
Logic and Computability

Topic 1: Theories in Predicate Logic –
Lazy Encoding

Topic 2: Symbolic Encoding

Bettina Könighofer
bettina.koenighofer@iaik.tugraz.at

Stefan Pranger
stefan.pranger@iaik.tugraz.at

https://xkcd.com/2323/

Plan for Today
2

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Plan for Today
3

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Plan for Today
4

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Learning Outcomes
5

After this lecture…

1. students can explain the simplified version of DPLL(T),
especially the interaction of SAT solver and theory solver.

2. students can apply the simplified version of DPPL(T) to decide
the satisfiability of formulas in 𝒯𝑈𝐹𝐸.

6

Definition of a First-Order Theory 𝓣:
▪ Signature Σ
▪ Defines the set of constants, predicate and function symbols

▪ Set of Axioms 𝒜
▪ Gives meaning to the predicate and function symbols

Recap - Definition of a Theory

7

Definition of a First-Order Theory 𝓣:
▪ Signature Σ
▪ Defines the set of constants, predicate and function symbols

▪ Set of Axioms 𝒜
▪ Gives meaning to the predicate and function symbols

Example: Theory of Lineare Integer Arithmetic 𝓣𝐋𝐈𝐀:

▪ ΣLIA ∶= ℤ ∪ +,− ∪ =,≠ <,≤,>,≥
▪ 𝒜𝐿𝐼𝐴 : defines the usual meaning to all symbols
▪ E.g., The function + is interpreted as the addition function, e.g.
▪ …
▪ 0+0 → 0
▪ 0+1→ 1….

Recap - Definition of a Theory

Recap: 𝒯-Satisfiability, 𝒯-validity, 𝒯-Equivalence
8

All possible Models

Models satisfying
all axioms

▪ Only models satisfying axioms are relevant
▪ ➔ “Satisfiability modulo (=‘with respect to’) theories”

Recap - Implementations of SMT Solvers
9

▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that

could be needed at once
▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed

Theory
Formula
𝝓𝑻

equisatisfiable
propositional formula

𝒜 ∧𝝓

Recap - Implementations of SMT Solvers
10

▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that

could be needed at once
▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed

Theory Formula
𝝓𝑻

Equisatisfiable
Propositional Formula

𝒜 ∧𝝓

Recap - Implementations of SMT Solvers
11

▪ Eager Encoding
▪ Equisatisfiable propositional formula
▪ Adds all constraints that

could be needed at once
▪ SAT Solver

▪ Lazy Encoding
▪ SAT Solver and Theory Solver
▪ Add constrains only when needed

Recap - Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

12

SATUNSAT

Recap - Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

13

Checks sat for
propositional skeleton of 𝝓

SATUNSAT

Recap - Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

14

e.g., 𝒂 = 𝒃 ∧ 𝒃 = 𝒄 ∧ 𝒂 ≠ 𝒄

SATUNSAT

Recap - Lazy Encoding

SAT
Solver

Theory
Solver

Assignment of
Theory Literals

Blocking Clause

𝝓

SATUNSAT

15

Negation of
current assignment

e.g.,
¬(𝒂 = 𝒃 ∧ 𝒃 = 𝒄 ∧ 𝒂 ≠ 𝒄)

Recap – Theory Solver for 𝒯UF𝐸
16

Congruence Closure Algorithm

▪ Takes conjunctions of theory literals as input

▪ Equalities (e.g., f g a = g(b))

▪ Disequalities (e.g., a ≠ 𝑓(𝑏))

▪ Checks whether assignment to literals
is consistent with theory
▪ e.g., 𝑎 = 𝑏, 𝑏 = 𝑐, 𝑐 ≠ 𝑎

is 𝒯𝑈𝐅𝐸 unsat

Plan for Today
17

▪ We did not do an example for lazy encoding yet
▪ → Plan for today: Examples☺

Plan for Today
18

▪ We did not do an example for lazy encoding yet
▪ → Plan for today: Examples ☺

▪ Deciding Satisfiability of Formulas in 𝓣𝑼𝑭𝑬 using
(a simplified version of) DPLL(T)
▪ Execute DPLL with theory literals
▪ Use Congrence Closure to check

assignment of theory literals

Example
19

Use the simple version of DPLL(T) to find satisfying
assignment for 𝜑 within 𝓣𝑼𝑭𝑬 (if one exists).

