TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Digital System Integration and Programming

Barbara Gigerl, Rishub Nagpal
October 4th, 2023

> www.iaik.tugraz.at

Outline

1. Digital system integration and programming

/31

Outline

1. Digital system integration and programming

2. About this course

/31

Outline

1. Digital system integration and programming
2. About this course

3. Outlook: Projects

/31

What is digital system integration and programming?

Digital system integration
= Digital systems: very complex

= System integration: connect
multiple complex systems to
achieve a certain goal

31

What is digital system integration and programming?

Digital system integration
= Digital systems: very complex

= System integration: connect
multiple complex systems to
achieve a certain goal

...and programming

= Hardware and software

31

What is digital system integration and programming?

Digital system integration

Digital systems: very complex

System integration: connect
multiple complex systems to
achieve a certain goal

...and programming

Hardware and software

31

What is digital system integration and programming?

Digital system integration

Digital systems: very complex

System integration: connect
multiple complex systems to
achieve a certain goal

...and programming

Hardware and software

31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system

which:

consists of several components.

=
' J|=EO0

HHHTHED

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system

which:

consists of several components.

Each component itself is a complex system.

=
' J|=E0

HHHTHED

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.

= Each componentitselfis a complex system. —

' J|=E0

= CPU

HHHTHED

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.

= Each componentitselfis a complex system. —

' J|=E0

= CPU

HHHTHED

= Memory

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.

= Each componentitselfis a complex system.

= CPU
= Memory

m Bus architectures

=

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.
= Each componentitselfis a complex system.

= CPU
= Memory
m Bus architectures

= |/O modules

=

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.
= Each componentitselfis a complex system.

= CPU

= Memory

m Bus architectures
= |/O modules

m Co-processors

=

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.

= Each componentitselfis a complex system.

= CPU

= Memory

m Bus architectures
= |/O modules

m Co-processors

= Analog circuits

=

3/31

What is a System-on-a-Chip?

A System-on-a-Chip (SoC) is a complex system
which:

= consists of several components.

= Each componentitselfis a complex system.

= CPU

= Memory

m Bus architectures
= |/O modules

m Co-processors

= Analog circuits

=

3/31

What is a System-on-a-Chip?

A quick history

= 1970s: VLSI design

31

What is a System-on-a-Chip?

A quick history
= 1970s: VLSI design

m VLS| =Very large-scale integration

31

What is a System-on-a-Chip?

A quick history
= 1970s: VLSI design

m VLS| =Very large-scale integration

= Combining millions of MOS transistors into an integrated circuit

31

What is a System-on-a-Chip?

A quick history
= 1970s: VLSI design

m VLS| =Very large-scale integration

= Combining millions of MOS transistors into an integrated circuit

= 1990s: System-on-a-chip

31

What is a System-on-a-Chip?

A quick history
= 1970s: VLSI design

m VLS| =Very large-scale integration

= Combining millions of MOS transistors into an integrated circuit
= 1990s: System-on-a-chip

m System integration: integration of a complete system, that until
recently consisted of multiple ICs, onto a single IC (a SoC)

31

What is a System-on-a-Chip?

A quick history

1970s: VLSI design

m VLS| =Very large-scale integration

= Combining millions of MOS transistors into an integrated circuit
1990s: System-on-a-chip

m System integration: integration of a complete system, that until
recently consisted of multiple ICs, onto a single IC (a SoC)

Today: SoC is the state-of-the-art principle for designing chips

31

SoCs are everywhere

Smartphones

5/31

SoCs are everywhere

- B

Smartphones Tablets

5/31

SoCs are everywhere

= Smart TVs
Smartphones Tablets

5/31

SoCs are everywhere

el Smart TVs
Smartphones Tablets Cars

5/31

Example: Apple A12 Bionic

= UsediniPhone XS, XS Max, XR

/31

Example: Apple A12 Bionic

Used in iPhone XS, XS Max, XR

7nm CMOS, 6.9 billion transistors

/31

Example: Apple A12 Bionic

Used in iPhone XS, XS Max, XR
7nm CMOS, 6.9 billion transistors

Components:

