ns) « Row-to-Column Delay tRCD: 15 (entspricht ~14.06ns) » Row Precharge Time tRP: 15

Patriot Signature Line DIMM 8GB, DDR4-2666, CL19-19-19-43 (PSD48G266681).

Typ: DDR4 DIMM 288-Pin « Takt: 2666MHz = Module: 1x 8GB » JEDEC: PC4-21300U + Ranks/Banke: single rank s CAS Latency CL:
19 (entspricht ~14.25ns) » Row-to-Column Delay tRCD: 19 (entspricht ~14.25ns) s Row Precharge Time tRP: 19 (entspricht ...

Patriot Signature Line ohne Kiihler DIMM 8GB, DDR3-1600, CL11 (PSD38G16002)

Typ: DDR3 DIMM 240-Pin » Takt: 1600MHz » Module: 1x 8GB » JEDEC: PC3-12800U CAS Latency CL: 11 (entspricht ~13.75ns) s
Spannung: 1.5V « Modulhdhe: 30mm « Gehduse: N/A » Beleuchtung: N/A « Besonderheiten: Standard-SPD » Garantie: (bitte ...

Patriot Signature Line SO-DIMM 8GB, DDR3L-1600, CL11 (PSD38G1600L2S)

Typ: DDR3L SO-DIMM 204-Pin » Takt: 1600MHz » Module: 1x 8GB « JEDEC: PC3L-12800S CAS Latency CL: 11 (entspricht
~13.75ns) « Spannung: 1.35V « Modulhdhe: 30mm = Gehéuse: N/A « Beleuchtung: N/A + Besonderheiten: Standard-SPD =
Garantie: (bitte ...

Samsung RDIMM 8GB, DDR3L-1333, C19-3-9, reg ECC (M393B1K70DH0-YH9)

Typ: DDR3L RDIMM 240-Pin, reg ECC » Takt: 1333MHz » Module: 1x 8GB ¢ JEDEC: PC3L-10667R » Ranks/Banke: dual rank s CAS
Latency CL: 9 (entspricht ~13.50ns) = Row-to-Column Delay tRCD: 9 (entspricht ~13.50ns) « Row Precharge Time tRP: 9 (entspricht

Bewertung
(Anzahl)

(2u wenige)

(zu wenige)

(2u wenige)

(zu wenige)

(2u wenige)

(zu wenige)

(2u wenige)

(2u wenige)

Testberichte Angebote

5

36

26

Preis* a
(pro GiB)

ab € 29,90 (€ 1,869/GB)

ab € 35,00 (€ 2,188/GB)

ab € 74,25 (€ 2,320/GB)

ab € 79,00 (€ 2,469/GB)

ab € 19,90 (€ 2,487/GB)

ab € 19,99 (€ 2,499/GB)

ab € 19,99 (€ 2,499/GB)

ab € 20,00 (€ 2,500/GB)

content lost upon crash or power failure

Bewertung Preis* a

Bild 2700 Produkte (Anzani). Testberichte Angebote | L2 T
Patriot Burst Elite 1.92TB, SATA (PBE192TS25SSDR) (zu wenige) bl N 11 B ab€103,90 (€ 54,115/TB)
i Testbericht
27 N gaurorm: solid state Drive (SSD) » Formfaktor: 2.5 » Schnittstelle: SATA 6Gb/s « Lesen: 450MB/s » Schreiben: 320MB/s = [OPS 4K
o W |osen/schreiben: 40k/40k o Speichermodule: 3D-NAND QLC » TBW: 800TB e Zuverlassigkeitsprognose: 2 Mio. Stunden (MTBF) ..
Intenso PCIe PREMIUM SSD 1TB, M.2 (3835460) (zu wenige) 40 L} ab € 55,99 (€ 55,990/TB)
Bauform: Solid State Module (SSM) » Formfaktor: M.2 2280 « Schnittstelle: M.2/M-Key (PCIe 3.0 x4) « Lesen: 2100MB/s =
Schreiben: 1700MB/s » Speichermodule: 3D-NAND TLC « TBW: 600TB s Protokoll: NVMe 1.3 « Leistungsaufnahme: keine Angabe
Intenso Top Performance SSD 2TB, SATA (3812470) (zu wenige) 41 | | ab € 117,03 (€ 58,515/TB)

Bauform: Solid State Drive (SSD) » Formfaktor: 2.5" » Schnittstelle: SATA 6Gb/s s Lesen: 520MB/s s Schreiben: 500MB/s =
Protokoll: AHCI » Leistungsaufnahme: keine Angabe (maximal), keine Angabe (Betrieb), keine Angabe (Leerlauf), keine Angabe ...

Patriot P210 1TB, SATA (P210S1TB25) (zu wenige) = ﬂ;l o 35 L} ab € 58,89 (€ 58,89
estbericl

Bauform: Solid State Drive (SSD) » Formfaktor: 2.5" » Schnittstelle: SATA 6Gb/s « Lesen: 520MB/s = Schreiben: 430MB/s « IOPS 4K

lesen iben: 50k/50k » Speichermodule: 3D-NAND (Bestuckungen maglich) + TBW: keine Angabe ...

Intenso Top Performance SSD 1TB, SATA (3812460) Fokokkok 95 B ab€ 58,50 (€ 58,900/TB)

Bauform: Solid State Drive (SSD) Formfaktor: 2.5" » Schnittstelle: SATA 6Gb/s » Lesen: 520MB/s » Schreiben: 500MB/s s 1 AT

Protokoll: AHCI « Leistungsaufnahme: keine Angabe (maximal), keine Angabe (Betrieb), keine Angabe (Leerlauf), keine Angabe ...

TeamGroup CX2 SSD 2TB, SATA (T253X6002T0C101) (zu wenige) = ﬂ;l o 24 B ab€ 119,70 (€ 59,850/TB)
estbericl

Bauform: Solid State Drive (SSD) » Formfaktor: 2.5" » Schnittstelle: SATA 6Gb/s « Lesen: 540MB/s = Schreiben: 490MB/s SLC-

Cached + Speichermodule: 3D-NAND TLC, Toshiba/WD, 64 Layer (BICS3) » TBW: 1.6PB » Zuverlassigkeitsprognose: 1 Mio. Stunden

Intenso Top Performance SSD 178, M.2 (3832460) Fokokok 57 B abe59,90 (€ 59,900/TB)

Bauform: Solid State Module (SSM) « Formfaktor: M.2 2280 » Schnittstelle: M.2/B-M-Key (SATA 6Gb/s) « Lesen: 520MB/s » ElE=RSSihaey

Crhraihan: SANMOTe » Drataballs ALCT o | aictiinmeanfnahmas baina Anaska frsviesal) baina Anmsha (Ratriah) baina Anasha

NON VOLATILE - keeps content beyond crashes - higher capacity + lower cost

1468 Produkte

prise Capacity MGOSACA 16TB, SATA 6Gb/s (MGOBACA16TE)

Formfaktor: 3.5, 26.1mm Drehzahl: 7200rpm « Cache: 512MB « Leistungsaufnahme: 7.63W (Betrieb), 4W (Leerlauf) «
Lautstarke: keine Angabe (Betrieb), 20dB(A) (Leerlauf) » Aufnahmeverfahren: Conventional Magnetic Recording (CMR), Two
Dimensional .

SATA 6Gb/s (MGOSACA18TE)

Formfaktor: 3.5", 26.1mm e Drehzah|: 7200rpm e Cache: 512MB » Leistungsaufnahme: 8.35W (Betrieb), 4.16W (Leerlauf)
Lautstarke: keine Angabe (Betrieb), 20dB(A) (Leerlauf) = Aufnahmeverfahren: Flux Control Microwave Assisted Conventional
Magnetic ...

Formfaktor: 3.5, 26.1mm s Drehzahl: 7200rpm « Cache: 512MB » Leistungsaufnahme: 8.35W (Betrieb), 4.16W (Leerlauf) =
Lautstarke: keine Angabe (Betrieb), 20dB(A) (Leerlauf) s Aufnahmeverfahren: Flux Control Microwave Assisted Conventional
Magnetic ...

Formfaktor: 3.5" Drehzahl: 7200rpm « Cache: 256MB » Leistungsaufnahme: 6.4W (Betrieb), 5.3W (Leerlauf) s Lautstarke: keine
Angabe (Betrieb), keine Angabe (Leerlauf) » Aufnahmeverfahren: Conventional Magnetic Recording (CMR) » Sektoren: 4KB mit ..