𝜑 = (𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓(𝑏) = 𝑎) ∧ (𝑓 𝑔 𝑎 ≠ 𝑏) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓 𝑎 ≠ 𝑏) ∧ (𝑓 𝑏 ≠ 𝑎) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑏) = 𝑐) ∨ (𝑓(𝑎) = 𝑏) ∧ 𝑓 𝑏 ≠ 𝑐 ∨ (𝑓 𝑐 ≠ 𝑎) ∧ ((𝑓 𝑎 ≠ 𝑏) ∨ (𝑓 𝑐 ≠ 𝑎))

Example
20

𝜑 = (𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓(𝑏) = 𝑎) ∧ (𝑓 𝑔 𝑎 ≠ 𝑏) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓 𝑎 ≠ 𝑏) ∧ (𝑓 𝑏 ≠ 𝑎) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑏) = 𝑐) ∨ (𝑓(𝑎) = 𝑏) ∧ 𝑓 𝑏 ≠ 𝑐 ∨ (𝑓 𝑐 ≠ 𝑎) ∧ ((𝑓 𝑎 ≠ 𝑏) ∨ (𝑓 𝑐 ≠ 𝑎))

Example
21

▪ Step 1: Assign propositional variables to theory literals

𝑒0 ⇔ (𝑓(𝑔(𝑎)) = 𝑏)
𝑒1 ⇔ (𝑓(𝑏) = 𝑎)
𝑒2 ⇔ (𝑓(𝑏) = 𝑐)

𝑒3 ⇔ (𝑓(𝑎) = 𝑏)
𝑒4 ⇔ (𝑓(𝑐) = 𝑎)

𝜑 = (𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓(𝑏) = 𝑎) ∧ (𝑓 𝑔 𝑎 ≠ 𝑏) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓 𝑎 ≠ 𝑏) ∧ (𝑓 𝑏 ≠ 𝑎) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑏) = 𝑐) ∨ (𝑓(𝑎) = 𝑏) ∧ 𝑓 𝑏 ≠ 𝑐 ∨ (𝑓 𝑐 ≠ 𝑎) ∧ ((𝑓 𝑎 ≠ 𝑏) ∨ (𝑓 𝑐 ≠ 𝑎))

Example
22

▪ Step 1: Assign propositional variables to theory literals

▪ Step 2: Compute propositional skeleton ො𝜑

𝑒0 ⇔ (𝑓(𝑔(𝑎)) = 𝑏)
𝑒1 ⇔ (𝑓(𝑏) = 𝑎)
𝑒2 ⇔ (𝑓(𝑏) = 𝑐)

𝑒3 ⇔ (𝑓(𝑎) = 𝑏)
𝑒4 ⇔ (𝑓(𝑐) = 𝑎)

𝜑 = (𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓(𝑏) = 𝑎) ∧ (𝑓 𝑔 𝑎 ≠ 𝑏) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓 𝑎 ≠ 𝑏) ∧ (𝑓 𝑏 ≠ 𝑎) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑏) = 𝑐) ∨ (𝑓(𝑎) = 𝑏) ∧ 𝑓 𝑏 ≠ 𝑐 ∨ (𝑓 𝑐 ≠ 𝑎) ∧ ((𝑓 𝑎 ≠ 𝑏) ∨ (𝑓 𝑐 ≠ 𝑎))

Example
23

▪ Step 1: Assign propositional variables to theory literals

▪ Step 2: Compute propositional skeleton ො𝜑

𝑒0 ⇔ (𝑓(𝑔(𝑎)) = 𝑏)
𝑒1 ⇔ (𝑓(𝑏) = 𝑎)
𝑒2 ⇔ (𝑓(𝑏) = 𝑐)

𝑒3 ⇔ (𝑓(𝑎) = 𝑏)
𝑒4 ⇔ (𝑓(𝑐) = 𝑎)

ො𝜑 = 𝑒0 ∨ 𝑒1 ∧ ¬𝑒0 ∨ 𝑒2 ∧ 𝑒0 ∨ ¬𝑒3 ∧ ¬𝑒1 ∨ 𝑒2 ∧ 𝑒2 ∨ 𝑒3 ∧ ¬𝑒2 ∨ 𝑒4 ∧ (¬𝑒3 ∨ ¬𝑒4)

𝜑 = (𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓(𝑏) = 𝑎) ∧ (𝑓 𝑔 𝑎 ≠ 𝑏) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑔(𝑎)) = 𝑏) ∨ (𝑓 𝑎 ≠ 𝑏) ∧ (𝑓 𝑏 ≠ 𝑎) ∨ (𝑓(𝑏) = 𝑐) ∧

(𝑓(𝑏) = 𝑐) ∨ (𝑓(𝑎) = 𝑏) ∧ 𝑓 𝑏 ≠ 𝑐 ∨ (𝑓 𝑐 ≠ 𝑎) ∧ ((𝑓 𝑎 ≠ 𝑏) ∨ (𝑓 𝑐 ≠ 𝑎))

Example
24

▪ Step 3: Use SAT Solver to find satisfying Model for ො𝜑 (if one exists)

ො𝜑 = 𝑒0 ∨ 𝑒1 ∧ ¬𝑒0 ∨ 𝑒2 ∧ 𝑒0 ∨ ¬𝑒3 ∧ ¬𝑒1 ∨ 𝑒2 ∧
𝑒2 ∨ 𝑒3 ∧ ¬𝑒2 ∨ 𝑒4 ∧ (¬𝑒3 ∨ ¬𝑒4)

