
1

Roderick Bloem

IAIK – Graz University of Technology

Roderick.Bloem@iaik.tugraz.at

SCoS

Symbolic Methods for Verifying

Software

V&T

Note to me: see code under Code/Cbmc

mailto:Roderick.Bloem@iaik.tugraz.at

http://www.iaik.tugraz.at

Secure & Correct Systems

2

Roderick Bloem IAIK

SCoS

Circuit Equivalence

https://logic.ly/demo

http://www.iaik.tugraz.at

Secure & Correct Systems

3

Roderick Bloem IAIK

SCoS

Circuit Equivalence

Φ = 𝑠 ↔ 𝑏 ∨ 𝑐 ∧
𝑞 ↔ 𝑎 ∧ 𝑠 .

Ψ = 𝑡 ↔ 𝑎 ∧ 𝑏 ∧ 𝑢 ↔
𝑎 ∧ 𝑐 ∧ (𝑟 ↔ 𝑡 ∨ 𝑢).

Circuits are different iff

following is satisfiable

Φ ∧Ψ ∧ (𝑞 ≠ 𝑟)

http://www.iaik.tugraz.at

Secure & Correct Systems

4

Roderick Bloem IAIK

SCoS

Z3
(declare-const a Bool)

(declare-const b Bool)

(declare-const c Bool)

(declare-const p Bool)

(declare-const q Bool)

(declare-const r Bool)

(declare-const s Bool)

(declare-const t Bool)

(declare-const u Bool)

(assert (= s (or b c)))

(assert (= q (and a s)))

(assert (= t (and a b)))

(assert (= u (and a c)))

(assert (= r (or t u)))

(assert (not (= q r)))

(check-sat)

(get-model)

https://rise4fun.com/Z3 or

https://compsys-tools.ens-

lyon.fr/z3/index.php

https://rise4fun.com/Z3
https://compsys-tools.ens-lyon.fr/z3/index.php

http://www.iaik.tugraz.at

Secure & Correct Systems

5

Roderick Bloem IAIK

SCoS

Circuit Equivalence

▪ Combinational circuits (no memory elements):

Use Tseitin transformation

▪ Give each wire a name

▪ Use standard formula for each gate

▪ conjoin formulas

▪ Note: linear construction

▪ More complicated for sequential circuits (with

memory)

▪ model checking using a SAT solver, interpolation

http://www.iaik.tugraz.at

Secure & Correct Systems

6

Roderick Bloem IAIK

SCoS

The Following is a Bad Idea

Don’t do following (exponential blowup)

𝑧 = 𝑥 ∨ 𝑦 [substitute x and y]

𝑧 = 𝑣 ∧ 𝑤 ∨ (𝑣 ∧ 𝑤) [substitute v, w]

𝑧 = 𝑡 ∨ 𝑢 ∧ 𝑡 ∨ 𝑢 ∨ (𝑡 ∨ 𝑢 ∧ (𝑡 ∨ 𝑢)) [now t,u]

etc etc

Happens whenever circuit has reconvergence

(reuse of values)

a

b

z

v

w

t

u

http://www.iaik.tugraz.at

Secure & Correct Systems

7

Roderick Bloem IAIK

SCoS

Verification Condition

Given a Program 𝑃, a verification condition is a

formula 𝜙 such that

(𝜙 satisfiable) implies (𝑃 buggy).

For the circuit example, the verification condition

is Φ ∧ Ψ ∧ 𝑞 ≠ 𝑟

http://www.iaik.tugraz.at

Secure & Correct Systems

8

Roderick Bloem IAIK

SCoS

From Circuits to Software

Find out if the assertion can be violated

Boolean a, b;

if(a){

if(!b)

assert(false);

}

𝜙?

Assertion reached iff 𝜙 satisfiable.

How do I get here?

http://www.iaik.tugraz.at

Secure & Correct Systems

9

Roderick Bloem IAIK

SCoS

From Circuits to Software

Find out if the assertion can be violated

Boolean a, b;

if(a){

if(!b)

assert(false);

}

𝜙 = 𝑎 ∧ ¬𝑏
Assertion reached iff 𝜙 satisfiable.

