Operating Systems

Virtual Memory, x86, and Page Replacement

Daniel Gruss
2023-10-08

Table of contents

1. Efficient Address Translation
2. Booting
3. Memory Layout

4. Page Replacement

Daniel Gruss

Efficient Address Translation

Efficient Address Translation

e What about speed?

e How many actual memory accesses per
intended memory access?

x86-32
e 1 access into page directory
e 1 access into the page table page

e 1 access into memory

x86-64
e 1 access into page-map-level-4
e 1 access into the page-directory pointer
e 1 access into page directory

e 1 access into the page table page

1 access into memory

Daniel Gruss

Speed up things again

e Translation Look-aside Buffer (TLB)

e Cache recent virtual — physical translations

TLB: A page-table-entry cache

e Cache hit: use translation
e Cache miss: walk multi-level page table

TLB entry

e virtual page number

e physical page frame number

e access permissions

Daniel Gruss

How many memory accesses per cache miss?

Core 0 Core 1
I I e I I
ITLB DTLB =3 ITLB DTLB
I I S I I
Q.
PDE cache = PDE cache
(8]
I = I
PDPTE cache . PDPTE cache
I I
PML4E cache PML4E cache

Page table structures cached in
data caches (L1/L2/L3 cache)

[

Page table structures in
DRAM (physical memory)

Daniel Gruss

TLB / Caching

e Why does caching help?
e Principle of locality ©

e |f a memory address is accessed, likely nearby addresses are referenced in the future
e Nearby: same page, uses identical address translation (without offset)
e High degree of locality: almost all page translations from TLB

Daniel Gruss

Physical
Memory

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual Page

Page Frame Access Physical
,@ Address
Matching Entry ... (S)... FRRS i Frame | Offset

Page Table
)@ > Lookup

TN

n Daniel Gruss

When Do TLBs Work/Not Work?

e Video Frame Buffer: 32 bits x 1K x 1K = 4MB
e redraw screen - processor may touch every pixel

e 1024 TLB entries required

Video Frame Buffer
"

Daniel Gruss

Superpages / Page sizes

Set of contiguous pages in physical memory that map a contiguous region of virtual memory

e e.g. 2MB superpage consists of 512 regular pages (4 KB)
e aligned to lie on a 2 MB boundary

— fewer TLB-Entries needed

n Daniel Gruss

How long does the TLB stay valid?

Context switches:

e Do we have to invalidate the entire TLB?

Solution: Tagged TLB

e Each TLB entry has a tag (PID or CR3 or ...)
e TLB hit only if tag matches current register state

n Daniel Gruss

Tagged TLB

Physical
Memory

Processor

Page
Frame

Virtual
Address

Translation Lookaside Buffer (TLB)

Process D Page Frame Access Physical
Address ;
{ Frame ‘ Offset

Matching Entry :..»

@ Page Table
S D
Lookup

TIRARARAANNRIAE TN

Daniel Gruss

How long does the TLB stay valid? (2)

What happens when OS changes permissions on a page?

e demand paging (zero on reference)

e copy on write

TLB may contain old information

e OS must ask hardware to purge TLB entry

On a multicore: TLB shootdown

e OS must ask each CPU to purge TLB entry

Daniel Gruss

Booting

Starting in Real Mode

16 bit mode
Address space: 1 MB

How is that possible?
CS register has a 20-bit base address

e actually only 4 bit, but shifted by 16 bits to the left
— 4 bits (base/prefix) + 16 bits (address/offset) = 20 bit address

Daniel Gruss

Booting x86 Intel

9.1.4 First Instruction Executed

The first instruction that is fetched and executed following a hardware reset is located at physical address

FFFFFFFOH. This address is 16 bytes below the processor’s uppermost physical address. The EPROM containing the
software-

initialization code must be located at this address.

Daniel Gruss

Booting in Real Mode

e Address: OXxFFFFFFFO0
e How is that possible?

e CS register also has a 32-bit base address (initialized to 0xFFFF0000)
e What if | have < 4 GB RAM?

e physical address space # RAM directly mapped

Daniel Gruss

Physical Address Space

00000000-007fffff (prio 0, RW): alias ram-below-4g (this is our RAM)
000a0000-000bffff (prio 1, RW): vga-lowmem (remember for later)
000c0000-000dffff (prio 1, RW): pc.rom

000e0000-000fffff (prio 1, R-): alias isa-bios

£fd000000-fdffffff (prio 1, RW): vga.vram

febc0000-febdffff (prio 1, RW): el1000-mmio

febf0400-febf041f (prio 0, RW): vga ioports remapped
febf0500-febf0515 (prio 0, RW): bochs dispi interface
febf0600-febf0607 (prio 0, RW): gemu extended regs
fffc0000-ffffffff (prio 0, R-): pc.bios (ahhh!)