25 𝜑 = 𝑒0 ∨ 𝑒1 ∧ ¬𝑒0 ∨ 𝑒2 ∧ 𝑒0 ∨ ¬𝑒3 ∧ ¬𝑒1 ∨ 𝑒2 ∧ 𝑒2 ∨ 𝑒3 ∧ ¬𝑒2 ∨ 𝑒4 ∧ (¬𝑒3 ∨ ¬𝑒4)
Decision heuristic: alphabetical order starting with the negative phase

Step 1 2 3 4 5 6 7

Dec. Level

Assignment

1: {𝑒0, 𝑒1}

2: {¬𝑒0, 𝑒2}

3: {𝑒0, ¬𝑒3}

4: {¬𝑒1, 𝑒2}

5: {𝑒2, 𝑒3}

6: {¬𝑒2, 𝑒4}

7: {¬𝑒3, ¬𝑒4}

LC 1

LC 2

BCP

Pure Literal

Decision

26 𝜑 = 𝑒0 ∨ 𝑒1 ∧ ¬𝑒0 ∨ 𝑒2 ∧ 𝑒0 ∨ ¬𝑒3 ∧ ¬𝑒1 ∨ 𝑒2 ∧ 𝑒2 ∨ 𝑒3 ∧ ¬𝑒2 ∨ 𝑒4 ∧ (¬𝑒3 ∨ ¬𝑒4)
Decision heuristic: alphabetical order starting with the negative phase

Example
27

▪ Returned satisfying assignment from SAT Solver
▪ 𝑀𝑝𝑟𝑜𝑝 = 𝑒0 = 𝐹, 𝑒1 = 𝑇, 𝑒2 = 𝑇, 𝑒3 = 𝐹, 𝑒4 = 𝑇

▪ 𝑀𝑝𝑟𝑜𝑝 ⊨ ො𝜑

Example
28

▪ Returned satisfying assignment from SAT Solver
▪ 𝑀𝑝𝑟𝑜𝑝 = 𝑒0 = 𝐹, 𝑒1 = 𝑇, 𝑒2 = 𝑇, 𝑒3 = 𝐹, 𝑒4 = 𝑇

▪ 𝑀𝑝𝑟𝑜𝑝 ⊨ ො𝜑

▪ Step 4: Check if assignment of theory literals is consistent with theory
▪ Translate back to theory literals using

𝑒0 ⇔ (𝑓(𝑔(𝑎)) = 𝑏)
𝑒1 ⇔ (𝑓(𝑏) = 𝑎)
𝑒2 ⇔ (𝑓(𝑏) = 𝑐)

𝑒3 ⇔ (𝑓(𝑎) = 𝑏)
𝑒4 ⇔ (𝑓(𝑐) = 𝑎)

Example
29

▪ Returned satisfying assignment from SAT Solver
▪ 𝑀𝑝𝑟𝑜𝑝 = 𝑒0 = 𝐹, 𝑒1 = 𝑇, 𝑒2 = 𝑇, 𝑒3 = 𝐹, 𝑒4 = 𝑇

▪ 𝑀𝑝𝑟𝑜𝑝 ⊨ ො𝜑

▪ Step 4: Check if assignment of theory literals is consistent with theory
▪ Translate back to theory literals using

▪ 𝑀𝒯𝑈𝐹𝐸: = { 𝑓 𝑔 𝑎 ≠ 𝑏 , 𝑓 𝑏 = 𝑎 , 𝑓 𝑏 = 𝑐 , 𝑓 𝑎 ≠ 𝑏 , 𝑓 𝑐 = 𝑎 }

𝑒0 ⇔ (𝑓(𝑔(𝑎)) = 𝑏)
𝑒1 ⇔ (𝑓(𝑏) = 𝑎)
𝑒2 ⇔ (𝑓(𝑏) = 𝑐)

𝑒3 ⇔ (𝑓(𝑎) = 𝑏)
𝑒4 ⇔ (𝑓(𝑐) = 𝑎)

Example
30

▪ Execute Congruence Closure Algorithm

▪ 𝑀𝒯𝑈𝐹𝐸: = { 𝑓 𝑔 𝑎 ≠ 𝑏 , 𝑓 𝑏 = 𝑎 , 𝑓 𝑏 = 𝑐 , 𝑓 𝑎 ≠ 𝑏 , 𝑓 𝑐 = 𝑎 }

Example
31

▪ Execute Congruence Closure Algorithm

▪ 𝑀𝒯𝑈𝐹𝐸: = { 𝑓 𝑔 𝑎 ≠ 𝑏 , 𝑓 𝑏 = 𝑎 , 𝑓 𝑏 = 𝑐 , 𝑓 𝑎 ≠ 𝑏 , 𝑓 𝑐 = 𝑎 }

▪ 𝑓 𝑏 , 𝑎 , 𝑓 𝑏 , 𝑐 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑎 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏

Example
32

▪ Execute Congruence Closure Algorithm

▪ 𝑀𝒯𝑈𝐹𝐸: = { 𝑓 𝑔 𝑎 ≠ 𝑏 , 𝑓 𝑏 = 𝑎 , 𝑓 𝑏 = 𝑐 , 𝑓 𝑎 ≠ 𝑏 , 𝑓 𝑐 = 𝑎 }

▪ 𝑓 𝑏 , 𝑎 , 𝑓 𝑏 , 𝑐 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑎 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏

▪ 𝓣𝐔F𝐄-Satisfiable since 𝑓 𝑔 𝑎 and 𝑏 as well as 𝑓 𝑎 and 𝑏 are in different

equivalence classes.