Satisfying assignment = input to reach assertion

How do I get here?

http://www.iaik.tugraz.at

Secure & Correct Systems

10

Roderick Bloem IAIK

SCoS

Adding Assignments

Boolean a, b;

if(a){

a = (a&&b);

if(!a)

assert(false);

}

Boolean a0, b0, a1;

if(a0){

a1 = (a0&&b0);

if(!a1)

assert(false);

}

Single Static Assignment (SSA)

Let 𝜙 =
Assertion reached iff 𝜙 satisfiable

http://www.iaik.tugraz.at

Secure & Correct Systems

11

Roderick Bloem IAIK

SCoS

Adding Assignments

Boolean a, b;

if(a){

a = (a&&b);

if(!a)

assert(false);

}

Boolean a0, b0, a1;

if(a0){

a1 = (a0&&b0);

if(!a1)

assert(false);

}

Single Static Assignment (SSA)

Let 𝜙 = a0 ∧ 𝑎1 ↔ 𝑎0 ∧ 𝑏0 ∧ ¬𝑎1 .
Assertion reached iff 𝜙 satisfiable

http://www.iaik.tugraz.at

Secure & Correct Systems

12

Roderick Bloem IAIK

SCoS

Adding Arithmetic

int a, b, c;

if(a != 0){

c = (a + b);

if(c > 0)

assert(false);

}

Let’s pretend ints have

four bits

a != 0

http://www.iaik.tugraz.at

Secure & Correct Systems

13

Roderick Bloem IAIK

SCoS

Adding Arithmetic

int a, b, c;

if(a != 0){

c = (a + b);

if(c > 0)

assert(false);

}

Let’s pretend ints have

four bits

c > 0

http://www.iaik.tugraz.at

Secure & Correct Systems

14

Roderick Bloem IAIK

SCoS

Adding Arithmetic

int a, b, c;

if(a != 0){

c = (a + b);

if(c > 0)

assert(false);

}

Let’s pretends ints are
4 bits: 𝑎3, 𝑎2, 𝑎1, 𝑎0

(a != 0) becomes
𝑎0 ∨ 𝑎1 ∨ 𝑎2 ∨ 𝑎3

(c>0) becomes ¬𝑐3 ∧
𝑐2 ∨ 𝑐1 ∨ 𝑐0

What about addition?

http://www.iaik.tugraz.at

Secure & Correct Systems

15

Roderick Bloem IAIK

SCoS

Adding Arithmetic

int a, b, c;

if(a != 0){

c = (a + b);

if(c > 0)

assert(false);

}

Let‘s pretend ints have

four bits

c = a + b

http://www.iaik.tugraz.at

Secure & Correct Systems

16

Roderick Bloem IAIK

SCoS

One-Bit Adder

Half Adder Full Adder

Halfadder: Wikipedia, public domain; full adder: Colin M.L. Burnett, GDFL

http://www.iaik.tugraz.at

Secure & Correct Systems

17

Roderick Bloem IAIK

SCoS

4-bit Adder

Write formula

𝜙 𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝑏3, 𝑏2, 𝑏1, 𝑏0, 𝑠3, 𝑠2, 𝑠1, 𝑠0 such that

𝜙 𝑎, 𝑏, 𝑠 is true iff 𝑠 = 𝑎 + 𝑏.

Note: there are extra variable in 𝜙 that don’t bother us (why not?)

adder: Colin M.L. Burnett, CC-BY-SA 3.0

0

http://www.iaik.tugraz.at

Secure & Correct Systems

18

Roderick Bloem IAIK

SCoS

Software

int a, b, c;

if(a != 0){

c = (a + b);

if(c > 0)

assert(false);

}

Let’s pretends ints are

4 bits: 𝑎3, 𝑎2, 𝑎1, 𝑎0

𝜓 𝑎, 𝑏, 𝑐 =
𝑎0 ∨ 𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∧
𝜙 𝑎, 𝑏, 𝑐 ∧
¬𝑐3 ∧ (𝑐2 ∨ 𝑐1 ∨ 𝑐0)

𝜓 satisfiable iff

assertion reachable.

a != 0

c = a +b

c > 0

http://www.iaik.tugraz.at

Secure & Correct Systems

19

Roderick Bloem IAIK

SCoS

Summarizing

We know how to represent a single path in a

formula

From now on, I will use arithmetic in my functions

How do we deal with multiple paths and

conditions? Two options:

1. Bounded Model Checking

2. Concolic Testing

http://www.iaik.tugraz.at

Secure & Correct Systems

20

Roderick Bloem IAIK

SCoS

Bounded Model Checking

▪ Create a formula that says a bug exist, give to

SMT solver.

▪ Formula: Is there a path of length  k to a bug?