Daniel Gruss

BIOS initializes hardware platform

Switch to protected mode (32 bit)

Select a device to boot from

Load MBR from device into memory

Execute code from MBR

Daniel Gruss

Booting x86 Intel (lllustration)

physical
memory

BIOS

DlSk boot

X
.(L\oad'e loader

boot loader
0S kernel
login process

Daniel Gruss

GRUB

e Boot loader for Linux, SWEB, ...
e Loads the OS image from disk and starts OS

GRUB
One of the important features in GRUB is flexibility; GRUB understands file-systems and kernel

executable formats, so you can load an arbitrary operating system the way you like, without
recording the physical position of your kernel on the disk. Thus you can load the kernel just by
specifying its file name and the drive and partition where the kernel resides.

Daniel Gruss

physical
memory

BIOS
Disk 57| lonae

loader

0s

boot loader kernel

0S kernel
login process

” Daniel Gruss

Booting the OS

e Prepare hardware
e Start device drivers and initialize devices

e Start initial processes (e.g. init-process)

Daniel Gruss

Booting the OS (SWEB)

Kernel is a compiled binary (e.g. an ELF binary)

% readelf -a kernel.x | grep Entry

Entry point address: 0x801001ba
% objdump -S kernel.x | less
801001ba <entry>:
801001ba: 55 push sebp
801001bb: 89 eb mov %esp, sebp
801001bd: 83 ec 10 sub $0x10, $esp
801001cO: 89 1d 00 90 14 00 mov %ebx, 0x149000

Wait, that's C-Code!

Daniel Gruss

Booting the OS (SWEB)

extern "C" void entry ()
{

asm("mov %$ebx,multi_boot_structure_pointer - BASE");

PRINT ("Booting...\n");

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Clearing Framebuffer...\n");
memset ((char+) 0xB8000, 0, 80 %= 25 % 2);

PRINT ("Clearing BSS...\n");
charx bss_start = TRUNCATE (&bss_start_address);

memset (bss_start, 0, TRUNCATE (&bss_end_address) - bss_start);

PRINT ("Initializing Kernel Paging Structures...\n");
Y2

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Enable PSE and PAE...\n");
asm("mov %cr4d,%eax\n"
"or $0x20, %eax\n"

"mov %eax, $cr4\n");

PRINT ("Setting CR3 Register...\n");
asm("mov %[pd],%$%cr3" : : [pd]"r" (TRUNCATE (kernel_page_map_level_4)));

PRINT ("Enable EFER.LME and EFER.NXE...\n");
asm("mov $0xC0000080, %ecx\n"
"rdmsr\n"
"or $0x900, $eax\n"
"wrmsr\n") ;
Y2
PRINT ("Enable Paging...\n");
asm("mov %cr0, $eax\n"
"or $0x80000001, $eax\n"

"mov %eax, $cr0\n");

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Setup TSS...\n");

TSS* g_tss_p =
g_tss_p->ist0_h
g_tss_p->ist0_1
g_tss_p->rsp0_h
g_tss_p->rspl0_1

(TSS*)

-10;
(uint32)
-10;
(uint32)

TRUNCATE (&g_tss) ;

TRUNCATE (boot_stack)

TRUNCATE (boot_stack)

0x80004000;

0x80004000;

Daniel Gruss

Booting the OS (SWEB)

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limt |[P| P [S| Type Base 23:16 4
B L| 1916 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

Daniel Gruss

Booting the OS (SWEB)

TSS (or LDT) Descriptor

1312 87

Reserved 0 ‘ Reserved

Base Address 63:32

31 242322212019 1615141312 11 8 7
A i D Type
Base31:24 |G|ofo|v| Lmit |p| p s Base 23:16
VI 1916 P
[
31 1615

Base Address 15:00 ‘ Segment Limit 15:00

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity

LIMIT Segment Limit

P Segment Present

TYPE Segment Type

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

Daniel Gruss

Booting the OS (SWEB)

static void setSegmentDescriptor (uint32 index,

limit, uint8 dpl, uint8 code, uint8 tss);

PRINT ("Setup Segments...\n");

setSegmentDescriptor (1, 0, 0, 0, 0, 1, 0);

setSegmentDescriptor (2, 0, 0, 0, 0, 0, 0);

setSegmentDescriptor (3, 0, 0, 0, 3, 1, 0);

setSegmentDescriptor (4, 0, 0, 0, 3, 0, 0);

setSegmentDescriptor (5, -1U, (uint32) TRUNCATE (&g_tss)
sizeof (TSS) - 1, 0, 0, 1);