Example
33

▪ Execute Congruence Closure Algorithm

▪ 𝑀𝒯𝑈𝐹𝐸: = { 𝑓 𝑔 𝑎 ≠ 𝑏 , 𝑓 𝑏 = 𝑎 , 𝑓 𝑏 = 𝑐 , 𝑓 𝑎 ≠ 𝑏 , 𝑓 𝑐 = 𝑎 }

▪ 𝑓 𝑏 , 𝑎 , 𝑓 𝑏 , 𝑐 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓 𝑐 , 𝑎 , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏 , 𝑓 𝑎

▪ 𝑎, 𝑐, 𝑓 𝑎 𝑓 𝑏 , 𝑓(𝑐) , 𝑓 𝑔 𝑎 , 𝑏

▪ 𝓣𝐔F𝐄-Satisfiable since 𝑓 𝑔 𝑎 and 𝑏 as well as 𝑓 𝑎 and 𝑏 are in different

equivalence classes.

▪ →𝑴𝓣𝐔𝑭𝑬 is a satisfying assignment for 𝝋. Algorithm terminates with SAT.

Plan for Today
34

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Motivation - Symbolic Encoding
35

▪ We want to reason about systems
▪ →We want automatic verification of software and hardware

▪ Problem: Systems have huge state spaces / number of transitions

Motivation - Symbolic Encoding
36

▪ We want to reason about systems
▪ →We want automatic verification of software and hardware

▪ Problem: Systems have huge state spaces / number of transitions
▪ Automatic Verification History
▪ 1981: EMC Model checker ~104 states

Motivation - Symbolic Encoding
37

▪ We want to reason about systems
▪ →We want automatic verification of software and hardware

▪ Problem: Systems have huge state spaces
▪ Automatic Verification History
▪ 1981: EMC Model checker ~104 states
▪ 1992: Symbolic Model Checking

using BDDs

Motivation- Symbolic Encoding
38

▪ Explicit Algorithms
▪ Algorithms work explicitly with sets (of states and transitions)

▪ Symbolic Algorithms
▪ Represent sets as formulas
▪ Perform operations on formulas

Motivation- Symbolic Encoding
39

▪ Explicit Algorithms
▪ Algorithms work explicitly with sets (of states and transitions)

▪ Symbolic Algorithms
▪ Represent sets as formulas
▪ Perform operations on formulas

Symbolic encoding = representation of sets as formulas
Symbolic set operations = logical operations on formulas representing sets

Motivation- Symbolic Encoding
40

▪ Explicit Algorithms
▪ Algorithms work explicitly with sets (of states and transitions)

▪ Symbolic Algorithms
▪ Represent sets as formulas
▪ Perform operations on formulas
▪ Advantage:
▪ Often possible to represent huge sets with relatively small

formulas.

Motivation- Symbolic Encoding
41

▪ Explicit Algorithms
▪ Algorithms work explicitly with sets (of states and transitions)

▪ Symbolic Algorithms
▪ Represent sets as formulas
▪ Perform operations on formulas

▪ Additional Trick:
Represent formulas via BDDs
▪ Efficient representation

& manipulation

Learning Outcomes
42

After this lecture…

1. students can symbolically encode sets
(in particular, sets of states and sets of transitions as well as arbitrary sets).

Learning Outcomes
43

After this lecture…

1. students can symbolically encode sets
(in particular, sets of states and sets of transitions as well as arbitrary sets).

2. students can perform set operations on symbolically encoded sets.

Plan for Today
44

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Transition Systems
45

▪ Model of a digital system

▪ 𝑇 is a triple 𝑆, 𝑆0, 𝑅
▪ Finite Set of States 𝑆
▪ Set of Initial States S0 ⊆ 𝑆
▪ Transition Relation R ⊆ 𝑆 × 𝑆

Transition Systems
46

▪ Model of a digital system

▪ 𝑇 is a triple 𝑆, 𝑆0, 𝑅
▪ Finite Set of States 𝑆
▪ Set of Initial States S0 ⊆ 𝑆
▪ Transition Relation R ⊆ 𝑆 × 𝑆

▪ Often visualized as directed Graph

Transition Systems - Example
47

Transition Systems - Example
48

Transition Systems - Example
49

▪ Model a traffic light controller
▪ Initially the red light is on. After some time, the controller switches such that

the red and the yellow light are on. After some time, the controller switches
to green, from green to yellow, and from yellow back to red, and so on.