SATA 6Gb/s (MGO7ACA14TE)

Formfaktor: 3.5", 26.1mm e Drehzahl: 7200rpm Cache: 256MB « Leistungsaufnahme: 7.8W (Betrieb), 4.22W (Leerlauf) o
Lautstirke: keine Angabe (Betrieb), 20dB(A) (Leerlauf) » Aufnahmeverfahren: Conventional Magnetic Recording (CMR) »
Sektoren: 4KB ...

Formfaktor: 3.5" Drehzahl: 5900rpm = Cache: 64MB » Leistungsaufnahme: 5.5W (Betrieb), 3.2W (Leerlauf) » Lautstérke:
34dB(A) (Betrieb), 30dB(A) (Leerlauf) » Aufnahmeverfahren: Conventional Magnetic Recording (CMR) » Sektoren: 4KB mit
Emulation

Formfaktor: 3.5" » Drehzahl: 7200rpm Cache: 256MB s Leistungsaufnahme: 6.3W (Betrieb), 5.0W (Leerlauf) « Lautstarke: keine
Angabe (Betrieb), keine Angabe (Leerlauf) « Aufnahmeverfahren: Conventional Magnetic Recording (CMR) Sektoren: 4KB mit ..

Formfaktor: 3.5" Drehzahl: 7200rpm « Cache: 256MB » Leistungsaufnahme: 6.3W (Betrieb), 5.0W (Leerlauf) s Lautstarke: keine
Angabe (Betrieb), keine Angabe (Leerlauf) » Aufnahmeverfahren: Conventional Magnetic Recording (CMR) » Sektoren: 4KB mit ..

Bewertung
(Anzahl)

Fodokkok

45 Bewertungen

Jokok ok

34 Bewertungen

(zu wenige)

Jokok ok

25 Bewertungen

Jokok ok

19 Bewertungen

Jodokkok

18 Bewertungen

Jokok ok

21 Bewertungen

ok Aok

9 Bewertungen

Testberichte

80
aus 1 Test

2
Testberichte

2
Testberichte

1
Testbericht

2
Testberichte

80
aus 1 Test

80
aus 1 Test

Angebote

90

81

114

118

93

Preis* a
(pro TB)

ab € 259,79 (€ 16,237/TB)

ab € 295,89 (€ 16,438/TB)

ab € 296,79 (€ 16,488/TB)

ab € 299,98 (€ 16,666/TB)

ab € 244,29 (€ 17,449/TB)

ab € 69,86 (€ 17,465/TB)

ab € 284,94 (€ 17,809/TB)

ab € 249,48 (€ 17,820/TB)

and much cheaper per gigabyte

Daniel Gruss

Daniel Gruss

Daniel Gruss

{2 persistent storage, although physical corruption happens all the time

Daniel Gruss

{2 persistent storage, although physical corruption happens all the time

sequential accesses (in blocks)

23 easy/fast (byte-addressable) random accesses, although built for

Daniel Gruss

{2 persistent storage, although physical corruption happens all the time
® 23 easy/fast (byte-addressable) random accesses, although built for
sequential accesses (in blocks)
o= OO0 almost endless capacity (for files, for data within a file), despite very
—— real limitations

Daniel Gruss

&

persistent storage, although physical corruption happens all the time

easy/fast (byte-addressable) random accesses, although built for
sequential accesses (in blocks)

almost endless capacity (for files, for data within a file), despite very
real limitations

fast, but actually slow

Daniel Gruss

{2 persistent storage, although physical corruption happens all the time
® 23 easy/fast (byte-addressable) random accesses, although built for
sequential accesses (in blocks)
o= OO0 almost endless capacity (for files, for data within a file), despite very
—— real limitations

fast, but actually slow

L -

names for files and directories, but actually just bits and bytes

Daniel Gruss

Performance

Daniel Gruss

Performance

Daniel Gruss

Performance

What to do when performance is bad?

Daniel Gruss

Performance

What to do when performance is bad?

Daniel Gruss

Performance

What to do when performance is bad? Caches!

Daniel Gruss

Performance

. What to do when performance is bad? Caches!
.h I DRAM cache inside modern storage devices

Daniel Gruss

Performance

What to do when performance is bad? Caches!

(Y — I DRAM cache inside modern storage devices

B8 Page cache in software, in the OS

Daniel Gruss

Yet another cache: the page cache

88 Files buffered page-wise in “page cache”

Daniel Gruss

Yet another cache: the page cache

88 Files buffered page-wise in “page cache”

@ Lower access time for frequently accessed data

Daniel Gruss

Yet another cache: the page cache

88 Files buffered page-wise in “page cache”
@ Lower access time for frequently accessed data

= Use up all the memory

Daniel Gruss

Yet another cache: the page cache

88 Files buffered page-wise in “page cache”
@ Lower access time for frequently accessed data
= Use up all the memory

e Pages are freed on demand

Daniel Gruss

Yet another cache: the page cache

88 Files buffered page-wise in “page cache”
@ Lower access time for frequently accessed data
= Use up all the memory

e Pages are freed on demand

§? Deduplicate pages (copy-on-write)

Daniel Gruss

00000000:
00000010:
00000020
00000030:
00000040
00000050
00000060
00000070
00000080:
00000090:
000000A0:
000000BO:
000000CO:
000000D0O:
00000O0ED:
000000F0:
00000100:
00000110:
00000120:
00000130:
00000140
00000150:

00000160:
anaAa1TA -

32
74
6C
65
6D
3B
10
62
BO
5E
A9
B7
AF
98
1C
5B
EO
B4
49
F9
82

BF
ng

20
68
74
0A
8F
D9
8C
BF
8A
4B
B2
F7
98
96
3E
D1
99
73
BO
CC
Ad

31
no

30
20
65
3E
&
BE
76
4C
c5
76
3C
EE
10
19
Fl
6D
E5
9D
cC
41
A5

2E
na

20
31
72
3E
B7
20
7B
77

FB
97
7A
99
CF
4C
A2
72
6E
F9
EB
BF

B3
nE

6F
33
20
0A
91
86
76
4F
62
EE
cC
CE
54
35
48
6D
BO
oc
BC
52
El

c2
an

62
20
2F
73
FE
63
27
k]
D5
E2
39
D9
BA
E3
93
66
89
68
6C
E6
59

35
cr

6A
30
46
74
BE
FB
1A
D3
53
FD
CE
FD
FA
99
71
A5
16
72
8l
41
2E

1D
ag

20|52
6C|61
72|65
BF | 82
9C|1C
CD|AC
BD|A3
24|98
C5|4F
B6 | 05
6E|B8
26|E7
B2 | AE
2B|D1
63| 9A
99|06
83|16
C6|DE
3F |46
74|CD
1c|o1
1c1 AR

3C
0A
74
61
30
6C
66
03
2B
EC
FB
El
99
DB
B7
08
13
3E
4A
EO
DF

D7
AN

20
20
65
6D
2E
24
66
OE
18
FD
1B
A2
EO
co
C8
95
2E
DE]
67
5F
29

EC
ca

2F
20
44
BA
co
B6
25
97
c7
85
5B
FA
86
49
3C
09
33
CA
D8
BC
FA

15
ae

4c
20
65
78
2C
94
CcB
93
DF
B2
5F
58
59
BO
17
23
oD
33
F1
6F
C3

54
Er

65
2F
63
9C
A0
04
BF
EC
2B
oc
08
78
9E
B4
4C
3B
1E
63
0]=
8F
8E

8E
eA

6E
46
6F
ED
ED
38
FE
D5
81
FF
46
97
49
43
F2
4D
3C
32
E8
F5
5F

Al
T

67
69
64
5D
ES
6D
9E
BC
1F
19
7F
79
EE
oD
4C
Ad
CF
6B
50
Do
80

6]=
Four i

%PDF-1.5.%

2 0 obj.<< /Leng
th 13 0 R. /Fi
lter /FlateDecod
e.>>,stream.x..]