Tool: CBMC

http://www.iaik.tugraz.at

Secure & Correct Systems

21

Roderick Bloem IAIK

SCoS

From Path to Program: BMC

Program

int a, b, c;

if(c > 0){

assert(c < a);

else

assert (c > a);

Formula

𝜙 =

𝜙 is true iff the program

contains a bug.

idea: represent all paths

in a formula

http://www.iaik.tugraz.at

Secure & Correct Systems

22

Roderick Bloem IAIK

SCoS

From Path to Program: BMC

Program

int a, b, c;

if(c > 0){

assert(c < a);

else

assert (c > a);

Formula

𝜙 =
𝑐 > 0 ∧ ¬ 𝑐 < 𝑎
∨ ¬ 𝑐 > 0 ∧ ¬ 𝑐 > 𝑎

𝜙 satisfiable iff program

contains bug.

idea: represent all paths

in one formula

Path condition

http://www.iaik.tugraz.at

Secure & Correct Systems

23

Roderick Bloem IAIK

SCoS

Loop unrolling

Program

int a, b, as, bs;

b = b > 0 ? b : -b;

as = a;

bs = b;

while(b>0){

a = a + 1;

b = b – 1;

}

assert(a == as + bs);

Formula

http://www.iaik.tugraz.at

Secure & Correct Systems

24

Roderick Bloem IAIK

SCoS

int a, b, as, bs;

b = b > 0 ? b : -b;

as = a;

bs = b;

if(b>0){

stop;

}

assert(a == as + bs);

BMC: Loop Unrolling

Program

int a, b, as, bs;

b = b > 0 ? b : -b;

as = a;

bs = b;

while(b>0){

a = a + 1;

b = b – 1;

}

assert(a == as + bs);

Program’(unroll 0)

print a warning

unrolling not

long enough!

http://www.iaik.tugraz.at

Secure & Correct Systems

25

Roderick Bloem IAIK

SCoS

BMC: Loop Unrolling

Program

int a, b, as, bs;

b = b > 0 ? b : -b;

as = a;

bs = b;

while(b>0){

a = a + 1;

b = b – 1;

}

assert(a == as + bs);

Program’(unroll 1)

int a, b, as, bs;

b = b > 0 ? b : -b;

as = a;

bs = b;

if(b>0){

a = a + 1;

b = b – 1;

if(b>0) stop;

}

assert(a == as + bs);

http://www.iaik.tugraz.at

Secure & Correct Systems

26

Roderick Bloem IAIK

SCoS

BMC: Loop Unrolling

Program

int a,b,as,bs;

b = b>0 ? b : -b;

as = a;

bs = b;

while(b>0){

a = a + 1;

b = b – 1;

}

assert(a==as+bs);

Program’(1) Program’’(2)

int a,b,as,bs;

b = b>0 ? b : -b;

as = a;

bs = b;

if(b>0){

a = a + 1;

b = b – 1;

if(b>0) stop;

}

assert(a==as+bs);

int a,b,as,bs;

b = b>0 ? b : -b;

as = a;

bs = b;

if(b>0){

a = a + 1;

b = b – 1;

if(b>0){

a = a + 1;

b = b – 1

if(b>0) stop;

}

}

assert(a==as+bs);

http://www.iaik.tugraz.at

Secure & Correct Systems

27

Roderick Bloem IAIK

SCoS

BMC: Loop Unrolling

Program’

int a, b, as, bs;

b = b>0 ? b : -b;

as = a;

bs = b;

if(b>0){

a = a + 1;

b = b – 1;

if(b>0) stop;

}

assert(a == as + bs);

Program’ (SSA)
int a, b, as, bs;

b0 = b>0 ? b : -b;

as = a;

bs = b0;

if(b0>0){

a1 = a + 1;

b1 = b0 – 1;

if(b1>0) stop;

} else {

a1 = a; b1 = b0;

}

assert(a1 == as + bs);

http://www.iaik.tugraz.at

Secure & Correct Systems

28

Roderick Bloem IAIK

SCoS

Verification Condition

int a, b, as, bs;

b0 = b>0 ? b : -b;

as = a;

bs = b;

if(b0>0){

a1 = a + 1;

b1 = b0 – 1;

if(b1>0) stop;

} else {

a1 = a; b1 = b0;

}

assert(a1 == as + bs);

Finding assertion violation
𝜙1 = 𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨ 𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠
= 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏0 ≤ 0 ∧ 𝑎1 = 𝑎 ∧ 𝑏1 = 𝑏0

𝜙2 = 𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨ 𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠
= 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏 > 0 ∧ 𝑎1 = 𝑎 + 1 ∧ 𝑏1
= 𝑏0 + 1

Verification condition: 𝜙 = 𝜙1 ∨ 𝜙2 ∧ 𝑎1 ≠
𝑎𝑠 + 𝑏𝑠

Have we unrolled enough?