▪ Draw the transition systems

Transition Systems - Example
50

▪ Model a traffic light controller
▪ Initially the red light is on. After some time, the controller switches such that

the red and the yellow light are on. After some time, the controller switches
to green, from green to yellow, and from yellow back to red, and so on.

▪ Draw the transition systems
▪ States used:
▪ 𝑠𝑟 … the red light is on.
▪ 𝑠𝑦 … the yellow light is on.

▪ 𝑠𝑔 … the green light is on.

▪ 𝑠𝑟𝑦 … the red and yellow lights are on

Transition Systems - Example
51

▪ Model a traffic light controller
▪ Initially the red light is on. After some time, the controller switches such that

the red and the yellow light are on. After some time, the controller switches
to green, from green to yellow, and from yellow back to red, and so on.

▪ Draw the transition systems
▪ States used:
▪ 𝑠𝑟 … the red light is on.
▪ 𝑠𝑦 … the yellow light is on.

▪ 𝑠𝑔 … the green light is on.

▪ 𝑠𝑟𝑦 … the red and yellow lights are on

Plan for Today
52

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Symbolic Encoding
53

▪ Systems have huge state spaces / number of transitions

▪ Therefore,
▪ Symbolically encode sets (of states and transitions)
▪ Perform set operations symbolically

Symbolic Encoding
54

▪ Systems have huge state spaces / number of transitions

▪ Therefore,
▪ Symbolically encode sets (of states and transitions)
▪ Perform set operations symbolically

▪ Notation
▪ Use upper-case letters for sets
▪ Use the corresponding lower-case letter for the formula that

symbolically represents the set
▪ E.g., The set 𝐹 is represented via the formula 𝑓

Symbolic Representation of Sets of States
55

Symbolic Representation of Sets of States
56

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

Symbolic Representation of Sets of States
57

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1}
▪ Use 1 Boolean variable 𝑣0

Symbolic Representation of Sets of States
58

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1}
▪ Use 1 Boolean variable 𝑣0
▪ The formula ¬𝒗𝟎 symbolically represents the state 𝒔𝟎
▪ The formula 𝒗𝟎 symbolically represents the state 𝒔𝟏

Symbolic Representation of Sets of States
59

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}

Symbolic Representation of Sets of States
60

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1

Symbolic Representation of Sets of States
61

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1
▪ The formula … symbolically represents the state 𝑠0
▪ The formula … symbolically represents the state 𝑠1
▪ The formula … symbolically represents the state 𝑠2
▪ The formula … symbolically represents the state 𝑠3

Symbolic Representation of Sets of States
62

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1
▪ The formula ¬𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠0
▪ The formula … symbolically represents the state 𝑠1
▪ The formula … symbolically represents the state 𝑠2
▪ The formula … symbolically represents the state 𝑠3

Symbolic Representation of Sets of States
63

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1
▪ The formula ¬𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠0
▪ The formula 𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠1
▪ The formula … symbolically represents the state 𝑠2
▪ The formula … symbolically represents the state 𝑠3

Symbolic Representation of Sets of States
64

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1
▪ The formula ¬𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠0
▪ The formula 𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠1
▪ The formula ¬𝑣1 ∧ 𝑣0 symbolically represents the state 𝑠2
▪ The formula … symbolically represents the state 𝑠3

Symbolic Representation of Sets of States
65

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3}
▪ Use 2 Boolean variable 𝑣0 and 𝑣1
▪ The formula ¬𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠0
▪ The formula 𝑣1 ∧ ¬𝑣0 symbolically represents the state 𝑠1
▪ The formula ¬𝑣1 ∧ 𝑣0 symbolically represents the state 𝑠2
▪ The formula 𝑣1 ∧ 𝑣0 symbolically represents the state 𝑠3

Symbolic Representation of Sets of States
66

▪ Symbolic Representation of States via Binary Encoding
▪ Given |𝑆| ≤ 𝟐𝐧 states, we need 𝒏 Boolean variables
{𝑣0, . . . , 𝑣𝑛−1} to symbolically represent the state space.

▪ Example: Encode the state space 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, … , 𝑠7}
▪ Use 3 Boolean variable 𝑣0 , 𝑣1 and 𝑣2
▪ The formula ¬𝑣2 ∧ ¬𝑣1 ∧ ¬𝑣0 symbolically 𝑠0
▪ …..
▪ The formula 𝑣2 ∧ 𝑣1 ∧ 𝑣0 symbolically 𝑠7

Symbolic Representation of Sets of States
67

▪ Entire State Space: Use variables 𝑉 = {𝑣0, . . . , 𝑣𝑛−1} for binary
representations of 2𝑛states

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

68

▪ Single State

▪ Apply binary encoding
▪ E.g. State s2 is encoded as ¬𝑣2 ∧ 𝑣1 ∧ ¬𝑣0

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

Symbolic Representation of Sets of States

69

▪ Sets of States

▪ Example: Symbolically encode the set of states 𝑠5, 𝑠1
▪ Solution: ?