/31

Example: Apple A12 Bionic

= UsediniPhone XS, XS Max, XR
= 7nm CMOS, 6.9 billion transistors
= Components:

m 64-bit ARMv8.3A (6 performance CPUs, 4
energy-efficient CPUs)

/31

Example: Apple A12 Bionic

= UsediniPhone XS, XS Max, XR
= 7nm CMOS, 6.9 billion transistors
= Components:

m 64-bit ARMv8.3A (6 performance CPUs, 4
energy-efficient CPUs)

= Four-core GPU

/31

Example: Apple A12 Bionic

= UsediniPhone XS, XS Max, XR
= 7nm CMOS, 6.9 billion transistors
= Components:

m 64-bit ARMv8.3A (6 performance CPUs, 4
energy-efficient CPUs)
= Four-core GPU

m Neural Engine with 8 cores

/31

Example: Apple A12 Bionic

= UsediniPhone XS, XS Max, XR
= 7nm CMOS, 6.9 billion transistors
= Components:

m 64-bit ARMv8.3A (6 performance CPUs, 4
energy-efficient CPUs)
= Four-core GPU

m Neural Engine with 8 cores

/31

Example: Qualcomm Snapdragon 865

Used in smartphones by ZTE, Sony, OnePlus, LG, ...

/31

Example: Qualcomm Snapdragon 865

Used in smartphones by ZTE, Sony, OnePlus, LG, ...

7nm CMOS

/31

Example: Qualcomm Snapdragon 865

Used in smartphones by ZTE, Sony, OnePlus, LG, ...
7nm CMOS

Components:

/31

Example: Qualcomm Snapdragon 865

= Used in smartphones by ZTE, Sony, OnePlus, LG, ...
= 7nm CMOS
= Components:

m Several ARM Cortex-A77 and Cortex-A55-based
CPUs

7/31

Example: Qualcomm Snapdragon 865

= Used in smartphones by ZTE, Sony, OnePlus, LG, ...
= 7nm CMOS
= Components:

m Several ARM Cortex-A77 and Cortex-A55-based
CPUs

m Deidcated processor for ISP for photos and videos

7/31

Example: Qualcomm Snapdragon 865

= Used in smartphones by ZTE, Sony, OnePlus, LG, ...
= 7nm CMOS
= Components:

m Several ARM Cortex-A77 and Cortex-A55-based
CPUs
m Deidcated processor for ISP for photos and videos

m Wi-Fi

7/31

Example: Qualcomm Snapdragon 865

= Used in smartphones by ZTE, Sony, OnePlus, LG, ...
= 7nm CMOS
= Components:

m Several ARM Cortex-A77 and Cortex-A55-based
CPUs

m Deidcated processor for ISP for photos and videos

m Wi-Fi

m SPU: dedicated subsystem for boot-loader, key
management unit, crypto accelerators, ...

7/31

Example: Sitara Processors of Tl

PWRON pSD GIGETH1&2 pUSB USB2.0

= SoC forindustrial applications

st JTAG | DDR3
SVSupply AM335x Audio WLAN/Bluetooth

8/31

Example: Sitara Processors of Tl

PWRON pSD GIGETH1&2 pUSB USB2.0

= SoC forindustrial applications

= Used in thermostats, firewalls, Lego Mindstorms

st JTAG | DDR3
SVSupply AM335x Audio WLAN/Bluetooth

8/31

Example: Sitara Processors of Tl

= SoC forindustrial applications

= Used in thermostats, firewalls, Lego Mindstorms

= 1GHzARM CPU

8/31

Example: Sitara Processors of Tl

SoC for industrial applications

Used in thermostats, firewalls, Lego Mindstorms

1 GHz ARM CPU

On-chip quad-core PRU (Programmable Realtime Unit)

8/31

Example: Smart meters with PQC acceleration

PS Interconnect
® Smart meters: low-resource devices to
monitor and control bidirectional
electricity consumption FrodoKEM < >

<

PL

» AS+—AxS

» S'A«— S xA

» SHAKE

/31

Example: Smart meters with PQC acceleration

PS Interconnect
® Smart meters: low-resource devices to
monitor and control bidirectional
electricity consumption FrodoKEM < >