Let

𝜓 = 𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨ 𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠
= 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏0 > 0 ∧ 𝑎1 = 𝑎 + 1 ∧ 𝑏1
= 𝑏0 − 1 ∧ 𝑏1 > 0

If 𝜓 satisfiable, verification incomplete:
unroll loop further!

𝜙1

𝜙2

𝜓

http://www.iaik.tugraz.at

Secure & Correct Systems

29

Roderick Bloem IAIK

SCoS

Formulas

Circumstances: assignments to initial variables

(and other variables along a path)

Path condition: Under which circumstances can I

get to a given point in the program?

Verification condition: Under which

circumstances does the program fail?

Unrolling condition: Under which circumstances

does the program continue beyond unrolling

bound?

http://www.iaik.tugraz.at

Secure & Correct Systems

30

Roderick Bloem IAIK

SCoS

𝜙1 = 𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨ 𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠
= 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏0 ≤ 0 ∧ 𝑎1 = 𝑎 ∧ 𝑏1 = 𝑏0

𝜙2 = 𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨ 𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠
= 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏 > 0 ∧ 𝑎1 = 𝑎 + 1 ∧ 𝑏1
= 𝑏0 + 1

Path condition for *: 𝜙1∨ 𝜙2

Verification condition: (𝜙1∨ 𝜙2) ∧ 𝑎1 ≠
𝑎𝑠 + 𝑏𝑠

Unrolling condition: 𝜓 = (
)

𝑏 > 0 ∧ 𝑏0 = 𝑏 ∨
𝑏 ≤ 0 ∧ 𝑏0 = −𝑏 ∧ 𝑎𝑠 = 𝑎 ∧ 𝑏𝑠 = 𝑏0 ∧ 𝑏0 >
0 ∧ 𝑎1 = 𝑎 + 1 ∧ 𝑏1 = 𝑏0 − 1 ∧ 𝑏1 > 0

int a, b, as, bs;

b0 = b>0 ? b : -b;

as = a;

bs = b;

if(b0>0){

a1 = a + 1;

b1 = b0 – 1;

if(b1>0) stop;

} else {

a1 = a; b1 = b0;

}

assert(a1 == as + bs);

𝜙1

𝜙2

𝜓

http://www.iaik.tugraz.at

Secure & Correct Systems

31

Roderick Bloem IAIK

SCoS

Algorithm

k = 0

while(true)

unroll program to depth k, use SSA

𝜙 = verification condition

𝜓 = unrolling condition

if(𝜙 SAT) halt(“found a bug”)

if(𝜓 UNSAT) halt(“no bug exists”)

k++

}

Note: This is for one loop.

For multiple loops:

▪ bug exists if any verification condition is satisfiable

▪ program is correct if all unrolling conditions are unsatisfiable.

http://www.iaik.tugraz.at

Secure & Correct Systems

32

Roderick Bloem IAIK

SCoS

Formulas

Path condition: Satisfiable iff point reachable

Verification condition: Satisfiable implies

program buggy

Unrolling condition: Satisfiable iff program

should be unrolled more

http://www.iaik.tugraz.at

Secure & Correct Systems

33

Roderick Bloem IAIK

SCoS

Loop unrolling

Check for bugs that occur when the loops are unrolled
k times, for some k.

Good:

▪ Find all bugs for any input up to that depth

Bad:

▪ Expressions quickly become complicated; you will
not go deep into a program

What if we want to test deeply?

http://www.iaik.tugraz.at

Secure & Correct Systems

34

Roderick Bloem IAIK

SCoS

Concolic Testing

▪ Idea: combine random testing with symbolic

execution. Then, systematically look for inputs

that take a different path.

▪ Formula: Can this path lead to a bug for some

input?

Tools: DART, CUTE

(see also KLEE for symbolic execution)

http://www.iaik.tugraz.at

Secure & Correct Systems

35

Roderick Bloem IAIK

SCoS

Concolic Testing Example

▪ values = random input

▪ while(true)
▪ Execute program with concrete inputs and symbolically at

the same time.
▪ Concrete values determine path

▪ Build path condition as you go

▪ Negate part of path condition to obtain different path

▪ Give to solver to obtain new values

Note: will treat assert(c) as if(c)
assert(false)

Effect: we can ask for assertion violations

http://www.iaik.tugraz.at

Secure & Correct Systems

36

Roderick Bloem IAIK

SCoS

Path Condition

Path condition: formula that states how to get to a given

location.

assertion reached with path condition ?

int h(int x, int y) {

if (x == y)

if (x*x == 16)

abort(); /*error*/

else

assert(y==4);

return 0;