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

Symbolic Representation of Sets of States

70

▪ Sets of States

▪ Example: Symbolically encode the set of states 𝑠5, 𝑠1
▪ Solution:

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

Symbolic Representation of Sets of States

𝑣2 ∧ ¬𝑣1 ∧ 𝑣0 ∨ ¬𝑣2 ∧ ¬𝑣1 ∧ 𝑣0 = ¬𝑣1 ∧ 𝑣0

71

▪ Sets of States

▪ Example: Symbolically encode all even numbered states
▪ Solution: ?

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

Symbolic Representation of Sets of States

72

▪ Sets of States

▪ Example: Symbolically encode all even numbered states
▪ Solution:
▪ We encoded a relatively large set via a small formula.

S0

S1

S2

S3

S4

S5

S6

S7
000

001

010

100

011 101

110

111

Symbolic Representation of Sets of States

¬𝑣0

Plan for Today
73

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Symbolic Representation of a Single
Transition

74

Symbolic Representation of a Single
Transition

75

▪ Create a second set of variables 𝑉’ (Duplicate variables)

Symbolic Representation of a Single
Transition

76

▪ Create a second set of variables 𝑉’ (Duplicate variables)
▪ variables in 𝑣0, 𝑣1, 𝑣2, … ∈ 𝑉 represent present state variables
▪ variables in 𝑣0

′ , 𝑣1
′ , 𝑣2

′ , … ∈ 𝑉′ represent next state variables

Symbolic Representation of a Single
Transition

77

▪ Create a second set of variables 𝑉’ (Duplicate variables)
▪ variables in 𝑣0, 𝑣1, 𝑣2, … ∈ 𝑉 represent present state variables
▪ variables in 𝑣0

′ , 𝑣1
′ , 𝑣2

′ , … ∈ 𝑉′ represent next state variables

S0
000

S1
001

Symbolic Representation of a Single
Transition

78

▪ Create a second set of variables V’ (Duplicate variables)
▪ variables in 𝑣0, 𝑣1, 𝑣2, … ∈ 𝑉 represent present state variables
▪ variables in 𝑣0

′ , 𝑣1
′ , 𝑣2

′ , … ∈ 𝑉′ represent next state variables

S0
000

S1
001

¬𝑣2 ∧ ¬𝑣1 ∧ ¬𝑣0 ∧ ¬𝑣2
′∧ ¬𝑣1

′ ∧ 𝑣0′

79

▪ Given Set of symbolically encoded edges E = {𝑒1, 𝑒2, 𝑒3}

Symbolic Representation of Sets of Transitions

80

▪ Given Set of symbolically encoded edges E = {𝑒1, 𝑒2, 𝑒3}

▪ Symbolic representation via Disjunction
▪ 𝑒 = 𝑒1 ∨ 𝑒2 ∨ 𝑒3
▪ Good for sparse sets of edges

Symbolic Representation of Sets of Transitions

81

▪ Given Set of symbolically encoded edges E = {𝑒1, 𝑒2, 𝑒3}

▪ Symbolic representation via Disjunction
▪ 𝑒 = 𝑒1 ∨ 𝑒2 ∨ 𝑒3
▪ Good for sparse sets of edges

▪ Alternative
▪ Exclude missing edges
▪ ⊤ ∖ {𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠} = Negation of union of all missing edges
▪ Good for dense sets of edges

Symbolic Representation of Sets of Transitions

82

▪ Given Set of symbolically encoded edges E = {𝑒1, 𝑒2, 𝑒3}

▪ Symbolic representation via Disjunction
▪ 𝑒 = 𝑒1 ∨ 𝑒2 ∨ 𝑒3
▪ Good for sparse sets of edges

▪ Alternative
▪ Exclude missing edges
▪ ⊤ ∖ {𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒𝑠} = Negation of union of all missing edges
▪ Good for dense sets of edges

▪ Recognize patterns
▪ E.g. even numbered states have edges to (all) odd numbered states
▪ ¬𝑥0 ∧ 𝑥0

′

Symbolic Representation of Sets of Transitions

83

▪ Example:
▪ Symbolically encode the transition relation

S0 S1

S3 S2

Symbolic Representation of Sets of Transitions

84

▪ Example:
▪ Symbolically encode the transition relation

S0
00

S1
01

S3
11

S2
10

Symbolic Representation of Sets of Transitions

85

▪ Example:
▪ Symbolically encode the transition relation

S0
00

S1
01

S3
11

S2
10

¬𝑣1 ∧ ¬𝑣0 ∧ ¬𝑣
′
1 ∧ 𝑣0

′ ∨
¬𝑣1 ∧ 𝑣0 ∧ 𝑣1

′ ∧ ¬𝑣0
′ ∨

𝑣1 ∧ ¬𝑣0 ∧ 𝑣
′
1 ∧ 𝑣0

′ ∨
(𝑣1 ∧ 𝑣0 ∧ ¬𝑣

′
1 ∧ ¬𝑣0

′)