PRINT ("Loading Long Mode GDT...\n");

struct GDT32Ptr gdt32_ptr;

gdt32_ptr.limit = sizeof(gdt) - 1;

gdt32_ptr.addr = (uint32) TRUNCATE (gdt) ;

asm("lgdt $[gdt_ptr]" : : [gdt_ptr]"m" (gdt32_ptr));

//

uint32 baseH, uint32 basel, uint32

| 0x80000000,

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Setting Long Mode Segment Selectors...\n");

asm("mov %%ax, %%ds\n"
"mov %$%ax, %%es\n"
"mov %$%ax, %%ss\n"
"mov %$%ax, %%fs\n"
"mov %$%ax, %%gs\n"

"a" (KERNEL_DS)) ;

PRINT ("Calling entry64()...\n");
asm("ljmp %[cs],Sentry64-BASE\n" : : [cs]"i" (KERNEL_CS));

PRINT ("Returned from entry64()? This should never happen.\n");
asm("hlt");

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Setting Long Mode Segment Selectors...\n");

asm("mov %%ax, %%ds\n"
"mov %$%ax, %%es\n"
"mov %$%ax, %%ss\n"
"mov %$%ax, %%fs\n"
"mov %$%ax, %%gs\n"

"a" (KERNEL_DS)) ;

PRINT ("Calling entry64()...\n");
asm("ljmp %[cs],Sentry64-BASE\n" : : [cs]"i" (KERNEL_CS));

PRINT ("Returned from entry64()? This should never happen.\n");
asm("hlt");

Daniel Gruss

Booting the OS (SWEB)

extern "C" void entry64 ()

{

PRINT ("Parsing Multiboot Header...\n");

parseMultibootHeader () ;

PRINT ("Initializing Kernel Paging Structures...\n");

initialisePaging();

PRINT ("Setting CR3 Register...\n");

asm("mov %$%rax, %%cr3" : : "a" (VIRTUAL_TO_PHYSICAL_BOOT (ArchMemory: :
getRootOfKernelPagingStructure())));

PRINT ("Switch to our own stack...\n");

asm("mov %$[stack], %%

mov %[stack], $%rbp\n" : : [stack]"i" (boot_stack + 0x4000));

Daniel Gruss

Booting the OS (SWEB)

PRINT ("Loading Long Mode Segments...\n");

gdt_ptr.limit = sizeof (gdt) - 1;
gdt_ptr.addr = (uinté4)gdt;

X~

asm("lgdt (%%rax)" : : "a" (&gdt_ptr));
asm("mov %$%ax, %$%ds\n"
"mov %$%ax, %%es\n"
"mov %$%ax, %%ss\n"
"mov %$%ax, %%fs\n"
"mov %$%ax, %%gs\n"
"a" (KERNEL_DS)) ;
asm("ltr %%ax" : : "a" (KERNEL_TSS));
PRINT ("Calling startup()...\n");
asm("jmp *%[startup]" : : [startup]"r" (startup));

while (1);

Daniel Gruss

Booting the OS (SWEB)

extern "C" void startup ()

{
writeLine2Bochs ("Removing Boot Time Ident Mapping...\n");
removeBootTimeIdentMapping () ;
system_state = BOOTING;

PageManager: :instance () ;

writeLine2Bochs ("PageManager and KernelMemoryManager created \n");

main_console = ArchCommon: :createConsole (1) ;
writeLine2Bochs ("Console created \n");

/7

Daniel Gruss

Booting the OS (SWEB)

Scheduler::instance () ;

//needs to be done after scheduler and terminal, but prior to enablelnterrupts
kprintf_init ();

debug (MAIN, "Threads init\n");

ArchThreads::initialise();

debug (MAIN, "Interupts init\n");

ArchInterrupts::initialise();

ArchInterrupts::setTimerFrequency (IRQO_TIMER_FREQUENCY) ;

Daniel Gruss

Booting the OS (SWEB)

ArchCommon: :initDebug () ;

vis.initialize();

debug (MAIN, "Mounting DeviceFS under /dev/\n");
DeviceFSType xdevfs = new DeviceFSType () ;
vis.registerFileSystem(devfs);

default_working_dir = vfs.root_mount ("devicefs", 0);

debug (MAIN, "Block Device creation\n");
BDManager: :getInstance () ~>doDeviceDetection () ;
debug (MAIN, "Block Device done\n");

for (BDVirtualDevicex bdvd : BDManager::getInstance ()->device_list_)
{
debug (MAIN, "Detected Device: %s :: %d\n", bdvd->getName (), bdvd->
getDeviceNumber ()) ;

Daniel Gruss

Booting the OS (SWEB)