= Unauthorized access to SM data can impact
operation of electric power system

PL

» AS+—AxS

> S'A«S'xA

» SHAKE

31

Example: Smart meters with PQC acceleration

PS Interconnect
® Smart meters: low-resource devices to
monitor and control bidirectional
electricity consumption FrodoKEM < >

= Unauthorized access to SM data can impact
operation of electric power system

PL

» AS+—AxS

> S'A«S'xA

» SHAKE

31

Example: Smart meters with PQC acceleration

PS Interconnect PL
® Smart meters: low-resource devices to
monitor and control bidirectional T
electricity consumption FrodoKEM < > «bfsacssa
» SHAKE

= Unauthorized access to SM data can impact
operation of electric power system

= SM data needs protection but PQC schemes are very heavy

31

Example: Smart meters with PQC acceleration

PS Interconnect
® Smart meters: low-resource devices to
monitor and control bidirectional
electricity consumption FrodoKEM < >

= Unauthorized access to SM data can impact
operation of electric power system

= SM data needs protection but PQC schemes are very heavy
= Costaetal. [CLR22]

= ARM processor: FrodoKEM
m FPGA: SHAKE128 hash function which is part of FrodoKEM

PL

» AS+—AxS

> S'A«S'xA

» SHAKE

31

A Typical SoC

A traditional SoC consists of:

= Processor(s): mostly ARM cores

10/31

A Typical SoC

A traditional SoC consists of:
= Processor(s): mostly ARM cores

GPU: depending on the field of application, ranging from simple cores for
small LCDs to 4k screens

10/31

A Typical SoC

A traditional SoC consists of:
= Processor(s): mostly ARM cores

= GPU: depending on the field of application, ranging from simple cores for
small LCDs to 4k screens

= Co-processors: for security, real-time signal processing, neural engines...

10/31

A Typical SoC

A traditional SoC consists of:
= Processor(s): mostly ARM cores

= GPU: depending on the field of application, ranging from simple cores for
small LCDs to 4k screens

= Co-processors: for security, real-time signal processing, neural engines...

= |/Ointerfaces: Ethernet, SPI, USB, ADC, ...

10/31

A Typical SoC

A traditional SoC consists of:

Processor(s): mostly ARM cores

GPU: depending on the field of application, ranging from simple cores for
small LCDs to 4k screens

Co-processors: for security, real-time signal processing, neural engines...
I/0 interfaces: Ethernet, SPI, USB, ADC, ...

A bus connecting all components: AMBA, AXI, CoreConnect, ...

10/31

Why use SoCs?

Advantages

11/31

Why use SoCs?

Advantages

m Lowsilicon area

Disadvantages:

11/31

Why use SoCs?

Advantages
s Lowsilicon area

= Power efficiency (no need for complex component wiring)

Disadvantages:

11/31

Why use SoCs?

Advantages
s Lowsilicon area

= Power efficiency (no need for complex component wiring)

= Low manufacturing costs

Disadvantages:

11/31

Why use SoCs?

Advantages

= Low silicon area

= Power efficiency (no need for complex component wiring)
= Low manufacturing costs

= Smaller power supply unit

Disadvantages:

11/31

Why use SoCs?

Advantages

= Low silicon area

= Power efficiency (no need for complex component wiring)
= Low manufacturing costs

= Smaller power supply unit

Disadvantages:

11/31

Why use SoCs?

Advantages

= Low silicon area

= Power efficiency (no need for complex component wiring)
= Low manufacturing costs

= Smaller power supply unit

Disadvantages:

= Resulting system is very complex

11/31

Why use SoCs?

Advantages

= Low silicon area

= Power efficiency (no need for complex component wiring)
= Low manufacturing costs

= Smaller power supply unit

Disadvantages:

= Resulting system is very complex

= High design and development costs

11/31

SoC Design Methodology
oH
ﬁ definition {i“k_
| verketsudy) e 1 o |

High-level modelling

v
SoC architecture
design/modelling

’ SW integration ‘

| [

SW libraries

~ |l

IP core library

A 4 N
\,ljl

RTL design

’ IP integration ‘
Verification and
Debug

4
SoC production {{’

Front-end design

SW implementation

Back-end
design

12/31

SoC Players

s GDSII: data format to describe ICs

= Technology file: information about manufacturing (metals, IC layers, ...)