Symbolic Representation of Sets of Transitions

86

Symbolic Representation of Sets of Transitions

▪ Example:
▪ Symbolically encode the transition relation

87

Symbolic Representation of Sets of Transitions

▪ Example:
▪ Symbolically encode the transition relation

¬(𝑣1 ∧ ¬𝑣0 ∧ 𝑣1′ ∧ ¬𝑣0′)

00 01

1011

88

Symbolic Representation of Sets of Transitions

▪ Example:
▪ Symbolically encode the transition relation

00 01

1011

89

¬((𝑣1 ∧ ¬𝑣0 ∧ 𝑣1′ ∧ ¬𝑣0′) ∨

𝑣1 ∧ ¬𝑣0 ∧ ¬𝑣1
′ ∧ 𝑣0

′ ∨

(¬𝑣1 ∧ 𝑣0 ∧ 𝑣1′ ∧ ¬𝑣0′))

𝑠2 → 𝑠2

𝑠2 → 𝑠1

𝑠1 → 𝑠2

Symbolic Representation of Sets of Transitions

▪ Example:
▪ Symbolically encode the transition relation

00 01

1011

Plan for Today
90

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Symbolic Encoding of arbitrary Sets
91

▪ Domain: e.g. D = 𝐴𝑢𝑠𝑡𝑟𝑖𝑎, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑆𝑝𝑎𝑖𝑛, 𝐼𝑡𝑎𝑙𝑦
▪ #𝑉𝑎𝑟𝑠 = 𝑙𝑑(D)

Symbolic Encoding of arbitrary Sets
92

▪ Domain: e.g. D = 𝐴𝑢𝑠𝑡𝑟𝑖𝑎, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑆𝑝𝑎𝑖𝑛, 𝐼𝑡𝑎𝑙𝑦
▪ #𝑉𝑎𝑟𝑠 = 𝑙𝑑(D)

Element
Encoding

v

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
93

▪ Domain: e.g. D = 𝐴𝑢𝑠𝑡𝑟𝑖𝑎, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑆𝑝𝑎𝑖𝑛, 𝐼𝑡𝑎𝑙𝑦
▪ #𝑉𝑎𝑟𝑠 = 𝑙𝑑(D)

Element
Encoding

v

0 0

0 1

1 0

1 1

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
94

▪ F = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎}

Element
Encoding

0 0

0 1

1 0

1 1

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
95

▪ F = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎}

▪ 𝑓 = ¬𝑥0 ∧ ¬𝑥1 Element
Encoding

0 0

0 1

1 0

1 1

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
96

▪ F = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎}

▪ 𝑓 = ¬𝑥0 ∧ ¬𝑥1

▪ G = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎, 𝑆𝑝𝑎𝑖𝑛}

Element
Encoding

0 0

0 1

1 0

1 1

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
97

▪ F = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎}

▪ 𝑓 = ¬𝑥0 ∧ ¬𝑥1

▪ G = {𝐴𝑢𝑠𝑡𝑟𝑖𝑎, 𝑆𝑝𝑎𝑖𝑛}

▪ 𝑔 = ¬𝑥0

Element
Encoding

0 0

0 1

1 0

1 1

𝐀𝐮𝐬𝐭𝐫𝐢𝐚

𝐆𝐞𝐫𝐦𝐚𝐧𝐲

𝐒𝐩𝐚𝐢𝐧

𝐈𝐭𝐚𝐥𝐲

Symbolic Encoding of arbitrary Sets
98

▪ Which encoding gives the shorter formula for the set 𝐵 = {𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑆𝑝𝑎𝑖𝑛}?

Symbolic Encoding of arbitrary Sets
99

▪ Which encoding gives the shorter formula for the set 𝐵 = {𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑆𝑝𝑎𝑖𝑛}?
▪ Answer: The first encoding:

𝑓𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔1 = 𝑥1 𝑓𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔2 = 𝑥1 ⊕𝑥0

Encoding Natural Numbers
▪ Binary Representation

▪ Domain D: Usually Power of 2
▪ E.g.: D = x ∈ ℕ x < 212

457 10 = 0001 1100 1001 2

𝑥0𝑥1𝑥2𝑥3𝑥11

10
0

Plan for Today
10
1

▪ Part 1 – Lazy Encoding / DPLL(T)
▪ Recap: Theories in Predicate Logic
▪ Recap: Lazy Encoding and Congruence Closure
▪ Simplified Version of DPLL(T)

▪ Discuss via example

▪ Part 2 – Symbolic Encoding
▪ Motivation
▪ Transition systems
▪ Symbolic representation of sets of states
▪ Symbolic representation of the transition relation
▪ Symbolic encodings of arbitrary sets
▪ Set operations on symbolically encoded sets

Symbolic Operations

▪ Intersection: 𝐹 ∩ 𝐺 ⇔ 𝑓 ∧ 𝑔

▪Union: 𝐹 ∪ 𝐺 ⇔ ?

