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Address Translation



Address Translation

e OS in control of address translation
e enables number of advanced features

e programmers perspective:

e pointers point to objects etc.
e transparent: it is not necessary to know how memory reference is converted to data
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Isolation, IPC, Sharing, Efficient Dynamic Memory, Cache Management, Debugging, Efficient I/O, Memory Mapped


Address Translation - Idea / Overview
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Address Translation Concepts

e Memory protection

e Memory sharing

e Shared libraries, interprocess communication

e Sparse address space

e Multiple regions for dynamic allocation (heaps/stacks)
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Address Translation Concepts

e Efficiency

e Flexible Memory placement
e Runtime lookup
e Compact translation tables

e Portability
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Base-Limit or Base and bounds
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Virtually Addressed Base and Bounds

e Virtual Address: from 0 to an upper bound
e Physical Address: from base to base + bound

e what is saved/restored on a process context switch?
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Simple, Fast (2 registers, adder, comparator), Safe, Can relocate in physical memory without changing process, no isolation, no sharing, no growing


Segmentation

e Small Change: multiple pairs of base-and-bounds registers
e Segmentation

e Each entry controls a portion of the virtual address space
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Segmentation

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor Base+
Virtual Bound 3
Address | Code Virtual Segment Table
Processor|-= Address Base Bound  Access
H Base 0
=---9| Segment| Offset | Read
: : Code
Data . R/W
: Base+
R/W Bound 0
RIW
Heap -
Base 1
Physical Add Data
4 ysica ress Base+
S @ """" Bound 1
Raise
Exception
Base 2
Heap
Base+
Bound 2

Daniel Gruss



Segmentation

e Segment is a contiguous region of virtual memory

e Each process has a segment table (in hardware)

e Entry in table = segment

e Segment can be located anywhere in physical memory

e Each segment has: start, length, access permission
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Segmentation

Segmented Memory has gaps!

e no longer contiguous region - set of regions

code and data not adjacent - neither in virtual nor in physical address space

What if: program tries to load data from gap?
e Segmentation Fault (trap into OS)

e correct programs will not generate references outside valid memory
e trying to read or write data that does not exist: bug-indication
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Shared Memory

e Processes can share segments

e Same start, length, same/different access permissions
e Usage:

e sharing code (shared libraries)

e interprocess communication
e copy on write
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Copy on Write

Special kind of shared memory (after fork)

e two processes, both running the same program and almost same data

e makes sense not to copy everything

e we just need to be made aware if a process writes to a segment and changes the content
e reading does not present any problems

e how do we know when a process writes to a segment?

— set segment read only

Daniel Gruss



Fork and Copy on Write

Fork:
e Copy segment table into child
e Mark parent and child segments read-only
e Start child process; return to parent
Parent/Child try to write:

e trap into kernel

e make a copy of the segment and resume
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Copy on Write
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Zero-on-Reference

e How much physical memory needed for stack or heap?

e Only what is currently in use

e When program uses memory beyond end of stack
e Segmentation fault into OS kernel
e Kernel allocates some memory
e How much?
e Zeros the memory
e avoid accidentally leaking information!
e Modify segment table
e Resume process
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sharing, isolation/protection, transparently grow, copy-on-write, BUT: complex, fragmentation, rearrange memory, wasted space between chunks


Paged Translation

e Manage memory in fixed size units, or pages
e Finding a free page is easy

e Bitmap allocation: 0011111100000001100

e Each bit represents one physical page number / one physical page frame
e Each process has its own page table

e Stored in physical memory
e Hardware registers

e pointer to page table start
e page table length
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Logical View of Page Table Address Translation
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paging - implementation
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Paging Questions

e With paging, what is saved/restored on a process context switch?

e Pointer to page table, size of page table
e Page table itself is in main memory

e What if page size is very small?
e What if page size is very large?

e Internal fragmentation: if we don’t need all of the space inside a fixed size chunk
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Paging and Copy on Write

e Can we share pages between processes (similar as segments before)?
e Set entries in both page tables to the same physical page number

e Need core map of physical page numbers to track which processes are pointing to which
physical page numbers (e.g. reference count)
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Copy-on-Write on Unix/Linux

Process A Process B
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Demand Paging

e Can | start running a program before its code is in physical memory?