MM \Hﬁ

ASCII / UTF - file extension plays no role

00000000:
00000010:
00000020:
00000030:
00000040:
00000050:
00000060:
00000070:
00000080:
00000090:
000000A0:
000000BO:
000000CO:
000000D0:
0O00OOEO:
000000F0:
00000100:
00000110:
00000120:
00000130:
00000140:
00000150:
00000160 -

46
61
73
73
69
20
20
20
73
61
73
0A
33
32
20
30
20
20
20
20
20
20
69

6C
63
20
2E
76
20
74
0A
20
6C
2F
20
20
31
30
30
30
20
20
20
20
20
74

61
68
61
0A
65
20
6F
20
20
6C
63
36
20
36
2E
20
2E
31
73
20
20
20
OA

74
20
73
20
20
20
74
74
20
73
61
30
20
20
30
20
30
30
6C
30
20
20
OA

20
73
20
20
20
20
61
69
73
20
6C
2E
20
20
30
20
31
2E
6F
2E
20
20
20

70
61
30
25
20
20
6C
6D
65
20
6C
30
20
20
20
20
20
30
77
30
20
20
25

72
6D
2E
20
73
20
20
65
63
6D
20
30
30
20
20
20
20
30
0A
35
20
20
20

6F |66
70|6C
30|31
2020
65 |6C
20|73
2020
2020
6F |6E
73|2F
20|6E
2020
2E|30
2030
66|61
2030
2020
2020
20|32
2020
2020
20|20
20120

69
65
20
63
66
65
20
20
64
63
61
20
33
2E
73
2E
20
20
30
20
20
20
20

6C
20
73
75
20
6C
20
73
73
61
6D
20
20
30
74
30
20
20
2E
20
20
20
20

65
63
65
6D
20
66
20
65
20
6C
65
20
31
30
0A
34
20
34
30
20
20
20
20

3A
6F
63
75
20
20
20
63
20
6C
20
20
36
20
20
20
20
30
30
30
20
20
20

0A
75
6F
6C
20
20
20
6F
20
20
20
30
37
20
32
20
31
2E
20
2E
20
5F
20

0A
6E
6E
61
20
20
20
6E
20
20
20
2E
37
20
30
20
20
30
20
30
20
69
20

45
74
64
74
20
20
20
64
63
6D
20
30
37
20
2E
20
20
30
20
31
20
6E
T4

Flat profile:..E
ach sample count
s as 0.01 second
s.. % cumulat
ive self
self
total
. time second
s seconds c
alls ms/call m
s/call name
. 60.00 0.0
3 0.03 16777
216 0.00
0.00 fast. 20.
(6]¢] 0.04
0.01 1
10.00 40.00
slow. 20.00
0.05 0.01

1+ @ 2 t

any data - file extension plays no role - usually some internal structure

@hpx360dg / % mount
sysfs on /sys type sysfs (rw,nosuid, nodev,noexec, relatime)

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

udev on /dev type devimpfs (rw,nosuid,relatime,size=7954268k,nr_inodes=1988567,mode=755, inode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)

tmpfs on /run type tmpfs (rw,nosuid,nodev,noexec, relatime,size=1602616k,mode=755, inode64)
/dev/mapper/ubuntu--vg-root on / type ext4 (rw,noatime,errors=remount-ro)

securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)

tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,inode64)

tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec, relatime,size=5120k, inode64)

cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,relatime,nsdelegate,memory_recursive
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,relatime) '
efivarfs on /sys/firmware/efi/efivars type efivarfs (rw,nosuid,nodev,noexec,relatime)

bpf on /sys/fs/bpf type bpf (rw,nosuid,nodev,noexec, relatime, mode=700)

systemd-1 on /proc/sys/fs/binfmt_misc type autofs (rw,relatime, fd=30,pgrp=1,timeout=0,minproto=5,maxpro
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)

hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,pagesize=2M)

debugfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime)

tracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime)

fusectl on /sys/fs/fuse/connections type fusectl (rw,nosuid,nodev,noexec,relatime)

configfs on /sys/kernel/config type configfs (rw,nosuid,nodev,noexec,relatime)

none on /run/credentials/systemd-sysusers.service type ramfs (ro,nosuid,nodev,noexec,relatime,mode=700)
tmpfs on /run/gemu type tmpfs (rw,nosuid,nodev, relatime,mode=755,inode64)

special files - not even on the disk!??

accessing data

Daniel Gruss

accessing data

Daniel Gruss

accessing data

Daniel Gruss

accessing data

@_ tape drives, disks, ...

Daniel Gruss

accessing data

@_ tape drives, disks, ...

i= sequential access

Daniel Gruss

accessing data

@_ tape drives, disks, ...

i= sequential access
OE one byte after the other

Daniel Gruss

accessing data

@_ tape drives, disks, ...

1

i= sequential access
OE one byte after the other
«* seek () other positions to access other parts

Daniel Gruss

accessing data

@_ tape drives, disks, ...

1

i= sequential access
OE one byte after the other
«* seek () other positions to access other parts

X random access possible, but slow

Daniel Gruss

File System Workload

n Daniel Gruss

usually: none of these known beforehand

File System Workload

n Daniel Gruss

usually: none of these known beforehand

File System Workload

Optimize for small files or large files?

n Daniel Gruss

usually: none of these known beforehand

File System Workload

Optimize for small files or large files?

822 number of them?

n Daniel Gruss

usually: none of these known beforehand

File System Workload

Optimize for small files or large files?
22 number of them?

space they occupy?

n Daniel Gruss

usually: none of these known beforehand

File System Workload

Optimize for small files or large files?

£ number of them?
space they occupy?

<’ accesses to them?

n Daniel Gruss

usually: none of these known beforehand

File System Workload

Optimize for small files or large files?

82 number of them?
space they occupy?
<.s accesses to them?

A sequential vs. random access?

n Daniel Gruss

usually: none of these known beforehand

le Sys rkload

Optimize for small files or large files?
22 number of them?
space they occupy?

<.s accesses to them?

A sequential vs. random access?
Lol

¢’ size changes over time?

n Daniel Gruss

usually: none of these known beforehand

We want the best of both worlds!

Daniel Gruss

We want the best of both worlds!

Daniel Gruss

We want the best of both worlds!

Daniel Gruss

We want the best of both worlds!

228 Small files:

Daniel Gruss

We want the best of both worlds!

222 Small files:

e Small blocks — low internal fragmentation

Daniel Gruss

We want the best of both worlds!

222 Small files:

e Small blocks — low internal fragmentation
e Fast concurrent operations

Daniel Gruss

We want the best of both worlds!

222 Small files:
e Small blocks — low internal fragmentation
e Fast concurrent operations
e Files used together should be stored together (why?)

Daniel Gruss

We want the best of both worlds!

222 Small files:
e Small blocks — low internal fragmentation
e Fast concurrent operations
e Files used together should be stored together (why?)

B8 Large files:

Daniel Gruss

We want the best of both worlds!

222 Small files:
e Small blocks — low internal fragmentation
e Fast concurrent operations
e Files used together should be stored together (why?)

B8 Large files:

e Large blocks — low external fragmentation

Daniel Gruss

We want the best of both worlds!

222 Small files:
e Small blocks — low internal fragmentation
e Fast concurrent operations
e Files used together should be stored together (why?)

B8 Large files:

e Large blocks — low external fragmentation
e Contiguous allocation for fast sequential access

Daniel Gruss

We want the best of both worlds!

222 Small files:
e Small blocks — low internal fragmentation
e Fast concurrent operations
e Files used together should be stored together (why?)