// initialise global and static objects

extern ustl::list<FileDescriptorx> global_fd;
new (&global_fd) ustl::list<FileDescriptor=*>();
extern Mutex global_fd_lock;

new (&global_fd_lock) Mutex ("global_fd_lock");
// .

debug (MAIN, "Timer enable\n");
ArchlInterrupts::enableTimer () ;

KeyboardManager: :instance () ;
ArchInterrupts::enableKBD () ;

Daniel Gruss

Booting the OS (SWEB)

debug (MAIN, "Adding Kernel threads\n");
Scheduler::instance () —>addNewThread (main_console) ;
Scheduler::instance () —>addNewThread (new ProcessRegistry (new FileSystemInfo (*
default_working_dir), user_progs /#see user_progs.h#/));
Scheduler::instance () —>printThreadList () ;

kprintf ("Now enabling Interrupts...\n");
system_state = RUNNING;

ArchInterrupts::enablelnterrupts();
Scheduler::instance () ->yield();

//not reached
assert (false) ;

Daniel Gruss

physical
memory

BIOS

boot
loader

0s
kernel

boot loader
OS kernel
login process

login
process

Daniel Gruss

Memory Layout

e Parse binary (headers)
e different binary formats

e .COM - program always starts at byte 256 (also used in CP/M)
e a.out

e COFF

Executable and Linking Format (ELF)

Daniel Gruss

Memory Layout User Space on

2 g
[e] o
£ o
S |2l B8 a S £ = S
o o] o 9 A o = @
O o <] - 2
(0] (0]
U @
1]]
L= J=
] 7))
0 547

e PLT: Procedure Linkage Table
e GOT: Global Object Table

Daniel Gruss

e Executable
e Usually readable

e Usually not writable

Daniel Gruss

ELF Binaries

FIELDS VALUES
me@nux:~$./mini e_ident
me@nux:~$ echo $?
42 RE
ELF HEADER =
© 12 3 456 789 ABCDEF IDENTIFY AS AN ELF TYPE
00: SPECIFY THE ARCHITECTURE
10: 02 90 40 00 00 00 e_phoff oxe
20:
40:'01 60 00 00 00 00 00 00 00 00 00 08 00 00 00 08 el
50: 70 00 00 00 70 00 00 @0 @5 66 @@ 80 ST T T T lom TTTTTTC
60:|BB BZ @1 00 00 00 (D 80 PROGRAM HEADER
TABLE _padd 0x8000000
EXECUTION INFORMATION

)_flags

X86 ASSEMBLY EQUIVALENT C CODE
mov ebx
CODE 5 7/SC_ExIT l

mov
> return'42;

>
int 86h

Daniel Gruss

e object files (compiled code)

e dynamic libraries

e static libraries

Daniel Gruss

e What about the stack?
e Size? Address?

e Locate a suitable address area for the stack
e Define the initial size of the area

e Load on demand

e Data from binary
e Zeros (security!)

Daniel Gruss

Address Space Layout Randomization (ASLR)

Every program start, use different

P A
random offsets for roeess
e program sections l |:| >0 ,‘1
e libraries Process B
e heap ‘ |:| D) ‘
e stacks ° N
Process C
— Addresses are ‘ |:| 5% ‘

unpredictable for an attacker

Daniel Gruss

Memory Layout Revisited

e OS has to layout the linear memory for a process

e only addresses can be accessed that are mapped into the process address space via the
page table mechanism

e decision: do we also map the kernel into the process address space?

Daniel Gruss

Memory layout

158 45B. 458 458
1:1
kernel mapping
368 368 kernel
kernel
user space 268 268
user space
user space user space
0GB| 0GB 0GB; 0GBl
Other Linux SWEB Windows XP

Daniel Gruss

Memory Layout x86-32

32-bit addresses: memory locations between 0 GB and 4 GB

x86 requires a minimal region of the kernel to be mapped (for context switches)

typically a large part of the linear address space is reserved for the kernel

inaccessible due to userspace permission bit (set to O for kernel pages)

Daniel Gruss

Linux Address Space on x86-64

0000000000000000-00007ff£f££££fffESF
f£f££800000000000-ff£f£87ffffffffff
ff££880000000000-ffffcTffffffffff
ff£f£fc90000000000-ffffe8ffffffffff
ffffeal0000000000-ffffeaffffffffff (=40 bits) virtual memory map

(=47 bits) user space
(
(
(
(
ffffec0000000000-fffffbffffffffff (=44 bits) KASAN shadow memory
(
(
(
(
(

