
Operating Systems

File Systems

Daniel Gruss

2023-10-08

RAM too small - persistent data - share data among processes

store stuff on disks, no longer dependent on processes

store stuff on disks, no longer dependent on processes

Storage Device

18 TB0 TB

Storage Device

18 TB0 TB

How to
 organize

 th
is?

like page manager? like malloc? something else?

Users view

• User does not want to see, know and understand

� where and

? how

• data is stored

• must be able to refer to data

→ we need names

1 Daniel Gruss

content lost upon crash or power failure

NON VOLATILE - keeps content beyond crashes - higher capacity + lower cost

and much cheaper per gigabyte

Illusions

­ persistent storage, although physical corruption happens all the time

¶ easy/fast (byte-addressable) random accesses, although built for

sequential accesses (in blocks)

∞ almost endless capacity (for files, for data within a file), despite very

real limitations

T fast, but actually slow

U names for files and directories, but actually just bits and bytes

2 Daniel Gruss

Performance

What to do when performance is bad? Caches!

: DRAM cache inside modern storage devices

� Page cache in software, in the OS

3 Daniel Gruss

Yet another cache: the page cache

j Files buffered page-wise in “page cache”

T Lower access time for frequently accessed data

C Use up all the memory

• Pages are freed on demand

Ñ Deduplicate pages (copy-on-write)

4 Daniel Gruss

ASCII / UTF - file extension plays no role

any data - file extension plays no role - usually some internal structure

special files - not even on the disk!??

accessing data

W tape drives, disks, ...

� sequential access

� one byte after the other

& seek() other positions to access other parts

Ý random access possible, but slow

5 Daniel Gruss

File System Workload

Optimize for small files or large files?

b number of them?

j space they occupy?

$ accesses to them?

¶ sequential vs. random access?

0 size changes over time?

6 Daniel Gruss

usually: none of these known beforehand

We want the best of both worlds!

b Small files:

• Small blocks → low internal fragmentation

• Fast concurrent operations

• Files used together should be stored together (why?)

j Large files:

• Large blocks → low external fragmentation

• Contiguous allocation for fast sequential access

• Efficient lookup within the file for random access

7 Daniel Gruss

File System Abstraction

i Directory

• Group of named files or subdirectories → store in a metadata block

• Mapping from file name to file Metadata location

_ Path

• String that uniquely identifies file or directory

• /var/www/teaching/courses/os

8 Daniel Gruss

File System Abstraction

� Links

• Hard link: name to metadata

• Soft link: name to name

ã Mount

• Link name in one file system to root of another

9 Daniel Gruss

Accessing files - API

ù creating and deleting files: create(), unlink()

� linking files (creating a hard link) link()

i directory operations: mkdir(), rmdir()

� open to start accessing a file: open() (actually much more than just

that)

� close to end accessing the file: close()

10 Daniel Gruss

Accessing files - API

kind of like the tape drive model...?

` reading from a file: read()

x writing to a file: write()

& positioning seek()

L force modification to storage: fsync()

11 Daniel Gruss

How to organize the storage?

b split storage into blocks

• what is a good block size?

• file name → meta data + blocks

Ý how to find data blocks? → file index

Û where are free data blocks on the storage? how to allocate them?

* Locality: blocks/files/folders?

\ Reliability: crash during file system operation?

12 Daniel Gruss

Näıve Approach: FAT - File Allocation Table

• old! (1970s)

• file system for MS-DOS and early Windows

• many enhancements

• Today: exFAT for SD-cards, USB sticks, ...

13 Daniel Gruss

How does FAT work?

b Blocks? Sectors! Which size? 512 bytes

j Sectors are too small... 4096

� Files: cluster of 2n sectors (n = 0 . . . 6) – contiguous sectors!!

� FAT: cluster status + pointer to next one (if file is larger than one

cluster)

• Cluster number → works exactly like physical page number!

g Directory: file name, starting cluster, length

14 Daniel Gruss

cluster size 512B to 64KB

FAT Limits

• FAT12: 12bit FAT entry → 212 clusters (512B-4KB) → max. 16 MB

• FAT16: 16bit FAT entry → 216 (2KB-32KB) → max. 2 GB

• FAT32: 28bit FAT entry → 228 (4KB-32KB) → max. 2 TB (limited by a 32-bit sector

count field)

15 Daniel Gruss

first cluster: cluster 2, 0 or 1 are not addressable

FAT

• FAT area for table

• Data area for the data of files, in clusters

16 Daniel Gruss

slack space

FAT Boot Sector

Bytes Purpose

0-2 Assembly code instructions to jump to boot code (mandatory in bootable partition)

3-10 OEM name in ASCII

11-12 Bytes per sector (512, 1024, 2048, or 4096)

13 Sectors per cluster (Must be a power of 2 and cluster size must be ¡=32 KB)

14-15 Size of reserved area, in sectors

16 Number of FATs (usually 2)

17-18 Maximum number of files in the root directory (FAT12/16; 0 for FAT32)