B8 Large files:

e Large blocks — low external fragmentation
e Contiguous allocation for fast sequential access
e Efficient lookup within the file for random access

Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

& Directory

n Daniel Gruss

File System Abstraction

& Directory

e Group of named files or subdirectories — store in a metadata block

n Daniel Gruss

File System Abstraction

& Directory

e Group of named files or subdirectories — store in a metadata block
e Mapping from file name to file Metadata location

n Daniel Gruss

File System Abstraction

& Directory

e Group of named files or subdirectories — store in a metadata block
e Mapping from file name to file Metadata location

>_ Path

n Daniel Gruss

File System Abstraction

& Directory

e Group of named files or subdirectories — store in a metadata block
e Mapping from file name to file Metadata location

>— Path
e String that uniquely identifies file or directory

n Daniel Gruss

File System Abstraction

& Directory

e Group of named files or subdirectories — store in a metadata block
e Mapping from file name to file Metadata location

>— Path
e String that uniquely identifies file or directory

e /var/www/teaching/courses/os

n Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

n Daniel Gruss

File System Abstraction

@ Links

n Daniel Gruss

File System Abstraction

@ Links

e Hard link: name to metadata

n Daniel Gruss

File System Abstraction

6’ Links
e Hard link: name to metadata
e Soft link: name to name

n Daniel Gruss

File System Abstraction

6’ Links
e Hard link: name to metadata

e Soft link: name to name

*¥ Mount

n Daniel Gruss

File System Abstraction

6’ Links
e Hard link: name to metadata

e Soft link: name to name

*¥ Mount

e Link name in one file system to root of another

n Daniel Gruss

Accessing files - API

Daniel Gruss

Accessing files - API

API

Daniel Gruss

Accessing files - API

API

Daniel Gruss

Accessing files - API

mmm B creating and deleting files: create (), unlink ()

API

Daniel Gruss

Accessing files - API

mmm B creating and deleting files: create (), unlink ()

API

@ linking files (creating a hard link) 1ink ()

Daniel Gruss

Accessing files - API

API

B creating and deleting files: create (), unlink ()
@ linking files (creating a hard link) 1ink ()

& directory operations: mkdir (), rmdir ()

Daniel Gruss

Accessing files - API

nam B creating and deleting files: create (), unlink ()
(\ @ linking files (creating a hard link) 1ink ()
API & directory operations: mkdir (), rmdir ()
— A open to start accessing a file: open () (actually much more than just
that)

Daniel Gruss

Accessing files - API

nam B creating and deleting files: create (), unlink ()
(\ @ linking files (creating a hard link) 1ink ()
API & directory operations: mkdir (), rmdir ()
— A open to start accessing a file: open () (actually much more than just
that)

B close to end accessing the file: close ()

Daniel Gruss

Accessing files - API

Daniel Gruss

Accessing files - API

API

Daniel Gruss

Accessing files - API

=== kind of like the tape drive model...?

API

Daniel Gruss

Accessing files - API

=== kind of like the tape drive model...?

API

anm reading from a file: read ()

Daniel Gruss

Accessing files - API

=== kind of like the tape drive model...?

anm reading from a file: read ()

API 7 writing to a file: write ()

Daniel Gruss

Accessing files - API

=== kind of like the tape drive model...?

anm reading from a file: read ()
API 7 writing to a file: write ()

> positioning seek ()

Daniel Gruss

Accessing files - API

=== kind of like the tape drive model...?

anm reading from a file: read ()
API 7 writing to a file: write ()

> positioning seek ()

& force modification to storage: fsync ()

Daniel Gruss

How to organize the storage?

Daniel Gruss

How to organize the storage?

Daniel Gruss

How to organize the storage?

Daniel Gruss

How to organize the storage?

228 split storage into blocks

Daniel Gruss

How to organize the storage?

228 split storage into blocks

e what is a good block size?

Daniel Gruss

How to organize the storage?

822 split storage into blocks
e what is a good block size?

e file name — meta data + blocks

Daniel Gruss

How to organize the storage?

822 split storage into blocks
e what is a good block size?
e file name — meta data + blocks

@ how to find data blocks? — file index

Daniel Gruss

How to organize the storage?

822 split storage into blocks
e what is a good block size?
e file name — meta data + blocks

@ how to find data blocks? — file index

Q, where are free data blocks on the storage? how to allocate them?

Daniel Gruss

How to organize the storage?

822 split storage into blocks
e what is a good block size?
e file name — meta data + blocks
@ how to find data blocks? — file index
Q, where are free data blocks on the storage? how to allocate them?

@ Locality: blocks/files/folders?

Daniel Gruss

How to organize the storage?

822 split storage into blocks
e what is a good block size?
e file name — meta data + blocks
@ how to find data blocks? — file index
Q, where are free data blocks on the storage? how to allocate them?
@ Locality: blocks/files/folders?
O Reliability: crash during file system operation?

Daniel Gruss

Naive Approach: FAT - File Allocation Table

Daniel Gruss

Naive Approach: FAT - File Allocation Table

FAT

Daniel Gruss

Naive Approach: FAT - File Allocation Table

FAT

Daniel Gruss

Naive Approach: FAT - File Allocation Table

o old! (1970s)

FAT

Daniel Gruss

Naive Approach: FAT - File Allocation Table

FAT

e old! (1970s)
o file system for MS-DOS and early Windows

Daniel Gruss

Naive Approach: FAT - File Allocation Table

FAT

e old! (1970s)
o file system for MS-DOS and early Windows

e many enhancements

Daniel Gruss

Naive Approach: FAT - File Allocation Table

FAT

old! (1970s)
file system for MS-DOS and early Windows
many enhancements

Today: exFAT for SD-cards, USB sticks, ...

Daniel Gruss

How does FAT work?

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

LI
FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

LI
FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

'—I-\ 28 Blocks? Sectors! Which size?

FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

'—I-\ 28 Blocks? Sectors! Which size?

FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

'T\ &2 Blocks? Sectors! Which size? 512 bytes
[[}
am

Sectors are too small... 4096

FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

'T\ 822 Blocks? Sectors! Which size? 512 bytes

BE Sectors are too small... 4096

= Files: cluster of 2" sectors (n = 0...6) — contiguous sectors!!

FAT

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

LI

FAT

Blocks? Sectors! Which size? 512 bytes
Sectors are too small... 4096
Files: cluster of 2" sectors (n = 0...6) — contiguous sectors!!

FAT: cluster status + pointer to next one (if file is larger than one
cluster)

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

822 Blocks? Sectors! Which size? 512 bytes
'T\ 88 Sectors are too small... 4096
= Files: cluster of 2" sectors (n = 0...6) — contiguous sectors!!
FAT & FAT: cluster status + pointer to next one (if file is larger than one
cluster)

e Cluster number — works exactly like physical page number!

Daniel Gruss

cluster size 512B to 64KB

How does FAT work?

822 Blocks? Sectors! Which size? 512 bytes
'T\ 88 Sectors are too small... 4096
= Files: cluster of 2" sectors (n = 0...6) — contiguous sectors!!
FAT & FAT: cluster status + pointer to next one (if file is larger than one
cluster)
e Cluster number — works exactly like physical page number!

@8 Directory: file name, starting cluster, length

Daniel Gruss

cluster size 512B to 64KB

FAT Limits

e FAT12: 12bit FAT entry — 2'2 clusters (512B-4KB) — max. 16 MB

Daniel Gruss

FAT Limits

e FAT12: 12bit FAT entry — 212 clusters (512B-4KB) — max. 16 MB
e FAT16: 16bit FAT entry — 21° (2KB-32KB) — max. 2 GB

Daniel Gruss

FAT Limits

e FAT12: 12bit FAT entry — 212 clusters (512B-4KB) — max. 16 MB
e FAT16: 16bit FAT entry — 21° (2KB-32KB) — max. 2 GB

e FAT32: 28bit FAT entry — 228 (4KB-32KB) — max. 2 TB (limited by a 32-bit sector
count field)

Daniel Gruss

Entry Pointer Entry Pointer

2 0 71 72
3 0 72 Oxfff
4 0 : 73 74
: starts at cluster 74 75
40 0 73 (length 5) 75 76
41 0 76 77
a2 42 o omtss
42 (length 31)
44 45 79 0
- i 80 0
70 71 : 0

Sector

Boot Sector 0 ——
- FAT type
- FAT size
- Root Directory size

Root Directory
tWiipg
- start cluster = 2 .}
- length = 1400B
mes.doc
- start cluster=5)
_ Ienglh = 080B EATs .‘.‘_::‘.1;:.-
2:3 ...----'_:LI- .
34
4: OxFFF
56
6: OxFFF
7- 0x000
8: 0x000
9. 0x000

first cluster: cluster 2, 0 or 1 are not addressable

Reserved
Area

FAT Data
Area Area

e FAT area for table

Daniel Gruss

Reserved
Area

FAT Data
Area Area

e FAT area for table

e Data area for the data of files, in clusters

Daniel Gruss

Root Directory Cluster

File Name Size Cluster

garytxt 1034 6 2
hellojpg 3973 3
 E
. . 4
File Allocation Table
Cluster Next 5
2 0
3 8
4 0 - 6
5 0
6 0xFF 7
T 0
9 0 8
Cluster = 2048 B = 4 sectors 9

slack space

FAT Boot Sector

Bytes Purpose

0-2 Assembly code instructions to jump to boot code (mandatory in bootable partition)