=43 bits) hypervisor
=64 TB) identity mapping
=45 bits) vmalloc/ioremap space

fEff££f0000000000-££££££7E£E£E££F£EFf (=39 bits) ESP fixup stacks
ffffffef00000000-fffffffeffffffff (=64 GB) EFI region mappings
fEfffff£f£80000000-ffEEEEFFOFffff£f£ff (=512 MB) kernel code/data
fEfff£f£f£ffa0000000-f£f££f£fEE£E£E5F££f£ff (=1526 MB) kernel modules
fEffffffffo00000-f£££££££FFAEELEE

Daniel Gruss

Page Replacement

Page Replacement

e At some point in time, physical memory will become full

e We need to make space available — throw out (= evict .‘i‘l) a page

e Unmodified code and data could be reloaded from binary
e What about other memory contents (modified from disk or generated)?

e When do we perform page replacement? For now:

e When not a single page is available, and
e a thread T tries to allocate a page.
— We evict a page, clear it, and return it (the now free page) directly to thread T.

Daniel Gruss

What to do with modified pages?

Swap Out

e Reserve a special area on the disk

e swap file
e swap partition
e swap disk

e Write modified page there
e Evict it from RAM

Daniel Gruss

Swapping

Main memory

Disk

Pages

Swap area

e static assignment
e low overhead

e not “on demand”:

. waste of disk space

Main memory Disk
N
Pages N
Swap area

ga
g8

Page
table

Disk

. map é

e dynamic assignment

e larger overhead

e on demand: no wasted disk space

Daniel Gruss

The Most Simple Page Replacement Algorithm (PRA): Random

. . o o
e Simply evict a random page, any page. o

e How good is Random PRA? It's a good start...

e Often used as replacement algorithm in caches (ARM processors)

e Source of randomness? Not that important, e.g., rdtsc

Daniel Gruss

Random PRA

Pros:

e Very simple to implement in software or

Cons:

hardware

e PRA could use more information to not
evict pages which are frequently used /

required in the near future

e No state, no precomputations, fast
decision, tiny code base

e May perform better than several more
complex PRAs

Daniel Gruss

Random PRA

Time Step:[1]2|3[4[5]6]7]8]9 |10|11|12|13|14|15|16“

Access Strearm: [B]2 [OT7T6 7132] 7[6]2[7[0]5]4]3] Disk

=

y

I~

RAM
o]~ ~

> 0|~ [T
o0 ~[T
o0 ~[T
Owﬁ ~ [T
O] ~[w
O N~ [0
O N~ [0
oz~ |0

>(IT| V|

5]
5]
5]

> T |m[o

=]

>IT|0O|O
| vw%
> W OO m|mie®

T | |~
T O~ |~
> (O] ~]|~
OO~ [T
> IT|T|O

5 5 0 6 6 ! 3 ! £l Bl sl

Time

2 hits, 14 misses — rather bad

Daniel Gruss

The Best Replacement Algorithm: Optimal PRA

. ® -
Let's assume, we can predict the future Q
(I

1. Store number of steps until next access (per page)

2. Remove page with largest number

Daniel Gruss

Optimal PRA

Time Step:| 1| 2[3[4]5]6]7[8]9 |10|11|12|13|14|15|1§ﬂ

Time

AccessStream:2‘0‘7‘637@2|7@5|4|3| Disk

-H

/->GG

ﬁ ?PIHHHHHIH|H|H|H|H|HHH —>
O - >

3 ﬁﬁﬁﬁpﬁﬁﬁﬁﬁﬁFﬁD\(4E

45 ,Cl,CL,CLCLCLCLCLCLCLCLC|C|C|C—>>1D

= FLFlGlelelclelclGlGlA[A[A|A— .C

N NS B

Time 1

\OA

5 hits, 11 misses

Daniel Gruss

Predict the Future

£y
e We can't look into the future... @
L1

e Principle of locality @

e future memory access might be near past memory accesses
e design idea of virtually all sophisticated PRAs

— How do we learn past memory accesses?

Daniel Gruss

How to detect past memory read and write accesses?

P |[RW|US|WT|PCD| A | D |[PS| G Ignored
Dhyvcical Pace Niumber
F yStCar—TagcNumbc

Ignored X

Daniel Gruss

How to detect accesses?

Problem: 1 bit of information is not a detailed trace of past memory accesses

How do we get the information we need?

m Daniel Gruss

Detecting reads and writes

/—\ccessStream:2‘0‘7‘637@2|7@5|4|3|

Time

Disk Referenced Dirty

—_ H 01 01

et I8 01 01

;"‘“‘f@» F 01 01

itk | e 01 0
read D 0l 0
read C 0l 0
read g 01 01
wite L ITA 01 01
write

Daniel Gruss

General Ideas on Page Replacement: Four Classes of Pages

Which is the best class to choose pages from for replacement?

