Operating Systems

Virtual Memory Basics

Daniel Gruss
2023-10-08

Table of contents

1. Address Translation
First Idea: Base and Bound
Segmentation
Simple Paging
Multi-level Paging

2. Address Translation on x86 processors

Daniel Gruss

Address Translation

Address Translation

e OS in control of address translation
e enables number of advanced features

e programmers perspective:

e pointers point to objects etc.
e transparent: it is not necessary to know how memory reference is converted to data

Daniel Gruss

Isolation, IPC, Sharing, Efficient Dynamic Memory, Cache Management, Debugging, Efficient I/O, Memory Mapped

Address Translation - Idea / Overview

Virtual
Address Raise
Processor || Translation | Invalid >)
Exception
A Valid
: : Physical
S s Memor
Data Physical y
Address
i
Data

Daniel Gruss

Address Translation Concepts

e Memory protection

e Memory sharing

e Shared libraries, interprocess communication

e Sparse address space

e Multiple regions for dynamic allocation (heaps/stacks)

Daniel Gruss

Address Translation Concepts

e Efficiency

e Flexible Memory placement
e Runtime lookup
e Compact translation tables

e Portability

Daniel Gruss

Base-Limit or Base and bounds

Physical

Implementation
Memory

Processor’s View

Base

Physical
Address

Virtual

Virtual Memory Virtual ;
Address f;“
7

Address
Processor|-

Processor

Base+

Bound

Daniel Gruss

Virtually Addressed Base and Bounds

e Virtual Address: from 0 to an upper bound
e Physical Address: from base to base + bound

e what is saved/restored on a process context switch?

Daniel Gruss

Simple, Fast (2 registers, adder, comparator), Safe, Can relocate in physical memory without changing process, no isolation, no sharing, no growing

Segmentation

e Small Change: multiple pairs of base-and-bounds registers
e Segmentation

e Each entry controls a portion of the virtual address space

n Daniel Gruss

Segmentation

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor Base+
Virtual Bound 3
Address | Code Virtual Segment Table
Processor|-= Address Base Bound Access
H Base 0
=---9| Segment| Offset | Read
: : Code
Data . R/W
: Base+
R/W Bound 0
RIW
Heap -
Base 1
Physical Add Data
4 ysica ress Base+
S @ """" Bound 1
Raise
Exception
Base 2
Heap
Base+
Bound 2

Daniel Gruss

Segmentation

e Segment is a contiguous region of virtual memory

e Each process has a segment table (in hardware)

e Entry in table = segment

e Segment can be located anywhere in physical memory

e Each segment has: start, length, access permission

Daniel Gruss

Segmentation

Segmented Memory has gaps!

e no longer contiguous region - set of regions

code and data not adjacent - neither in virtual nor in physical address space

What if: program tries to load data from gap?
e Segmentation Fault (trap into OS)

e correct programs will not generate references outside valid memory
e trying to read or write data that does not exist: bug-indication

Daniel Gruss

Shared Memory

e Processes can share segments

e Same start, length, same/different access permissions
e Usage:

e sharing code (shared libraries)

e interprocess communication
e copy on write

Daniel Gruss

Copy on Write

Special kind of shared memory (after fork)

e two processes, both running the same program and almost same data

e makes sense not to copy everything

e we just need to be made aware if a process writes to a segment and changes the content
e reading does not present any problems

e how do we know when a process writes to a segment?

— set segment read only

Daniel Gruss

Fork and Copy on Write

Fork:
e Copy segment table into child
e Mark parent and child segments read-only
e Start child process; return to parent
Parent/Child try to write:

e trap into kernel

e make a copy of the segment and resume

Daniel Gruss

Copy on Write

Processor’s View

Process1's View

Processor|

Virtual
Address
0x0500

Virtual
Memory

o
o
a
5

2 T [~]
z

2 3 &l

2 s B

Process 2's View

Processor|

Virtual
Address
0x0500

at:

B

@ T
H 8
2 il

Implementation

Physical
Memory

P2s
Data

PT's
Heap

P1s
Stack

P1s
Data

P2s
Heap

Processor]
Segment Table
Seg. Offset Base Bound Access
500 Code Read
virtual Data k]
Address Heap| R/W
Stack RIW
Physical Address
Processor]
Segment Table
Seg. Offset Base Bound Access
J[o] s00 | code Read
Virtual Data R
Address Heap| RAW
Stack RAW

P1's+
P2s
| Code|
P2s
Stack

Daniel Gruss

Zero-on-Reference

e How much physical memory needed for stack or heap?

e Only what is currently in use

e When program uses memory beyond end of stack
e Segmentation fault into OS kernel
e Kernel allocates some memory
e How much?
e Zeros the memory
e avoid accidentally leaking information!
e Modify segment table
e Resume process