3-10 OEM name in ASCII

11-12 Bytes per sector (512, 1024, 2048, or 4096)

13 Sectors per cluster (Must be a power of 2 and cluster size must be {=32 KB)

14-15 Size of reserved area, in sectors

16 Number of FATs (usually 2)

17-18 Maximum number of files in the root directory (FAT12/16; 0 for FAT32)

19-20 Number of sectors in the file system; if 2 B is not large enough, set to 0 and use 4 B value in bytes 32-35 below
21 Media type (OxfO=removable disk, 0xf8=fixed disk)

22-23 Size of each FAT, in sectors, for FAT12/16; 0 for FAT32

24-25 Sectors per track in storage device

26-27 Number of heads in storage device

28-31 Number of sectors before the start partition

32-35 Number of sectors in the file system; this field will be 0 if the 2B field above (bytes 19-20) is non-zero

Daniel Gruss

FAT Boot Sector (FAT12/FAT16)

Bytes Purpose

0-35 (See previous table)

36 BIOS INT 13h (low level disk services) drive number

37 Not used

38 Extended boot signature to validate next three fields (0x29)
39-42 Volume serial number

43-53 Volume label, in ASCII

54-61 File system type level, in ASCII. (Generally “FAT", “FAT12", or “FAT16")
62-509 Not used

510-511 Signature value (0xaa55)

Daniel Gruss

Sector Assignments

Sector(s) Address Function

0 0x0000-0x01ff Boot Sector

1-9 0x0200-0x13ff File Allocation Table (primary)

10-18 0x1400-0x25ff File Allocation Table (secondary)

19-32 0x2600-0x41ff Root Directory (this is the maximum size!)
33-2879 0x4200-0x167fff File storage space

Daniel Gruss

root directory: max. 14 cluster of 512 byte, that is 7168 bytes - 32 byte per directory entry: 224 entries; file storage starts at sector 33

Root Directory

e after FAT(s) - or in FAT32: specified in boot sector

Daniel Gruss

Root Directory

o after FAT(s) - or in FAT32: specified in boot sector

e new file entry needed? first / next-available search

Daniel Gruss

Root Directory

e after FAT(s) - or in FAT32: specified in boot sector

e new file entry needed? first / next-available search

Root Directory SFN Entry Data
Structure

Bytes | Purpose

0 First character of file name {ASCII) or allocation
status (Ox00=unallocated, Oxe5=deleted)

1410 | Characters 2-11 of the file name (ASCII); the *."
is implied between bytes 7 and 8

1 File attributes (see File Attributes table)
12 Reserved

File Attributes
Flag Value Description
< 0000 0001 (0x01) Read-only
\ 0000 0010 (0x02) Hidden file
0000 0100 (0x04) System file

13 | File creation time (in tenths of seconds)”
14-15 | Creation time (hours, minutes, seconds)* 0000 1000 {0x08) | Volume label
16-17 | Creation date” 0000 1111 (0x0f) | Long file name
1819 | Access date* 00010000 (0x10) | Directory
20-21 | High-order 2 bytes of address of first cluster (0 | | ['0010 0000 (0x20) | Archive

for FAT12/16)° .

22-23 | Modified time (hours, minutes, seconds)

24-25 | Modified date * Bytes 13-22 are unused by DOS

26-27 | Low-order 2 bytes of address of first cluster

° ROOt directory (32 bytes each): 28-31 | File size (0 for directories)

Daniel Gruss

Root Directory

e after FAT(s) - or in FAT32: specified in boot sector

e new file entry needed? first / next-available search

Root Directory SFN Entry Data

Structure
Bytes | Purpose
0 First character of file name (ASCII) or allocation |
status (Ox00=unallocated, Oxe5=deleted) [F||e Attn bUteS

1410 | Characters 2-11 of the file name (ASCII); the *."
is implied between bytes 7 and 8

1 File attributes (ses File Attributes table) <
12 Reserved

Flag Value Description

0000 0001 (0x01) Read-only
0000 0010 (0x02) Hidden file
0000 0100 (0x04) System file

13 | File creation time (in tenths of seconds)”
14-15 | Creation time (hours, minutes, seconds)* 0000 1000 {0x08) | Volume label
16-17 | Creation date” 0000 1111 (0x0f) | Long file name
1819 | Access date* 00010000 (0x10) | Directory
20-21 | High-order 2 bytes of address of first cluster (0 | | ['0010 0000 (0x20) | Archive

for FAT12/16)° .

22-23 | Modified time (hours, minutes, seconds)

24-25 | Modified date * Bytes 13-22 are unused by DOS

26-27 | Low-order 2 bytes of address of first cluster

° ROOt directory (32 bytes each): 28-31 | File size (0 for directories)

e also possible: extra 32 bytes for “long” filename

Daniel Gruss

Allocating Files

1. Find free entry in directory

Daniel Gruss

Allocating Files

1. Find free entry in directory
2. Find free entry in FAT for cluster, write sector number there and EOF into FAT

Daniel Gruss

Allocating Files

1. Find free entry in directory
2. Find free entry in FAT for cluster, write sector number there and EOF into FAT

3. write start sector into directory

Daniel Gruss

Allocating Files

1. Find free entry in directory
2. Find free entry in FAT for cluster, write sector number there and EOF into FAT

3. write start sector into directory

Daniel Gruss

Allocating Files

1. Find free entry in directory
2. Find free entry in FAT for cluster, write sector number there and EOF into FAT

3. write start sector into directory

Extending files? if next FAT entry is free, move EOF to that instead

Daniel Gruss

FAT discussion

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

LI
FAT

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

LI
FAT

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

e widely used - simple, wide supporting

LI
FAT

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

e widely used - simple, wide supporting

'T\ e principle of locality?
FAT

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

e widely used - simple, wide supporting

'T\ e principle of locality?
e fragmented files

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

e widely used - simple, wide supporting

'T\ e principle of locality?
e fragmented files

e iterate through directories and FAT frequently

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

e widely used - simple, wide supporting

'T\ e principle of locality?
e fragmented files

e iterate through directories and FAT frequently

e Limited metadata and access control

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

widely used - simple, wide supporting

principle of locality?

LI
FAT

e fragmented files

e iterate through directories and FAT frequently
Limited metadata and access control

No hard links

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

widely used - simple, wide supporting

LI
FAT

principle of locality?

e fragmented files

e iterate through directories and FAT frequently

e Limited metadata and access control
e No hard links
e limitation of volume and file size

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

FAT discussion

LI

FAT

widely used - simple, wide supporting
principle of locality?

e fragmented files
e iterate through directories and FAT frequently

Limited metadata and access control
No hard links
limitation of volume and file size

reliability techniques??

Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

UNIX FFS

Daniel Gruss

UNIX FFS

Daniel Gruss

UNIX FFS

Daniel Gruss

UNIX FFS

e Unix Fast File System - released mid 1980

Daniel Gruss

UNIX FFS

e Unix Fast File System - released mid 1980

e many data-structures identical to Ritchie/Thomposon's original UNIX
FS (1970ies)

Daniel Gruss

UNIX FFS

e Unix Fast File System - released mid 1980

e many data-structures identical to Ritchie/Thomposon's original UNIX
FS (1970ies)

e Tree-based multi-level index

Daniel Gruss

< Entire disk >
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

Figure 1: Disk layout, classical example

Daniel Gruss

Implementation (“classical Uni

Daniel Gruss

Implementation (“classical Unix”)

Daniel Gruss

Implementation (“classical Unix”)

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

e super block: Infos on file system, e.g.

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

e super block: Infos on file system, e.g.

e size of partition, block size, free block list, ...

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

e super block: Infos on file system, e.g.

e size of partition, block size, free block list, ...