Class Referenced Dirty

Properties

0 0 0
1 0 1
2 1 0
3 1 1

Not used in a while and not modified — just evict

Not used in a while but modified — write back, then evict
Recently used but not modified — prefer eviction of other pages
Recently used and modified — only evict as a last resort

Dirty = it's not stored identically on the disk

Daniel Gruss

Not Recently Used PRA

e Basically: Random PRA with classes (0-3)
e Performes better than Random PRA

e Design Decision: How far does “recently” go?

Daniel Gruss

NRU PRA

Time Step:[1]2|3[4[5]6]7]8]9 |10|11|12|13|14|15|16“

Time

AccessStream:2‘0‘7‘637@2|7@5|4|3| Disk

. H

/_>6G

0333°1B33°133) 7| ? | ? |A|ALAALA|B|B|B|B|B|A|A]AA—> ,F
03332_(%13313% 71?7?77 HHH|H|H|H|H|H|HHHH 7H/>4E
0222@3&??ZCZCZCGGGGG6G6G6G6G6G4E4E —> . D
0333122292223 7 | .F |LF | .F | .F |.F |.F (DD DD C |,C|C|F|F | D¢ ,C
— N \»18

on

4 hits, 12 misses

Daniel Gruss

First-In First-Out (FIFO) PRA

First-in First-Out ChEI:l:l;

(m}
e Queue/List of all pages (e.g. std: :queue)
e |oad a page: push_back

e Page to replace: pop_front

Very simple algorithm

Rarely used in practice

Performance can even be worse than Random PRA(!) @

+ FIFO anomaly / Belady's anomaly: increasing memory size can reduce performance

Daniel Gruss

<
x
Q.
@)
—
o

Time Step:[1] 2|3[4[5]6]7]8]09]10/11][12]13]14]15]16]

Access Strearm: [B]2[0T7 16 713 2] 761 2] 705 4]3]

Disk

5 IF

.

22|22 [HlHIAIAIAIH AL Clclclc|E|E
77|72 |A[AlALA]AB|B|B|B[B|BLF|FLF

72 clclclclcloiplplblplplA]A[A]A
? [FLFLFLFlelelelclGl6le|H|H][H|H]D

NV

3 hits, 13 misses

Daniel Gruss

Second Chance PRA

e Idea: Make FIFO great again!

e We could call it FI(ANR)FO: “First-in-and-not-referenced first-out”
e Check “referenced”-bit:

e R =07 evict

e R =17 set R =0 and go to next page

e Performance may degenerate to FIFO PRA (— which may be worse than Random PRA)

‘@

Daniel Gruss

Clock PRA

e Virtually identical to Second Chancel!

e Only difference is the data structure
e Second Chance: List + List Operations (push_back, pop-front)
e Clock: Linked List + Pointer osece

e Performance may degenerate to FIFO PRA (— which may be worse than Random PRA)

‘@

m Daniel Gruss

Clock PRA

m Daniel Gruss

Second Chance PRA / Clock PRA

Time Step:[1]2|3[4[5]6]7]8]9 |10|11|12|13|14|15|16“

Time

AccessStream:2‘0‘7‘637@2|7@5|4|3| Disk

H
.G

5 2222 [H[HIA[H]ATA A c[clcCLE[E = .F
2 s|?|7]2 [AlAIA[ALAIBBIBIB[BIBLFLFLF LE
3 x| 2|7]clclclclclpiplpiplDlD]A A A A+——>1D
i ? | .FLF|F|Fl6lG].6.6LGLG|.G|H|H|H[HLD ,C

I\
~—
WA

3 hits, 13 misses

Daniel Gruss

Least Recently Used (LRU)

e Principle of Locality: Pages that were recently accessed will more likely be accessed again
e Idea: Evict the page that was least recently accessed (used)

e How do we find this page?

Daniel Gruss

Least Recently Used (

e LRU data structure:
e (Linked) list of all pages oeeco

e Upon access: Move page to end of list
e Page to evict? pop_front

e Can this be done in software?

e Only with extreme performance penalty (enforce every memory access to cause a page fault)

3

e Can this be done in hardware?

e Reordering large data structures of variable size in hardware is difficult

Daniel Gruss

Pseudo-LRU

e Global data structure for physical page “ages”

e Related: Where do you store the reference count for CoW-pages?

e Upon access to a page: Store current value of rdtsc (cycle counter)

e Page replacement: Search data structure for lowest stored rdtsc value -~

Can we implement this?