19-20 Number of sectors in the file system; if 2 B is not large enough, set to 0 and use 4 B value in bytes 32-35 below

21 Media type (0xf0=removable disk, 0xf8=fixed disk)

22-23 Size of each FAT, in sectors, for FAT12/16; 0 for FAT32

24-25 Sectors per track in storage device

26-27 Number of heads in storage device

28-31 Number of sectors before the start partition

32-35 Number of sectors in the file system; this field will be 0 if the 2B field above (bytes 19-20) is non-zero

17 Daniel Gruss

FAT Boot Sector (FAT12/FAT16)

Bytes Purpose

0-35 (See previous table)

36 BIOS INT 13h (low level disk services) drive number

37 Not used

38 Extended boot signature to validate next three fields (0x29)

39-42 Volume serial number

43-53 Volume label, in ASCII

54-61 File system type level, in ASCII. (Generally “FAT’‘, “FAT12’‘, or “FAT16”)

62-509 Not used

510-511 Signature value (0xaa55)

18 Daniel Gruss

Sector Assignments

Sector(s) Address Function

0 0x0000-0x01ff Boot Sector

1-9 0x0200-0x13ff File Allocation Table (primary)

10-18 0x1400-0x25ff File Allocation Table (secondary)

19-32 0x2600-0x41ff Root Directory (this is the maximum size!)

33-2879 0x4200-0x167fff File storage space

19 Daniel Gruss

root directory: max. 14 cluster of 512 byte, that is 7168 bytes - 32 byte per directory entry: 224 entries; file storage starts at sector 33

Root Directory

• after FAT(s) - or in FAT32: specified in boot sector

• new file entry needed? first / next-available search

• Root directory (32 bytes each):

• also possible: extra 32 bytes for “long” filename

20 Daniel Gruss

Allocating Files

1. Find free entry in directory

2. Find free entry in FAT for cluster, write sector number there and EOF into FAT

3. write start sector into directory

Extending files? if next FAT entry is free, move EOF to that instead

21 Daniel Gruss

FAT discussion

• widely used - simple, wide supporting

• principle of locality?

• fragmented files

• iterate through directories and FAT frequently

• Limited metadata and access control

• No hard links

• limitation of volume and file size

• reliability techniques??

22 Daniel Gruss

actually! actually, there is one: you can mark bad sectors and then avoid allocating them in clusters – great... more fragmentation....

UNIX FFS

• Unix Fast File System - released mid 1980

• many data-structures identical to Ritchie/Thomposon’s original UNIX

FS (1970ies)

• Tree-based multi-level index

23 Daniel Gruss

Unix

Figure 1: Disk layout, classical example

24 Daniel Gruss

Implementation (“classical Unix”)

• boot block: Boot Loader, to boot system

• super block: Infos on file system, e.g.

• size of partition, block size, free block list, ...

• ...

• index nodes (inodes)

• inodes ↔ files

• data blocks

25 Daniel Gruss

Inode

• Attributes:

• type: file, directory, character special file, block special file

• owner: user, group

• created, modified, accessed times

• size: in bytes and blocks

• permissions (rwx)

• NO filename

26 Daniel Gruss

Inodes

• files may have multiple names

• directories contain names and numberings

• multiple occurrences possible

• “hard link”

• inode contains link count

27 Daniel Gruss

Inodes

• Inode link-count 0:

• no more reference within file system exists

• file can be deleted

• number of inodes limited

• file system may be full, because

• no free inode

• all blocks used

28 Daniel Gruss

Sparse files

• Sparse file: one or more empty spaces are surrounded by file data

• empty space: needs not consume disk spaces

fd=creat("test.file",777);

lseek(fd,1000000000,SEEK_SET);

write(fd,"test",2);

close(fd);

• Should create a file of size ˜1GB using one block

• does the file system support it?

29 Daniel Gruss

Block group placement

• places data to optimize concurrent access to

• data blocks of a file

• metadata of a file

• different files from the same directory

• different directories may be far from each others

30 Daniel Gruss

NTFS

• Microsoft New Technology File System

• released 1993

• many new features compared to FAT

• new index structures

• flexible metadata

• improved security

• improved reliability

• still the primary file system for Windows

31 Daniel Gruss

NTFS Index Structures

• Extents: variable sized region of a file stored in a contiguous region

on the storage device

• Flexible Tree and Master File Table(MFT): each file represented

by a tree

• small number of extents: shallow tree

• badly fragmented file: deeper tree

• Root: stored in a MFT (similar to inode array)

• array of 1KB MFT records

• contains sequence of variable-size attribute records

• can contain data and metadata

• data is an attribute of a file-system

32 Daniel Gruss

MFT contains nonresident data attribute; sequence of extent pointers; specify starting block and length of blocks of an extent; extent: variable size - can be multi-GB; File small: attribute may contain data

index for NTFS basic file

• MFT contains nonresident data attribute

• sequence of extent pointers

• specify starting block and length of blocks of an extent

• extent: variable size - can be multiple GBs

• File small? attribute may even contain data

33 Daniel Gruss

small file!