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

e super block: Infos on file system, e.g.

e size of partition, block size, free block list, ...

e index nodes (inodes)

Daniel Gruss

Implementation (“classical Unix”)

e boot block: Boot Loader, to boot system

e super block: Infos on file system, e.g.

e size of partition, block size, free block list, ...

e index nodes (inodes)

e inodes <« files

Daniel Gruss

Implementation (“classical Unix”)

boot block: Boot Loader, to boot system

super block: Infos on file system, e.g.

e size of partition, block size, free block list, ...

index nodes (inodes)

e inodes <« files

data blocks

Daniel Gruss

Inode Array

Inode

File Metadata

Triple
Indirect
Blocks

Double
Indirect
Blocks

Indirect
Blocks

Data
Blocks

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

" Tripl. Indirect Pir.

0l

N

0

Open file

description i-node
Parent's File position Mod.
file e RW S
descriptor Pointer o i-node Link count
table - — :
File position Uid
R/W :
L Gid
Child's Pointer to i-node !
file File size
descriptor
table ~ 2L Times
Unrelated Ad?ire?s;eos ar Pointers to
process’ _Ths disk blocks
file disk blocks
descriptor Single indirect
table "
Double indirect
Triple indirect

A
Triple
indirect /
block Double
indirect k
block o9l
indirect

block

Daniel Gruss

Daniel Gruss

Daniel Gruss

e Attributes:

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file
e owner: user, group

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file
e owner: user, group
e created, modified, accessed times

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file
e owner: user, group

e created, modified, accessed times

e size: in bytes and blocks

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file
e owner: user, group

e created, modified, accessed times

e size: in bytes and blocks

e permissions (rwx)

Daniel Gruss

e Attributes:

e type: file, directory, character special file, block special file
e owner: user, group

e created, modified, accessed times

e size: in bytes and blocks

e permissions (rwx)

e NO filename

Daniel Gruss

Daniel Gruss

Daniel Gruss

Daniel Gruss

e files may have multiple names

Daniel Gruss

e files may have multiple names

e directories contain names and numberings

Daniel Gruss

e files may have multiple names

e directories contain names and numberings
e multiple occurrences possible

Daniel Gruss

e files may have multiple names

e directories contain names and numberings
e multiple occurrences possible
e ‘“hard link”

Daniel Gruss

e files may have multiple names

e directories contain names and numberings
e multiple occurrences possible

e ‘“hard link”

e inode contains link count

Daniel Gruss

Daniel Gruss

Daniel Gruss

Daniel Gruss

e |node link-count O:

Daniel Gruss

e |node link-count O:

e no more reference within file system exists

Daniel Gruss

e |node link-count O:

e no more reference within file system exists
o file can be deleted

Daniel Gruss

e |node link-count O:

e no more reference within file system exists
o file can be deleted

e number of inodes limited

Daniel Gruss

e |node link-count O:

e no more reference within file system exists
o file can be deleted

e number of inodes limited

o file system may be full, because

Daniel Gruss

e |node link-count O:

e no more reference within file system exists
o file can be deleted

e number of inodes limited

o file system may be full, because

e no free inode

Daniel Gruss

e |node link-count O:

e no more reference within file system exists
o file can be deleted
e number of inodes limited

o file system may be full, because

e no free inode
e all blocks used

Daniel Gruss

Sparse files

e Sparse file: one or more empty spaces are surrounded by file data
e empty space: needs not consume disk spaces

fd=creat ("test.file",777);

lseek (£fd,1000000000, SEEK_SET) ;

write (fd, "test",2);
close (fd);

e Should create a file of size "1GB using one block

e does the file system support it?

Daniel Gruss

Block group placement

Daniel Gruss

Block group placement

Daniel Gruss

Block group placement

Daniel Gruss

Block group placement

e places data to optimize concurrent access to

Daniel Gruss

Block group placement

e places data to optimize concurrent access to

e data blocks of a file

Daniel Gruss

Block group placement

e places data to optimize concurrent access to

e data blocks of a file

e metadata of a file

Daniel Gruss

Block group placement

e places data to optimize concurrent access to

e data blocks of a file

e metadata of a file
e different files from the same directory

Daniel Gruss

Block group placement

e places data to optimize concurrent access to

e data blocks of a file

e metadata of a file
e different files from the same directory

o different directories may be far from each others

Daniel Gruss

NTFS

Daniel Gruss

Daniel Gruss

Daniel Gruss

e Microsoft New Technology File System

Daniel Gruss

e Microsoft New Technology File System
e released 1993

Daniel Gruss

e Microsoft New Technology File System
e released 1993

e many new features compared to FAT

Daniel Gruss

e Microsoft New Technology File System
e released 1993

e many new features compared to FAT

e new index structures

Daniel Gruss

e Microsoft New Technology File System
e released 1993

e many new features compared to FAT

e new index structures
e flexible metadata

Daniel Gruss

e Microsoft New Technology File System
e released 1993

e many new features compared to FAT

e new index structures
e flexible metadata

e improved security

Daniel Gruss

e Microsoft New Technology File System
e released 1993

e many new features compared to FAT

e new index structures
e flexible metadata

e improved security
e improved reliability

Daniel Gruss

Microsoft New Technology File System
released 1993

e many new features compared to FAT

e new index structures
e flexible metadata

e improved security
e improved reliability

still the primary file system for Windows

Daniel Gruss

NTFS Index Structures

Daniel Gruss

NTFS Index Structures

Daniel Gruss

NTFS Index Structures

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

e Root: stored in a MFT (similar to inode array)

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

e Root: stored in a MFT (similar to inode array)
e array of 1IKB MFT records

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

e Root: stored in a MFT (similar to inode array)

e array of 1IKB MFT records
e contains sequence of variable-size attribute records

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

e Root: stored in a MFT (similar to inode array)

e array of 1IKB MFT records
e contains sequence of variable-size attribute records

e can contain data and metadata

Daniel Gruss

NTFS Index Structures

e Extents: variable sized region of a file stored in a contiguous region
on the storage device

e Flexible Tree and Master File Table(MFT): each file represented
by a tree

e small number of extents: shallow tree
e badly fragmented file: deeper tree

e Root: stored in a MFT (similar to inode array)
e array of 1IKB MFT records
e contains sequence of variable-size attribute records

e can contain data and metadata
e data is an attribute of a file-system

Daniel Gruss

MFT

Start

o

=4

ip (R

‘g |m

5=

: @

2

MFT Record : T

Std. Info. | File Name| Data (nonresident) | (free)

R, Start__

@)

i o

BE

g |m

= >

—

@

=4

MFT contains nonresident data attribute; sequence of extent pointers; specify starting block and length of blocks of an extent; extent: variable size - can be multi-GB; File small: attribute may contain data

index for NTFS basic file

Daniel Gruss

index for NTFS basic file

Daniel Gruss

index for NTFS basic file

Daniel Gruss

index for NTFS basic file

e MFT contains nonresident data attribute

Daniel Gruss

index for NTFS basic file

e MFT contains nonresident data attribute

e sequence of extent pointers

Daniel Gruss

index for NTFS basic file

e MFT contains nonresident data attribute

e sequence of extent pointers
e specify starting block and length of blocks of an extent

Daniel Gruss

index for NTFS basic file

e MFT contains nonresident data attribute
e sequence of extent pointers
e specify starting block and length of blocks of an extent
e extent: variable size - can be multiple GBs

Daniel Gruss

index for NTFS basic file

e MFT contains nonresident data attribute
e sequence of extent pointers
e specify starting block and length of blocks of an extent
e extent: variable size - can be multiple GBs

e File small? attribute may even contain data

Daniel Gruss

MFT

MFT Record (small file)

Std. Info.

File Name

Data (resident)

(free)

small file!

MFT

MFT Record
(part 1) g
____ | Std. Info. | Attr.list File Name Data (nonresident) |
| 5
gl e
MFT Record
(part 2) =
_____ | Std. Info. | Data (nonresident) (free)
5
I g

large file, multiple MFT records!