Daniel Gruss

sharing, isolation/protection, transparently grow, copy-on-write, BUT: complex, fragmentation, rearrange memory, wasted space between chunks

Paged Translation

e Manage memory in fixed size units, or pages
e Finding a free page is easy

e Bitmap allocation: 0011111100000001100

e Each bit represents one physical page number / one physical page frame
e Each process has its own page table

e Stored in physical memory
e Hardware registers

e pointer to page table start
e page table length

Daniel Gruss

Logical View of Page Table Address Translation

Processor’s View Physical
Memory
Frame 0
s >|Code0
Data0
VPage 0[Code| : ceenen[Heapl
VPage 1] ; Codel
¢ Heap0
Data Datal
Heap|...
t -->|Heap2
stack|
VPage N[ac Stack1
StackO|
Frame M

Daniel Gruss

paging - implementation

Processor

Virtual
Address

Physical
Address

Page Table
Frame Access

| Page # | Offset |

Virtual

Address

Page # Offset

Physical
Address

Physical
Memory

TN N

Frame 0
Frame 1

Frame M

Daniel Gruss

Paging Questions

e With paging, what is saved/restored on a process context switch?

e Pointer to page table, size of page table
e Page table itself is in main memory

e What if page size is very small?
e What if page size is very large?

e Internal fragmentation: if we don’t need all of the space inside a fixed size chunk

Daniel Gruss

Paging and Copy on Write

e Can we share pages between processes (similar as segments before)?
e Set entries in both page tables to the same physical page number

e Need core map of physical page numbers to track which processes are pointing to which
physical page numbers (e.g. reference count)

Daniel Gruss

Copy-on-Write on Unix/Linux

Process A Process B

Daniel Gruss

Demand Paging

e Can | start running a program before its code is in physical memory?

Set all page table entries to invalid
When a page is referenced for first time, kernel trap

Kernel brings page in from disk
Resume execution
Remaining pages can be transferred in the background while program is running

Daniel Gruss

Scheduling a Process (with Demand Paging)

Only load what's required

Initially start with no pages in memory

Process will be scheduled eventually. What happens?
e a page fault will occur when fetching the first instruction
e further page faults for stacks and data
e after a while, things will stabilize

The principle of locality ensures that

Daniel Gruss

Prepaging

Prepaging as an optimization

e If it is known upon scheduling which pages will be required ...
e page referenced by instruction pointer, stack pointer, etc.
e ... load required pages into RAM ahead of time

— may lower page fault frequency

Daniel Gruss

Sparse Address Spaces

e Every process needs an address space.
e What if virtual address space is large?

e 32-bits, 4KB pages — 1 million page table entries
e 64-bits — 4 quadrillion page table entries

Daniel Gruss

Multi-level Translation

e Tree of translation tables

e Paged segmentation
o Multi-level page tables
e Multi-level paged segmentation

Daniel Gruss

Multi-level Translation

e Fixed-size page as lowest level unit of allocation
e Efficient memory allocation (compared to segments)
e Efficient for sparse translation tree (compared to simple paging)
e Efficient disk transfers (fixed size units, page size multiple of disk sector)
e Easier to build translation lookaside buffers
e Efficient reverse lookup (from physical — virtual)
e Fine granularity for protection/sharing

Daniel Gruss

Paged Segmentation

e Process memory is segmented

Segment table entry:
e Pointer to page table
e Page table length (# of pages in segment)
e Access permissions

Page table entry:

e Physical page number
e Access permissions

Share/protection at either page or segment-level

Daniel Gruss

Paged Segmentation

Physical
Memory
Processor
Virtual
Address
<] Segment —
@©)-+» Exception 1
Segmefw(Tahle —
Page Table Size Access 1
| i Read
AW]
RIW
Page Table RIW
Frame Access —o
Read Physical i
o| Read Address | -
[Frame Offset —

Daniel Gruss

e With paged segmentation, what must be saved/restored across a process context switch?

Daniel Gruss

Explain on whiteboard

Paging: x86-32 with page size 4 KiB

Page Directory

PDE 0
PDE 1
: Page Table
PDE #PDI
- PTE 0
: PTE 1
PDE 1023 -
: 4 KiB Page
S PTE £PTI L
ki Byte 0
. Byte 1
PTE 1023 -
Offset
[PDI (10 bit) | PTI (10 bit) | Offset (12 bit)] Byte 4095

32-bit virtual address

Daniel Gruss

Paging: x86-32-PAE with page size 4 KiB

PDPT
CR3
PDPTE 0
PDPTE 1
PDPTE 2)
\| Page Directory
» PDPTE 3
PDE 0
PDE 1
: Page Table
PDE #PDI
- PTE 0
- PTE 1
PDE 511 -
: 4 KiB Page
S PTE £PTI L
ki Byte 0
. Byte 1
PTE 511 -
Offset
[PDPTI (2 bit) | PDI (9 bit) | PTI (9 bit) | Offset (12 bit)] Byte 4095