large file, multiple MFT records!

growing a file from 1. small first, content in attribute 2. larger but still single entry 3. large: extent pointers do not fit in single MFT record. multiple non-resident data attributes in multiple MFT records; attribute list in first MFT record: which record tracks which range; 4. huge file, extreme fragmentation: file attribute list can be made non-resident

Metadata files

• no special regions for file system metadata

• all metadata in ordinary files:

• file 5: root directory

• file 6: free space bitmap

• file 8: bad block list

• file 9: security and access control information

• file 0: master file tableofcontents

• first sector contains a pointer to first MFT entry

• makes it easier to dynamically grow metadata

34 Daniel Gruss

NTFS locality heuristics

• variation of “best fit” - place a newly allocated file in the smallest free

region large enough

• applications can indicate expected file size

• start of volume reserved for MFT table to avoid fragmentation

35 Daniel Gruss

COW File systems

• COW file systems never overwrite existing data or metadata

• write new versions to new locations

• Example - append a block to a file

36 Daniel Gruss

Why would we need COW file systems?

• small writes are expensive

• Caches filter reads

• Flash Storage / SSDs?

→ move data to new pages

• Versioning

37 Daniel Gruss

ext/ext2/ext3/ext4

• linux-based file systems

• originally “cross-development” in Minix

• based on the Minix file system

• VFS: virtual file system layer

38 Daniel Gruss

Minix: quite clean but limited disk size and file names
VFS: interface allowing to use different file systems

ext

• ext: extended file system (1992)

• supported VFS

• 2 GB disk size

• 255 Byte file names

39 Daniel Gruss

ext2

• designed for extensibility

• used until Kernel 2.6.17 volume size limited to 2TB

• also uses cylinder groups, superblocks, inodes, ...

40 Daniel Gruss

ext2 has more attributes!

• c: compressed

• s: secured

• S: synchronized

• A: append mode

41 Daniel Gruss

secure: overwrite with 0 on delete, sync: no buffering, append: open() by default in append mode

ext2

symbolic links

• symlink: special file that contains name of another file

• stored in file data blocks, or

→ inode contains actual file name

clean/dirty state (→ kind of a simple journal)

• after OS crash: fsck recommended/enforced

→ regular file system checks (fsck), even if clean

42 Daniel Gruss

ext2 performance

• inodes and data blocks “close” to each other on hard disk

• on magnetic disks: reduces seek times

Preallocation:

• allocating a block to a file results in allocating up to 8 continuous

blocks

• improves write- and read performance

Bitmaps for

• inode allocation

• data allocation

43 Daniel Gruss

ext2 limits

maximum file size

• depends on block size b

• min((b4)
3 + (b4)

2 + b
4 + 12) ∗ b, 232 ∗ b)

• b=1KB: 16GB

• b=4KB: 2 TB

44 Daniel Gruss

ext3

• based on ext2

• journaling file system

• file systems can grow dynamically

• hash tree for big directories

45 Daniel Gruss

ext3 Journal

• changes to files stored in a journal

• in principle a cyclic log

• first change noted in journal

• then executed in file system

• after crash: allows fixing inconsistencies easier

46 Daniel Gruss

Journal - typical scenario

• file system is consistent

• changes are requested

• changes noted in journal

• changes executed in file system

• similar to stable storage concept

47 Daniel Gruss

journaling - delete file example

deleting a file may need two steps:

1. remove reference from directory

2. delete inode

Crash between the two steps?

• orphaned inode

• inconsistency

Change their order?

• directory references non-existing inode

→ using that inode may have fatal consequences

48 Daniel Gruss

Journal

• Without Journal: fsck - file system check at reboot and hope to find

those inconsistencies

• Now:

• Read entries from journal

• execute changes if required

• much faster than fsck

• changes become atomic:

• either completed before the crash

• or executed after the crash based on the journal

• or not at all if not yet in the journal

49 Daniel Gruss

implementing journals

• storage: regular file, hidden file, special disk area, separate device?

• do we need a journal for the journal?

• must be able to check the integrity of the journal

• checksum

• ignore entries with incorrect checksum

50 Daniel Gruss

physical journals

• writes a copy of each block

• first into the journal

• then on the disk

• Crash:

• neither in journal nor on disk: no change

• only in journal: copy to disk

• already on disk: nothing to do

• high overhead

• acceptable for high correctness requirements

51 Daniel Gruss

logical journals

• only meta-data written to journal

• trades safety against performance

• may lead to asynchronicity between meta-data and data

→ for example, a correctly resized file but garbage content

52 Daniel Gruss

journals in ext3

• full journal (no risk): 1. data → journal; 2. data → disk

• ordered (medium risk): 1. meta-data → journal; 2. data → disk

• write-back (highest risk): 1. meta-data → journal; 2. data

“eventually” → disk (sync)

• no checksums on journal

53 Daniel Gruss

ext4

• successor of ext3

• volume size up to 1 exibyte (260)

• file size up to 16 tebibytes (240)

• extents

• preallocation

• journals with checksum

54 Daniel Gruss