[0 §

TN

[TT1

MFT Record
(small file)

“Ista.mio.]] pata (resident)

MFT Record
(normal file)

| Std. Infa.l | Data (nunresldem) ‘

|] i
MFT Record

1

(big/fragmented file)

| Data (nonresldenr |

[sta. info. | attrist |

Data (nonresident)

AT

I | Data (nonresident)

,,,,,,,,,, ?'?U [

| Data (nonresident)

I:II]

MFT Record
(huge/badly-fragmented file)

" | std. Info

Attr.list (nonresident)

I:I Extent with part of attribute list

Data (nonresident)

T 5

T

I

Data (nonresident)

0

Data (nonresident)

[I

I

0

:’ Extent with part of attribute list

[T

Data (nonresident)

20

Data (nonresident)

T

growing a file from 1. small first, content in attribute 2. larger but still single entry 3. large: extent pointers do not fit in single MFT record. multiple non-resident data attributes in multiple MFT records; attribute list in first MFT record: which record tracks which range; 4. huge file, extreme fragmentation: file attribute list can be made non-resident

Metadata files

Daniel Gruss

Metadata files

Daniel Gruss

Metadata files

Daniel Gruss

Metadata files

e no special regions for file system metadata

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5: root directory

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5: root directory
e file 6: free space bitmap

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5: root directory
e file 6: free space bitmap
e file 8: bad block list

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5:
e file 6:
e file 8:
e file 9:

root directory

free space bitmap

bad block list

security and access control information

Daniel Gruss

Metadata

e no special regions for file system metadata

e all metadata in ordinary files:

file 5:
file 6:
file 8:
file 9:
file O:

root directory

free space bitmap

bad block list

security and access control information
master file tableofcontents

Daniel Gruss

Metadata files

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5: root directory

e file 6: free space bitmap

e file 8: bad block list

file 9: security and access control information

e file 0: master file tableofcontents

e first sector contains a pointer to first MFT entry

Daniel Gruss

Metadata

e no special regions for file system metadata

e all metadata in ordinary files:

e file 5: root directory

e file 6: free space bitmap

e file 8: bad block list

e file 9: security and access control information

e file 0: master file tableofcontents

e first sector contains a pointer to first MFT entry

e makes it easier to dynamically grow metadata

Daniel Gruss

NTFS locality heuristics

Daniel Gruss

()]
2
L s
(2]
‘=
S
Q
=
>
&=
®
o
K=
7))
w
-
2

()]
2
L s
(2]
‘=
S
Q
=
>
&=
®
o
K=
7))
w
-
2

NTFS locality heuristics

e variation of “best fit" - place a newly allocated file in the smallest free
region large enough

Daniel Gruss

NTFS locality heuristics

l e variation of “best fit" - place a newly allocated file in the smallest free
region large enough

e applications can indicate expected file size

Daniel Gruss

NTFS locality heuristics

e variation of “best fit" - place a newly allocated file in the smallest free
region large enough

e applications can indicate expected file size

e start of volume reserved for MFT table to avoid fragmentation

Daniel Gruss

COW File systems

Daniel Gruss

COW File systems

Daniel Gruss

COW File systems

Daniel Gruss

COW File systems

e COW file systems never overwrite existing data or metadata

Daniel Gruss

COW File systems

e COW file systems never overwrite existing data or metadata

e write new versions to new locations

Daniel Gruss

COW File systems

e COW file systems never overwrite existing data or metadata

e write new versions to new locations
e Example - append a block to a file

Daniel Gruss

Why would we need COW file systems?

Daniel Gruss

Why would we need COW file systems?

Daniel Gruss

Why would we need COW file systems?

Daniel Gruss

Why would we need COW file systems?

e small writes are expensive

Daniel Gruss

Why would we need COW file systems?

e small writes are expensive

e Caches filter reads

Daniel Gruss

Why would we need COW file systems?

e small writes are expensive
e Caches filter reads

e Flash Storage / SSDs?

Daniel Gruss

Why would we need COW file systems?

e small writes are expensive
e Caches filter reads
e Flash Storage / SSDs?

— move data to new pages

Daniel Gruss

Why would we need COW file systems?

e small writes are expensive
e Caches filter reads
e Flash Storage / SSDs?

— move data to new pages

e Versioning

Daniel Gruss

ext/ext2/ext3/ext4

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

o linux-based file systems

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

o linux-based file systems

e originally “cross-development” in Minix

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

o linux-based file systems
e originally “cross-development” in Minix

e based on the Minix file system

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext/ext2/ext3/ext4

o linux-based file systems

originally “cross-development” in Minix

based on the Minix file system

VFS: virtual file system layer

Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

‘ User Process

| Syscall Interface

VFS

‘MinixFS || NTFS | ‘ ext FS H ext2 FS |

T

‘ Buffer cache

Disk controller

Hardware

wyh
3]
,W A
) . ¥

HOW MANY MORE FILE SYSTEMS DO
YOU WANT TO LOOK AT!221212]

makeameme .org

Daniel Gruss

Daniel Gruss

Daniel Gruss

e ext: extended file system (1992)

Daniel Gruss

e ext: extended file system (1992)
e supported VFS

Daniel Gruss

e ext: extended file system (1992)

e supported VFS
e 2 GB disk size

Daniel Gruss

e ext: extended file system (1992)

e supported VFS
e 2 GB disk size
e 255 Byte file names

Daniel Gruss

Daniel Gruss

Daniel Gruss

Daniel Gruss

e designed for extensibility

Daniel Gruss

e designed for extensibility

e used until Kernel 2.6.17 volume size limited to 2TB

Daniel Gruss

e designed for extensibility

e used until Kernel 2.6.17 volume size limited to 2TB

e also uses cylinder groups, superblocks, inodes, ...

Daniel Gruss

ext2 has more attributes!

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

e c: compressed

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

e c: compressed

e s: secured

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

e c: compressed
e s: secured

e S: synchronized

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2 has more attributes!

e c: compressed

e s: secured

S: synchronized

A: append mode

Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

Daniel Gruss

Daniel Gruss

symbolic links

Daniel Gruss

symbolic links

e symlink: special file that contains name of another file

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file

e stored in file data blocks, or

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file
e stored in file data blocks, or

— inode contains actual file name

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file
e stored in file data blocks, or

— inode contains actual file name

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file
e stored in file data blocks, or
— inode contains actual file name

clean/dirty state (— kind of a simple journal)

e after OS crash: fsck recommended/enforced

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file
e stored in file data blocks, or
— inode contains actual file name

clean/dirty state (— kind of a simple journal)

e after OS crash: fsck recommended/enforced

Daniel Gruss

symbolic links
e symlink: special file that contains name of another file
e stored in file data blocks, or
— inode contains actual file name

clean/dirty state (— kind of a simple journal)

e after OS crash: fsck recommended/enforced

— regular file system checks (fsck), even if clean

Daniel Gruss

ext2 performance

Daniel Gruss

=®

Daniel Gruss

=®

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk
@

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk
@

e on magnetic disks: reduces seek times

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk
@

e on magnetic disks: reduces seek times

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk

e on magnetic disks: reduces seek times

Preallocation:
— i
el S e allocating a block to a file results in allocating up to 8 continuous
L]
p— blocks

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk

e on magnetic disks: reduces seek times

Preallocation:
el S e allocating a block to a file results in allocating up to 8 continuous
L]
p— blocks

e improves write- and read performance

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk

e on magnetic disks: reduces seek times

Preallocation:
el S e allocating a block to a file results in allocating up to 8 continuous
L]
p— blocks

e improves write- and read performance

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk

e on magnetic disks: reduces seek times

Preallocation:
— i
el S e allocating a block to a file results in allocating up to 8 continuous
L]
p— blocks

e improves write- and read performance
Bitmaps for

e inode allocation

Daniel Gruss

ext2 performance

e inodes and data blocks “close” to each other on hard disk

e on magnetic disks: reduces seek times

Preallocation:
— i
el S e allocating a block to a file results in allocating up to 8 continuous
L]
p— blocks

e improves write- and read performance
Bitmaps for
e inode allocation

e data allocation

Daniel Gruss

ext2 limits

Daniel Gruss

ext2 limits

Daniel Gruss

ext2 limits

maximum file size

Daniel Gruss

ext2 limits

maximum file size

e depends on block size b

Daniel Gruss

ext2 limits

maximum file size

e depends on block size b
: e min((2)3+(£)? + 24+ 12) x b, 232 x b)

