Operating Systems

Assignment 2

Daniel Gruss
2023-11-29

Presented Today:

e Mandatory: Virtual Memory (Copy On Write, Swapping)
e Shared Memory
Memory Mapped 1/0

e Dynamic Memory in the userspace
Other Topics:
e You can do basically anything OS related

e Just ask your Tutor how many points it brings

Daniel Gruss

Page Replacement

Page Replacement

N P

e Swap pages to the swap device (from RAM to HDD)

e Don't forget to lock shared resources!

Daniel Gruss

What does the OS need to know?

Where is the swap device located?

Where to find free space within the swap device?
e Has a page been swapped out, or is it within RAM?

e Where has a page been swapped to (target address)?

Daniel Gruss

MENTI

0
w
S
=

(V)

K
c
T

a

M| M| |

L LIo8euendems

InUse ?
InUse ?

1a8euepRSed

Page 1
2
3]
4

physical Memory
virtual Memory

Userprogram A
Userprogram B

A10uwd[A TRSUrT ATOWIS[A] 1R3UTT ArouwIs[y 1eaury

[Pageraun ||

not implemented
check type of violation, try to recover from error N
or invoke CopyOnWrite if it applies Ups - Kernel Pan

is some physical
memory free?

is Page Present?

is Page in
Virtual Memory
(SWAP)?

where is address?

invoke
replacement algorithm
and free some memory

USER$PACE

has page been loaded from

executeable and was it changed
afterwards or

isita Stackpage?

Is address valid
for current thread?

load page from virtual
into physical memory

load from executeable
(you might have to
invoke PRA beforehand)

Ups - Terminate UserThread

Daniel Gruss

Access the HDD in SWEB

e Virtual Memory is located at the third partition of the first HDD
e (BD device number 3)

e Responsible Code: arch_bd_x

n Daniel Gruss

Example (Write to BD (Pseudocode))
size_t block = target block number;
pointer page_data = pointer to source data;

BDVirtualDevice* bd_device = BDManager::getInstance()—>getDeviceByNumber (3);
bd_device—>writeData(blockxbd device—>getBlockSize(), PAGE_SIZE, page data);

Do not use BDRequest directly unless you asked a Tutor!

Using BDRequest directly is unsafe!

Daniel Gruss

Which pages are swappable?

e User space pages (where does it make sense?)
e Mark PTs/PDs/PDPTs as non-present and swapped out

e Kernel pages (has not been done before)

n Daniel Gruss

MENTI

Page Table Usage (x86_64)

typedef struct

present == 0: entry invalid, all bits ignored {
by MMU uint64 present :1;
uint64 writeable :1;
— pagefal-”t on access uint64 user_access :1;
. . uint64 write_through :1;
writeable == 0: write protected winté4 cache disabled 1
accessed, dirty == 1: has been uint6d accessed H1;
uint64 dirty :1;
accessed /modified uint64 size 1
. . uint64 global :1;
ignored_x : unused bits wint64 ignored 2 3
. . uint64 page_ppn 128;
page-ppn : phySICal page number uint64 reserved_1 112,
uint64 ignored_1 :11;
uint64 execution_disabled :1;

} PageTableEntry;

n Daniel Gruss

Testing / How to use lots of RAM

Use tests which use big arrays
(e.g. size_t array[BIG_INUMBER];)

I Test all swapping-situations
'\. e ..., without running into the limits of the kernel heap.

e Free memory can exhaust soon (even with a good PRA)!

Daniel Gruss

Page Replacement Algorithms

What does a PRA do?

e Searches for pages that have not been used for a while

e Runs if memory is needed or there is nothing to be done

. e But not every time...
oﬁ Which PRA?

e Recommended: Aging or WSRandom
e Create your own PRA (why is it better than other PRAs?)

e Bonus Points: User can switch PRAs

Daniel Gruss

Some PRAs need time information Where to get them from?

e Ticks, TSC, RTC

e Recycle parts of the sieep- or clock-implementation

e Derive the time from the tick sources

e Hint: InterruptUtils.cpp

Daniel Gruss

Inverted Page Table (IPT)

Shared Pages

e Pages may be used by several processes

e Aka: Page table entries of different user spaces point to the same
physical page

Daniel Gruss

Where can pages be shared?

e RAM
e Swap

e Binary

And what's with copy-on-write?

Daniel Gruss

MENTI

physical Memory InUse ?

Userprogram A

Linear Memory

Userprogram B

PageManager

Linear Memory

Daniel Gruss

Virtual Memory and Shared Pages

Inverted Page Table connects a physical page/swapped page to all
virtual page usages

Only one process uses the page:
e Swap out page + inform process
e Which process owns the page?
Shared Pages (several processes use the same page):
e Swap out + inform all processes
e Which processes own the page?

e But what if a process terminates?

Daniel Gruss

Copy On Write

Copy on Write

e Usage of fork():

1. fork() clones a process (copy, copy, copy...)
2. The child process often uses exec(...) after fork()
3. There has been much useless deep copying and deleting

e Do we really have to copy all the stuff?

e Both processes use the same physical and swapped pages
e Two (or more) processes have the same pages in RAM /Swap Device
e Works as long as no one is writing onto them

Daniel Gruss

Read-Only Pages and Pagefaults

e How do we realize that someone wants to write onto a page

e Usually we can't
e The writeable-flag has to be zero

g

e Process tries to write onto a read-only page
— PageFault
e What now?

e — Is it a shared page?
e — Copy page and link to the new one
e — If only one process is left — no shared pages!