32-bit virtual address

Daniel Gruss

Paging: x86-64 with page size 4 KiB

PML4
CR3
PML4E 0
PML4E 1
\| r PDPT
> #PML4I
- PDPTE 0
. PDPTE 1
PML4E 511 -
d Page Directory
> #PDPTI
- PDE 0
. PDE 1
PDPTE 511
: Page Table
PDE #PDI
PTE O
- PTE 1
PDE 511 -
4 KiB Page
> PTE #PTI
- Byte 0
Byte 1

PTE 511

I—) Offset
[PMLA4I (9 bit) | PDPTI (9 bit) | PDI (9 bit) | PTI (9 bit)] Offset (12 bit) ‘
48-bit virtual address

Byte 4095

Daniel Gruss

Paging: x86-64 with PML5 and page size 4

Page Directory

PML5
CR3
PMLSE 0
PMLSE 1
: PML4
— #PMLSI
- PML4E 0
- PML4E 1
PMLSE 511 -
- PDPT
#PML4I
- PDPTE 0
- PDPTE 1
PML4E 511 -
#PDPTI
PDPTE 511

PDE 0
PDE 1
: Page Table
PDE #PDI
PTE 0
- PTE 1
PDE 511 B
4 KiB Page
> PTE #PTI
- Byte 0
Byte 1
PTE 511
Offset

—

[PMLSI (9 bit) | PMLA4I (9 bit) | PDPTI (9 bit) | PDI (9 bit) | PTI (9 bit)

[

Offset (12 bit)

57-bit virtual address

Byte 4095

Daniel Gruss

only PTEs that are in use, simple alloc, share segment or page, overhead: one pointer per virtual page, more lookups per memory access

x86-64 Memory Layout (with PML4)

non-canonical
(= not usable)

Daniel Gruss

x86-64 Memory Layout (with PML4, scaled)

non-canonical
(scaled 2000:1)

USEr space
kernel space

o

N
o))
>

Daniel Gruss

x86-64 Memory Layout (with PML4, scaled)

non-canonical

user space
P (scaled 65534:1)

kernel space

0 247 264 _ 247 264

Daniel Gruss

Address Translation on x86
processors

Intel Pentium

e Segmentation and paging
e 16 K segments, each 4 GB

e Few segments
e Large segments

Daniel Gruss

LDT - GDT

e |ocal Descriptor Table LDT

e for each process
e local segments (Code, Data, Stack)

e Global Descriptor Table GDT

e for system segments
e also for kernel

Daniel Gruss

Segment Registers

e 6 segment registers

CS: Selector for Code Segment
DS: Selector for Data Segment
ES: Selector for Data Segment
FS: Selector for Data Segment
GS: Selector for Data Segment
SS: Selector for Stack Segment

Daniel Gruss

Segment Selector

15 3210
Index ‘HRPL‘

Table Indicator ‘
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

e Null Segment at index 0 — cannot be used

e Modifying a segment register loads corresponding descriptor into an internal CPU register

Daniel Gruss

Hidden Part of Segment Registers

Visible Part

Hidden Part

Segment Selector

Base Address, Limit, Access Information

Cs
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Daniel Gruss

Segment Descriptor

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limt |[P| P [S| Type Base 23:16 4
B L| 1916 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

Daniel Gruss

Address translation

e we start with (selector, offset)

e CPU looks for correct descriptor in internal registers
e selector 0 or segment swapped out: interrupt

e offset exceeds segment size: interrupt

e add base field to offset

e check limits of course
e result: linear address

e paging turned off: linear address is physical address

Daniel Gruss

Address translation

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

_ Base Address
Descriptor :

31(63) 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

Daniel Gruss

Combining Segments and Paging

Logical Address
(or Far Pointer)

Segment L

Selector Offset Linear Address
OSes today have only a very small e
number of segments:
Global Descriptor Physical
e 1 for user code Tale (GDT) e e Address
Space
o 1 for user data Seament Segment Page Table bege
Lo Descriptor [| |
e 1 for user thread local storage » T A Fage Directory »| Phy. Addr.
_____ Entry - ----
e 1 for kernel code 7 A Enty
Segment__~ "\
e 1 for kernel data Base Address Ny
~— Page
e 1 for kernel core local storage

}7 Segmentation Pagmg;{

Figure 3-1. Segmentation and Paging

Daniel Gruss

e x86-64 requires segment base to be 0 and limit to be unlimited
e not even used anymore to separate code and data

e most OSes today only use segments to determine the privilege level

Daniel Gruss

LELCWANENS

Virtual memory

e is based on Segmentation and Paging
e enables effective protection mechanisms

e enables sparse address spaces

Daniel Gruss

	Address Translation
	First Idea: Base and Bound
	Segmentation
	Simple Paging
	Multi-level Paging

	Address Translation on x86 processors