}

http://www.iaik.tugraz.at

Secure & Correct Systems

37

Roderick Bloem IAIK

SCoS

Concolic Testing Example

1. Start with random input

2. Execute program with concrete and

symbolic inputs. Concrete inputs

determine path

3. Check for bug on path

4. Negate part of condition to obtain

different path

5. Obtain new values from solver

6. Repeat

int h(int x, int y) {

if (x == y)

if (x*x == 16)

assert(y==4);

return 0;

}

1. Call h(12,88)

2. h takes else branch h. Path condition:
𝜙1 = 𝑥 ≠ 𝑦

3. There is no assertion on the path, so no
bug

4. ¬𝜙1= 𝑥 = 𝑦

5. Solver gives, e.g., x = 42, y= 42

2. new call: h(42,42). Program takes then
branch and else branch. Path condition:
𝜙2 = 𝑥 = 𝑦 ∧ (𝑥 ⋅ 𝑥 ≠ 16).

3. No assertion -> no bug

4. Obtain 𝜙 = 𝜙1 ∨ ¬𝜙2 = 𝑥 = 𝑦 ∧
𝑥 ⋅ 𝑥 = 16

5. Obtain an assignment for ¬𝜙: x=4, y =4.

2. New call: h(4,4).

3. Assertion is reached but not violated. Now
vheck 𝑥 = 𝑦 ∧ 𝑥 ⋅ 𝑥 = 16 ∧ 𝑦 ≠ 4
BUG: x==-4, y == -4!

http://www.iaik.tugraz.at

Secure & Correct Systems

38

Roderick Bloem IAIK

SCoS

Concolic Testing

In which order do we change conditions?

▪ Any search order we want.

▪ Example: always negate last part of condition → DFS

1. Start with random input

2. Execute program with concrete and symbolic inputs. Concrete inputs determine path

3. Check for bug on path

4. Negate part of condition to obtain different path

5. Obtain new values from solver

6. Repeat

http://www.iaik.tugraz.at

Secure & Correct Systems

39

Roderick Bloem IAIK

SCoS

Dealing with Memory

Random pointers make little sense – prefer NULL

pointers, or allocated structs.

http://www.iaik.tugraz.at

Secure & Correct Systems

40

Roderick Bloem IAIK

SCoS

Dealing with Memory

typedef struct cell{

int v;

struct cell *next;

} cell;

int f(int v){ return 2*v+1;
}

int testme(cell *p, int x){

if(x > 0)

if(p != NULL)

if(f(x) == p->v)

if(p->next == p)

ERROR;

return 0;

}

http://www.iaik.tugraz.at

Secure & Correct Systems

41

Roderick Bloem IAIK

SCoS

Dealing with Memory

typedef struct cell{

int v;

struct cell *next;

} cell;

int f(int v){ return 2*v+1;
}

int testme(cell *p, int x){

if(x > 0)

if(p != NULL)

if(f(x) == p->v)

if(p->next == p)

ERROR;

return 0;

}

Start: x=236; p = NULL

path: x>0; p==NULL.

Solve x>0 && p!=NULL

x=236, p->[634,NULL]

path: x>0; p!=NULL; 2x+1 != p->v

solve x>0 && p != NULL &&
2x+1==p->v

x=1; p->[3,NULL]

path: x>0; p!=NULL; 2x+1 == p->v; p-
>next!=p

solve x>0 && p != NULL &&
2x+1==p->v && p->next==p

x=1; p->[3,p]

ERROR reached

http://www.iaik.tugraz.at

Secure & Correct Systems

42

Roderick Bloem IAIK

SCoS

Conclusions

▪ Symbolic representation of programs

▪ Systematic search for all bad behavior

BMC tries all paths simultaneously.
▪ Query: Are there inputs such that some path of length

k leads to a bug

▪ Like breadth-first search: wide and shallow

Concolic tries one path at a time
▪ Query: Are there inputs such that this path leads to a

bug

▪ Like depth-first search: deep and narrow

http://www.iaik.tugraz.at

Secure & Correct Systems

43

Roderick Bloem IAIK

SCoS

Literature

▪ P. Godefroid, N. Klarlund, and K. Sen, DART: Directed

Automated Random Testing, Proc. Programming

Language Design and Implementation, 2005

▪ K. Sen, D. Marinov, and G. Agha, CUTE: A Concolic

Unite Testing Engine for C, Proc. European Software

Engineering Conference and ACM SIGSOFT

Symposium on the Foundations of Software

Engineering, 2005