Daniel Gruss

Pseudo-LRU

e Same trick as before:

e Poll page tables: read and reset referenced bits
e Store rdtsc value as age in the global data structure

e When do we do this?

e A thread continuously running and checking
e Upon de-scheduling

= LRU PRA (which is actually pseudo-LRU)

Performance? You have 8 MB RAM and loop over a 8.1 MB array — very bad performance

‘@

Daniel Gruss

LRU PRA

Time Step:[1]2|3[4[5]6]7]8]9 |10|11|12|13|14|15|16“

Time

AccessStream:2‘0‘7‘637@2|7@5|4|3| Disk

)

\
> W OO m|mie®

=]
o

0|0 (T

o
o
=3
=)
=3
=3
=3
=3
=3
=3
o
o
o
N

=

OO0 T T

=

OO I

mim|> |0

T O >~

Time

;

4 hits, 12 misses

Daniel Gruss

Not Frequently Used (NFU)

e Again: Principle of Locality @
e |dea: Record frequency of accesses and evict page with lowest access frequency
e Approximate frequency by access count

How do we obtain the access count?

Daniel Gruss

Not Frequently Used (NFU)

e Global data structure for physical page access frequency

e Upon access to a page: Increment access counter

e Page replacement: Search for lowest counter value -~

Can we implement this?

Daniel Gruss

NFU PRA

e Same trick as before:

e Poll page tables: read and reset referenced bits
e Increment access counter in the global data structure

e When do we do this?

e A thread continuously running and checking
e Upon de-scheduling

= NFU PRA

e Performance? Boot code very unlikely to be swapped (because it was used a lot during
boot up)

Daniel Gruss

NFU PRA

Time Step:[1]2|3[4[5]6]|7]8]9 |1o|11|12|13|14|15|1§ﬂ

Time

AccessStream:2‘0‘7‘637@2|7@5|4|3| Disk

. H
& 7777HHHHHHHHHHHf?f:f
g' . : . B v Al Al Al v Al v el At Al Al v el At Al Al 5
3 3???ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ/»ﬁ
8 x| 7|7 clclclelelelelclelelelclclGl.c A .D
O >
<LE) ?5F5F5F5F5F5F3D1818182C2({i[)“t 2§
ime =
Ti \>0A

5 hits, 11 misses

Daniel Gruss

e NFU has problems because it never forgets (cf. human brain) Q

e Idea: Make NFU's memories slowly fade away
— Let access information age over time

e How do we observe an access to a page?

m Daniel Gruss

Global data structure for age

Upon access to a page: Set most-significant bit to 1 (e.g. 1000)

e In a constant frequency: Age all pages by shifting value in global data structure to the
right (e.g. 1000 — 0100)

Page replacement: Search for lowest numerical value (=highest age) -~

Can we implement this?

Daniel Gruss

e Same tricks as before:

e Poll page tables: read and reset referenced bits
e Set most-significant bit in the global data structure

e When do we do this?

e Before aging (shifting)
e Upon de-scheduling

e When do we age (shift) the values?

e Set up a dedicated periodic interrupt
e Upon every n-th timer interrupt

= Aging PRA

e Performance? One of the most widely used PRAs in practice

Daniel Gruss

Aging PRA

Time Step:[1[2[3[4[5]6] 7]

AccessStream:2‘0‘7‘63D

Ages
000000 0 0110] 0 272|272 [HLHLHHL
000000100000010000001000 0 oljom(?|7]7 |ALALALALALE
000000 0 0 1000000100000£0000001040%0| 7 | 7 |,C |.C |.C hCILGILGIK
000000 0100000100000010001 | 0 o1 ? [FL.F|.F.F iF F DL

Daniel Gruss

Limitations of Aging PRA

e No age difference between pages in same aging cycle
e Limited number of bits:

e if counter = 0, no difference if unused since 10 or 100 ticks

— more bits is better (but also uses more space)

Daniel Gruss

Process-aware PRAs

e So far we completely ignored processes...

i "
e Can we measure how fair PRAs are (wrt. processes)’ LR

e Process performance? Difficult to compare...

e Same amount of memory for every process? Tiny shell vs. 3D game
— Same page faults per second (= page fault frequency)!

e How do we make every process have the same number of page faults per second?

Daniel Gruss

Thrashing

e Thrashing: system deals more with page faults and swapping than with work ﬂ
=B

e Processes need more RAM than exists ;171} always too many page faults

e Page fault frequency too high? — not enough RAM
— Swap out entire processes until page fault frequency decreases

— Only schedule processes where all required pages are in RAM

E Daniel Gruss

Working Set

Peter Denning, 1968, abbreviated:
We define the working set W(t,7) of a process at time t to be the collection of information

referenced by the process during the process time interval (t — 7, t).

e 7 = the working set parameter Behavior of w(t,7):
e w(t,7) = number of pages in W(t,7) ot 7)
More ideas:

e Prepaging: preload all pages in the
working set before scheduling

e PRA: only swap pages which are in no
working set

e Adaptive 7! 0

Daniel Gruss

Adaptive Working Set Size

Define working set size by

e Time: All pages younger than 7 are in the working set. (suggested by Denning)
e Huge Shift Register: shift in page number upon access. (difficult to implement)
e Page Count: The N youngest pages are in the working set.