▪Difference: 𝐹 ∖ 𝐺 ⇔?

▪ Equality: 𝐹 = 𝐺 ⇔ ?

▪ Subset: 𝐹 ⊆ 𝐺 ⇔ ?

10
2

Symbolic Operations

▪ Intersection: 𝐹 ∩ 𝐺 ⇔ 𝑓 ∧ 𝑔

▪Union: 𝐹 ∪ 𝐺 ⇔ 𝑓 ∨ 𝑔

▪Difference: 𝐹 ∖ 𝐺 ⇔?

▪ Equality: 𝐹 = 𝐺 ⇔ ?

▪ Subset: 𝐹 ⊆ 𝐺 ⇔ ?

10
3

Symbolic Operations

▪ Intersection: 𝐹 ∩ 𝐺 ⇔ 𝑓 ∧ 𝑔

▪Union: 𝐹 ∪ 𝐺 ⇔ 𝑓 ∨ 𝑔

▪Difference: 𝐹 ∖ 𝐺 ⇔ 𝑓 ∧ ¬𝑔

▪ Equality: 𝐹 = 𝐺 ⇔ ?

▪ Subset: 𝐹 ⊆ 𝐺 ⇔ ?

10
4

Symbolic Operations

▪ Intersection: 𝐹 ∩ 𝐺 ⇔ 𝑓 ∧ 𝑔

▪Union: 𝐹 ∪ 𝐺 ⇔ 𝑓 ∨ 𝑔

▪Difference: 𝐹 ∖ 𝐺 ⇔ 𝑓 ∧ ¬𝑔

▪ Equality: 𝐹 = 𝐺 ⇔ 𝑓 ↔ 𝑔

▪ Subset: 𝐹 ⊆ 𝐺 ⇔ ?

10
5

Symbolic Operations

▪ Intersection: 𝐹 ∩ 𝐺 ⇔ 𝑓 ∧ 𝑔

▪Union: 𝐹 ∪ 𝐺 ⇔ 𝑓 ∨ 𝑔

▪Difference: 𝐹 ∖ 𝐺 ⇔ 𝑓 ∧ ¬𝑔

▪ Equality: 𝐹 = 𝐺 ⇔ 𝑓 ↔ 𝑔

▪ Subset: 𝐹 ⊆ 𝐺 ⇔ 𝑓 → 𝑔

10
6

Example

▪ Domain: 𝐴 = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 1023}
10 bit binary representation 𝑥9𝑥8… . 𝑥0

▪ 𝐵 = 𝑥 ∈ 𝐴 𝑥 < 512}

▪ 𝐶 = 𝑥 ∈ 𝐴 256 ≤ 𝑥 < 768}

▪ 𝐷 = 𝐵 ∪ 𝐶

▪ 𝐸 = 𝐵 ∩ 𝐶

▪ F = A \ E

▪ TODO: Compute the symbolic representations for 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹

10
7

Example

▪ Domain: 𝐴 = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 1023}
10 bit binary representation 𝑥9𝑥8… . 𝑥0

▪ 𝐵 = 𝑥 ∈ 𝐴 𝑥 < 512}, 𝑏 = ¬𝑥9

▪ 𝐶 = 𝑥 ∈ 𝐴 256 ≤ 𝑥 < 768}, 𝑐 = ¬𝑥9 ∧ 𝑥8 ∨ (𝑥9 ∧ ¬𝑥8)?

▪ 𝐷 = 𝐵 ∪ 𝐶

▪ 𝐸 = 𝐵 ∩ 𝐶

▪ F = A \ E

10
8

Example

▪ Domain: 𝐴 = {𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 1023}
10 bit binary representation 𝑥9𝑥8… . 𝑥0

▪ 𝐵 = 𝑥 ∈ 𝐴 𝑥 < 512}, 𝑏 = ¬𝑥9

▪ 𝐶 = 𝑥 ∈ 𝐴 256 ≤ 𝑥 < 768}, 𝑐 = ¬𝑥9 ∧ 𝑥8 ∨ (𝑥9 ∧ ¬𝑥8)?

▪ 𝐷 = 𝐵 ∪ 𝐶 𝑑 = ¬𝑥9 ∨ ¬𝑥9 ∧ 𝑥8 ∨ 𝑥9 ∧ ¬𝑥8 = ¬𝑥9 ∨ 𝑥9 ∧ ¬𝑥8

▪ 𝐸 = 𝐵 ∩ 𝐶 𝑒 = ¬𝑥9 ∧ ¬𝑥9 ∧ 𝑥8 ∨ 𝑥9 ∧ ¬𝑥8 = ¬𝑥9 ∧ 𝑥8

▪ F = A \ E 𝑓 = 𝑇 ∧ ¬ ¬𝑥9 ∧ 𝑥8 = 𝑥9 ∨ ¬𝑥8

10
9

Thank You

110

11
0

https://xkcd.com/1033/