Daniel Gruss

I PageFault

did a write on
a read-only page occur?
is the page global/shared?

is Page Present?

handle error

check address and
load page if possible

reference counter of
physical page > 1?

mark as writeable
unmark global flag

copy page to a new physical location
update base address in PT
unmark global flag in active PT
mark as writeable
decrement reference counter of physical page

Daniel Gruss

Daniel Gruss

What about the global flag?

Don't use it!

“global” means “keep over next context switch”

This is not what you want

e Will cause almost untraceable bugs!

Use and rename an unused bit as “shared” flag instead

Daniel Gruss

Copy-on-Write

Process A Process B

- Y
it Process B tri ¢ |

N

copy

Daniel Gruss

Copy On Write Without Fork

+
00

i’\

Starting /usr/shell.sweb twice, without fork

Loading the same image in different programs

Generating the same data in different programs

— Page Deduplication

Daniel Gruss

Page Deduplication

Process A Process B

Deduplication Thread

Processes started

Qindep%iently %

a1\
7

[

£
v

- Dongl=
2 N
-
’

Daniel Gruss

Additional Tasks

Shared Memory

1. Process A wants to share 3 pages with process B
2. Process A syscall: get 3 pages of shared memory ID 4

3. Kernel: maps 3 virtual pages (10-12) of A to physical pages 464,
9078, and 123

4. Process B syscall: get 3 pages of shared memory ID 4

5. Kernel: maps 3 virtual pages (22-24) of A to physical pages 464,
9078, and 123

6. — A and B now share 3 pages

Daniel Gruss

Shared Memory: How To Implement

e Syscalls:
int shmiopen(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);
void *mmap(void *addr, size_t len, int prot, int flags, int fildes,
off_t off);
int munmap(void *addr, size_t len);
e Manages IDs (pseudo file-descriptor) and users of the shared regions

e munmap and close when the process ends or manually

e No reference to the shared memory object — destroy it

Daniel Gruss

Memory Mapped File 1/0

Files are not accessed by using (open/creat/close/read/write)
any longer, they are directy mapped into the address space

Parts of the mapped file are copied into RAM on demand!

They are written back when being unmapped (if they have been
modified)
e Depends on the flags set when being mapped

If several processes have the same file mapped — Shared Memory

Daniel Gruss

® void *mmap(void *addr, size_t len, int prot, int flags, int fildes,

off_t off);

® int munmap(void *addr, size t len);

fildes e shm_open or open
e Which processes opened the same file?

len e Only multiples of pace s1zE
e File size usually not pace_s1zE-aligned

protection : Access rights for the mapped areas
e PROT_READ: How to prevent write accesses?
e PROT_WRITE: flags relevant!

flags :
e MAP PRIVATE:

e Copy-on-write

Daniel Gruss

Userspace Dynamic Memory

e Memory allocation at runtime
e Implement malloc/free

Address space of a process:

Stack

frei

break
_— BSS

DATA
Text (Code)

Daniel Gruss

How to use brk/sbrk

\/‘
s
=

® int brk(void *end_data_segment)
® void xsbrk(int increment);

e Linker symbol _end

Example (sbrk/break in userspace)
extern _end;

/..

size_t heap_start = & _end;

size_t heap_end = heap_start + 4096;
if (brk(heap_end) — 0)

{

//do stuff in dynamic memory

}

Daniel Gruss

Userspace Memory Management

brk and sbrk are complicated to use - let's implement:
® malloc(size t size)/free(void p) in libc
e Manages the allocated memory regions

e Requests pages from the kernel
e Frees unused pages again
e therefore uses brk()/sbrk()

Daniel Gruss

Userspace Memory Management

e simple implementation:
doubly-linked list containing the memory regions

e Don't forget about locking!

Daniel Gruss

Design / Submissions

Proof-of-Concept-Implementation as in Assignment 1

Recommendation: Start with swapping

Daniel Gruss

Alternative tasks

Normal way: mandatory task virtual memory

You want to go the normal way? Just ignore this slide...

u e Alternative: Discuss with me about substituting the mandatory task

with either security or driver development as your new mandatory task

O
Y

This is not possible without discussing it with me!

Daniel Gruss

e As in Assignment 1

e Tags:
e Design/Proof-of-Concept: SubmissionD2
e |Implementation: SubmissionI2

Daniel Gruss

Deadlines

e Design-PoC: 15.12.2023, 18:00
e Individual feedback meetings ideally between 18.-20.12.

k e Implementation: 19.01.2024, 18:00

e Since 2011 we went to a pub after the implementation deadline

Daniel Gruss

Student Debates on A2 Designs

DOy
DO
Dol

In two weeks (04.-07.12.)

Like the one from Assignment 1

Compulsory attendance

Bring 2 pieces of paper with your name

Repeating the assignment specification is not enough!
Your design should be complete by that time

Instant feedback

Daniel Gruss

Evaluations

_/
— e Tell us what was good and should remain the same

e Tell us what was bad and should be changed

Daniel Gruss

	Page Replacement
	Inverted Page Table (IPT)
	Copy On Write
	Additional Tasks
	Design / Submissions