Set all page table entries to invalid
When a page is referenced for first time, kernel trap

Kernel brings page in from disk
Resume execution
Remaining pages can be transferred in the background while program is running
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Scheduling a Process (with Demand Paging)

Only load what's required

Initially start with no pages in memory

Process will be scheduled eventually. What happens?
e a page fault will occur when fetching the first instruction
e further page faults for stacks and data
e after a while, things will stabilize

The principle of locality ensures that
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Prepaging

Prepaging as an optimization

e If it is known upon scheduling which pages will be required ...
e page referenced by instruction pointer, stack pointer, etc.
e ... load required pages into RAM ahead of time

— may lower page fault frequency
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Sparse Address Spaces

e Every process needs an address space.
e What if virtual address space is large?

e 32-bits, 4KB pages — 1 million page table entries
e 64-bits — 4 quadrillion page table entries

Daniel Gruss



Multi-level Translation

e Tree of translation tables

e Paged segmentation
o Multi-level page tables
e Multi-level paged segmentation
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Multi-level Translation

e Fixed-size page as lowest level unit of allocation
e Efficient memory allocation (compared to segments)
e Efficient for sparse translation tree (compared to simple paging)
e Efficient disk transfers (fixed size units, page size multiple of disk sector)
e Easier to build translation lookaside buffers
e Efficient reverse lookup (from physical — virtual)
e Fine granularity for protection/sharing
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Paged Segmentation

e Process memory is segmented

Segment table entry:
e Pointer to page table
e Page table length (# of pages in segment)
e Access permissions

Page table entry:

e Physical page number
e Access permissions

Share/protection at either page or segment-level
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Paged Segmentation
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e With paged segmentation, what must be saved/restored across a process context switch?
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Explain on whiteboard


Paging: x86-32 with page size 4 KiB
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32-bit virtual address
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Paging: x86-32-PAE with page size 4 KiB
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Paging: x86-64 with page size 4 KiB
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Paging: x86-64 with PML5 and page size 4
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only PTEs that are in use, simple alloc, share segment or page, overhead: one pointer per virtual page, more lookups per memory access


x86-64 Memory Layout (with PML4)
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(= not usable)

Daniel Gruss



x86-64 Memory Layout (with PML4, scaled)
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x86-64 Memory Layout (with PML4, scaled)
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Address Translation on x86
processors




Intel Pentium

e Segmentation and paging
e 16 K segments, each 4 GB

e Few segments
e Large segments
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LDT - GDT

e |ocal Descriptor Table LDT

e for each process
e local segments (Code, Data, Stack)

e Global Descriptor Table GDT

e for system segments
e also for kernel
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Segment Registers

e 6 segment registers

CS: Selector for Code Segment
DS: Selector for Data Segment
ES: Selector for Data Segment
FS: Selector for Data Segment
GS: Selector for Data Segment
SS: Selector for Stack Segment
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Segment Selector

15 3210
Index ‘HRPL‘

Table Indicator ‘
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

e Null Segment at index 0 — cannot be used

e Modifying a segment register loads corresponding descriptor into an internal CPU register
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Hidden Part of Segment Registers

Visible Part

Hidden Part
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Cs
SS
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Figure 3-7. Segment Registers
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Segment Descriptor

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limt |[P| P [S| Type Base 23:16 4
B L| 1916 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor
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Address translation

e we start with (selector, offset)

e CPU looks for correct descriptor in internal registers
e selector 0 or segment swapped out: interrupt

e offset exceeds segment size: interrupt

e add base field to offset

e check limits of course
e result: linear address

e paging turned off: linear address is physical address
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Address translation
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Figure 3-5. Logical Address to Linear Address Translation
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Combining Segments and Paging
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Figure 3-1. Segmentation and Paging
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e x86-64 requires segment base to be 0 and limit to be unlimited
e not even used anymore to separate code and data

e most OSes today only use segments to determine the privilege level
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LELCWANENS

Virtual memory

e is based on Segmentation and Paging
e enables effective protection mechanisms

e enables sparse address spaces
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