Daniel Gruss

ext2 limits

maximum file size

e depends on block size b
: e min((2)3+(£)? + 24+ 12) x b, 232 x b)

e b=1KB: 16GB

Daniel Gruss

ext2 limits

maximum file size

e depends on block size b
: e min((2)3+(£)? + 24+ 12) x b, 232 x b)

e b=1KB: 16GB
e b=4KB: 2 TB

Daniel Gruss

Daniel Gruss

Daniel Gruss

Daniel Gruss

e based on ext2

Daniel Gruss

e based on ext2

e journaling file system

Daniel Gruss

e based on ext2
e journaling file system

e file systems can grow dynamically

Daniel Gruss

e based on ext2

e journaling file system

file systems can grow dynamically

hash tree for big directories

Daniel Gruss

ext3 Journal

Daniel Gruss

ext3 Journal

Daniel Gruss

ext3 Journal

Daniel Gruss

ext3 Journal

e changes to files stored in a journal

Daniel Gruss

ext3 Journal

e changes to files stored in a journal

e in principle a cyclic log

Daniel Gruss

ext3 Journal

e changes to files stored in a journal
e in principle a cyclic log

e first change noted in journal

Daniel Gruss

ext3 Journal

e changes to files stored in a journal
e in principle a cyclic log
e first change noted in journal

e then executed in file system

Daniel Gruss

ext3 Journal

changes to files stored in a journal

e in principle a cyclic log

first change noted in journal

then executed in file system

after crash: allows fixing inconsistencies easier

Daniel Gruss

Journal - typical scenario

Daniel Gruss

Journal - typical scenario

Daniel Gruss

Journal - typical scenario

Daniel Gruss

Journal - typical scenario

e file system is consistent

Daniel Gruss

Journal - typical scenario

e file system is consistent

e changes are requested

Daniel Gruss

Journal - typical scenario

e file system is consistent
e changes are requested

e changes noted in journal

Daniel Gruss

Journal - typical scenario

file system is consistent
e changes are requested
e changes noted in journal

e changes executed in file system

Daniel Gruss

Journal - typical scenario

file system is consistent
changes are requested

changes noted in journal
changes executed in file system

similar to stable storage concept

Daniel Gruss

journaling - delete file example

Daniel Gruss

journaling - delete file example

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:

1. remove reference from directory

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory

2. delete inode

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory

2. delete inode

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory
2. delete inode

Crash between the two steps?

e orphaned inode

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory
2. delete inode

Crash between the two steps?
e orphaned inode

e inconsistency

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory
2. delete inode

Crash between the two steps?
e orphaned inode

e inconsistency

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory
2. delete inode

Crash between the two steps?
e orphaned inode

e inconsistency

Change their order?

e directory references non-existing inode

Daniel Gruss

journaling - delete file example

deleting a file may need two steps:
1. remove reference from directory
2. delete inode

Crash between the two steps?
e orphaned inode

e inconsistency

Change their order?
e directory references non-existing inode

— using that inode may have fatal consequences

Daniel Gruss

Journal

Daniel Gruss

Journal

Daniel Gruss

Journal

Daniel Gruss

Journal

e Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

Daniel Gruss

Journal

e Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

Daniel Gruss

Journal

e Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal

Daniel Gruss

Journal

e Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies
e Now:

e Read entries from journal
e execute changes if required

Daniel Gruss

Journal

e Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal
e execute changes if required

e much faster than fsck

Daniel Gruss

Journal

Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal
e execute changes if required

much faster than fsck

changes become atomic:

Daniel Gruss

Journal

Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal
e execute changes if required

much faster than fsck

changes become atomic:

e either completed before the crash

Daniel Gruss

Journal

Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal
e execute changes if required

much faster than fsck

changes become atomic:

e either completed before the crash
e or executed after the crash based on the journal

Daniel Gruss

Journal

Without Journal: fsck - file system check at reboot and hope to find
those inconsistencies

o Now:

e Read entries from journal
e execute changes if required

much faster than fsck

changes become atomic:

e either completed before the crash
e or executed after the crash based on the journal
e or not at all if not yet in the journal

Daniel Gruss

Daniel Gruss

implementing journals

Daniel Gruss

implementing journals

Daniel Gruss

implementing journals

e storage: regular file, hidden file, special disk area, separate device?

Daniel Gruss

implementing journals

e storage: regular file, hidden file, special disk area, separate device?

e do we need a journal for the journal?

Daniel Gruss

implementing journals

e storage: regular file, hidden file, special disk area, separate device?
e do we need a journal for the journal?

e must be able to check the integrity of the journal

Daniel Gruss

implementing journals

e storage: regular file, hidden file, special disk area, separate device?
e do we need a journal for the journal?

e must be able to check the integrity of the journal

e checksum

Daniel Gruss

implementing journals

e storage: regular file, hidden file, special disk area, separate device?
e do we need a journal for the journal?

e must be able to check the integrity of the journal

e checksum

e ignore entries with incorrect checksum

Daniel Gruss

physical journals

Daniel Gruss

physical journals

Daniel Gruss

physical journals

Daniel Gruss

physical journals

e writes a copy of each block

Daniel Gruss

physical journals

e writes a copy of each block

e first into the journal

Daniel Gruss

physical journals

e writes a copy of each block

e first into the journal
e then on the disk

Daniel Gruss

physical journals

e writes a copy of each block

e first into the journal
e then on the disk

e Crash:

Daniel Gruss

physical journals

e writes a copy of each block

e first into the journal
e then on the disk

e Crash:

e neither in journal nor on disk: no change

Daniel Gruss

physical journals

e writes a copy of each block
e first into the journal
e then on the disk

e Crash:

e neither in journal nor on disk: no change
e only in journal: copy to disk

Daniel Gruss

physical journals

e writes a copy of each block
e first into the journal
e then on the disk

e Crash:

e neither in journal nor on disk: no change
e only in journal: copy to disk

e already on disk: nothing to do

Daniel Gruss

physical journals

e writes a copy of each block
e first into the journal
e then on the disk

e Crash:

e neither in journal nor on disk: no change
e only in journal: copy to disk

e already on disk: nothing to do

e high overhead

Daniel Gruss

physical journals

e writes a copy of each block

e first into the journal
e then on the disk

Crash:

e neither in journal nor on disk: no change

e only in journal: copy to disk

e already on disk: nothing to do

high overhead

acceptable for high correctness requirements

Daniel Gruss

logical journals

Daniel Gruss

logical journals

Daniel Gruss

logical journals

Daniel Gruss

logical journals

e only meta-data written to journal

Daniel Gruss

logical journals

e only meta-data written to journal

e trades safety against performance

Daniel Gruss

logical journals

e only meta-data written to journal
e trades safety against performance

e may lead to asynchronicity between meta-data and data

Daniel Gruss

logical journals

e only meta-data written to journal
e trades safety against performance

e may lead to asynchronicity between meta-data and data

— for example, a correctly resized file but garbage content

Daniel Gruss

journals in ext3

Daniel Gruss

journals in ext3

Daniel Gruss

journals in ext3

Daniel Gruss

journals in ext3

e full journal (no risk):

Daniel Gruss

journals in ext3

e full journal (no risk):

Daniel Gruss

journals in ext3

e full journal (no risk): 1. data — journal; 2. data — disk

e ordered (medium risk):

Daniel Gruss

journals in ext3

e full journal (no risk): 1. data — journal; 2. data — disk

e ordered (medium risk):

Daniel Gruss

journals in ext3

e full journal (no risk): 1. data — journal; 2. data — disk
e ordered (medium risk): 1. meta-data — journal; 2. data — disk

e write-back (highest risk): 1. meta-data — journal; 2. data
“eventually” — disk (sync)

Daniel Gruss

journals in ext3

e full journal (no risk): 1. data — journal; 2. data — disk
e ordered (medium risk): 1. meta-data — journal; 2. data — disk

e write-back (highest risk): 1. meta-data — journal; 2. data
“eventually” — disk (sync)

e no checksums on journal

Daniel Gruss

Daniel Gruss

Daniel Gruss

Daniel Gruss

e successor of ext3

Daniel Gruss

e successor of ext3

e volume size up to 1 exibyte (2°°)

Daniel Gruss

e successor of ext3
e volume size up to 1 exibyte (2°°)

o file size up to 16 tebibytes (247)

Daniel Gruss

e successor of ext3

e volume size up to 1 exibyte (2°°)

file size up to 16 tebibytes (240)

extents

Daniel Gruss

successor of ext3

volume size up to 1 exibyte (2°0)
file size up to 16 tebibytes (240)
extents

preallocation

Daniel Gruss

successor of ext3

volume size up to 1 exibyte (2°0)
file size up to 16 tebibytes (240)
extents

preallocation

journals with checksum

Daniel Gruss