Page fault frequency too high?

e Globally reduce 7, or the size of the shift register, or N respectively

Daniel Gruss

Working Set Today

e Prepaging not common
e Working Set is no PRA ...
e ... but commonly used to form a process-aware PRA

e Same approximations as in other PRAs:

e polling referenced bits
e storing information in a global data structure

E Daniel Gruss

Working Set PRAs — The Essentials (Page Count Variant)

Working Set:

) . Adaptive process-aware PRA:
e Every process has a working set size N
e Update N upon certain occasions
e Every process has M mapped pages
e Set N = N — 1 for all processes to

o Each page has a timestamp reduce memory pressure

e not real time, process time, clock () e c.g. when trying to swap a page but

e Working Set: The N youngest pages none are swappable
e Set N = N + 1 for a process P to adjust
Process-aware PRA: for increasing memory usage

e Any page in no working set (of any process) e e.g. when P experiences a pagefault

is swappable — Page fault frequency will settle to the

e Use global PRA on swappable pages same value for every process %:‘
e e.g., Clock - WSClock

m Daniel Gruss

Working Set PRAs — The Essentials (Time Variant)

Working Set:
e Every process has a working set parameter 7
e Every process has M mapped pages

e Each page has a timestamp

e not real time, process time, clock ()

e Working Set: All pages younger than 7

Process-aware PRA:
e Any page in no working set (of any process)
is swappable
e Use global PRA on swappable pages
e e.g., Clock - WSClock

Adaptive process-aware PRA:

Update 7 upon certain occasions

Decrease 7 slightly to reduce memory
pressure

e e.g. when trying to swap a page but
none are swappable

Increase 7 slightly to adjust for
increasing memory usage

e e.g. when P experiences a pagefault
Page fault frequency will settle to the

&%
same value for every process '1:‘

Daniel Gruss

WSRandom PRA

Time Step:[1]2|3[4[5]6]7]8]9 |10|11|12|13|14|15|16"

Access Stream: [5 [2] 0] 7 [6 [7]3][1]7]6]2]7[0]5]4]3] Disk

H

Working Set s G
? [FLFFLF GGGl B]B[B[B]B|BLFLFLFF—>,F

P, 763626”%‘ ? 7 lcleiclclc [DIPIPLELGLGLALALALA| —~ .E
z|[?]7]? [AlALALALALALALALC | Cl.clclE]E D

p, 929025027.0°5 T 19 7 [H[H|H|[H|H|[H[H|H][H]H|H]H][D}*= . C
7 7 7 7 7||.!7 7 7]_"7\7 7]]27 £} lB

Pi: 1 hit, 7 misses P5: 2 hits, 6 misses LoA

Daniel Gruss

Local vs. Global

PRA selects page for eviction ... Global strategies usually perform better:

e local: ... from the same process @ e Process needs more pages:
e Thrashing although other processes

e |s the working set size fixed or adaptive? .
might have spare pages

e global: ... from any process @ e Process needs fewer pages:

e Memory waste despite possible thrashing

Working set algorithms are inherently global in another processes

Daniel Gruss

Pre-Swapping

e Page allocation latency crucial for performance
e Bad Latency when going through a lot of steps:
1. No free physical page
2. No clean pages
3. Swap out page (wait for disk)
4. Return released page to user

e Better: don't let it get this far

e How realistic is that?

Daniel Gruss

Pre-Swapping

Some classes are cheaper for swapping than others:

Class Referenced Dirty Properties

0 0 0 Not used in a while and not modified — just evict

Daniel Gruss

Pre-Swapping

A Paging Daemon doing Pre-Swapping

e Paging Daemon mostly inactive
e Checks regularly: Evictable/unused page frames below threshold?

e Swap a dirty page
e Keep it in RAM
e Set dirty-bit to 0

— Pre-swapped pages are evictable pages

— Evictable pages are as good as unused pages (performance-wise)

E Daniel Gruss

Page Pinning

Maybe a page is required to stay in RAM?— Pinning T
Scenario:

1. A process requests |/O (e.g. read (FD,bufferm, nrBytes)) and blocks
2. Other processes raise page faults

e This might replace the destination page
— DMA transfer would go to wrong location

Avoiding this scenario:

— Page must be locked in memory (= excluded from PRA)

e Alternatively: use (non-evictable) kernel buffers

Daniel Gruss

	Efficient Address Translation
	Booting
	Memory Layout
	Page Replacement