13/31

Who are we?

Barbara Gigerl
PhD student @ Graz University of Technology

Formal Verification of Side-Channel Protected
Implementations

4 barbara.gigerl@iaik.tugraz.at

N sip-team@iaik.tugraz.at

14/31

mailto:barbara.gigerl@iaik.tugraz.at
mailto:sip-team@iaik.tugraz.at

Who are we?

Rishub Nagpal
PhD student @ Graz University of Technology

Power side-channel attacks and defenses for
cryptographic implementations

& rishub.nagpal@iaik.tugraz.at

N sip-team@iaik.tugraz.at

15/31

mailto:mailto:rishub.nagpal@iaik.tugraz.at
mailto:sip-team@iaik.tugraz.at

Topics for Master Thesis

Looking for a master thesis?
— https://www.iaik.tugraz.at/teaching/master-thesis/
We have lots of interesting open topics :)

Alternatively, email us.

16/31

https://www.iaik.tugraz.at/teaching/master-thesis/

Contact

General information:
https://www.iaik.tugraz.at/sip

Questions and concerns by E-Mail

mailto:sip-team@iaik.tugraz.at

Questions and concerns via Discord
https://discord.gg/9KKGfndsD5

Come by our office (IF01052 and
IF01060)

MIBOT 03/17/2021

Please react to this message to register for a Master's course

& for Cloud Operating Systems (CloudOS)
for Cryptanalysis
for Cryptography (Crypto)
for Cryptographic Engineering
igital System Design (DSD)
al System Integration and Programming (SIP)
for Mobile Security (MobileSec)
@ for Model Checking (MC)
B for Modern Public Key Crypto (MPKC)
& for Privacy Enhancing Technologies (PETS)
O for Secure Application Design (SEAD)
G for Secure Product Lifecycle (SPL)
Secure Software Development (SSD)
’& for Side-Channel Security (SCS)
 for Verification and Testing (VT)
& 42 44 Hso B

Crypto Engineering)

103

17/31

https://www.iaik.tugraz.at/sip
mailto:sip-team@iaik.tugraz.at
https://discord.gg/9KKGfndsD5

We build our own SoC

= We focus on the front-end design

18/31

We build our own SoC

= We focus on the front-end design

= We use an FPGA in order to build a prototype of our SoC

18/31

We build our own SoC

= We focus on the front-end design
= We use an FPGA in order to build a prototype of our SoC

= QOur Platform: Zybo Zynq Boards

18/31

We build our own SoC

= We focus on the front-end design
= We use an FPGA in order to build a prototype of our SoC
= QOur Platform: Zybo Zynq Boards

m Xilinx FPGA

18/31

We build our own SoC

= We focus on the front-end design
= We use an FPGA in order to build a prototype of our SoC
= QOur Platform: Zybo Zynq Boards

m Xilinx FPGA

®m 650Mhz dual-core Cortex-A9 processor

18/31

We build our own SoC

= We focus on the front-end design
= We use an FPGA in order to build a prototype of our SoC
= QOur Platform: Zybo Zynq Boards

m Xilinx FPGA

®m 650Mhz dual-core Cortex-A9 processor
= HDMI, VGA, USB, SPI, Ethernet, Audio, ...

18/31

We build our own SoC

= We focus on the front-end design
= We use an FPGA in order to build a prototype of our SoC
= QOur Platform: Zybo Zynq Boards

m Xilinx FPGA

®m 650Mhz dual-core Cortex-A9 processor
= HDMI, VGA, USB, SPI, Ethernet, Audio, ...
= Connected via AXl bus

18/31

Goals

= Build a working prototype

o X
2l

Goals

= Build a working prototype

= Project management and self-organization

o X
2l

19/3

Goals

= Build a working prototype
= Project management and self-organization

= Presentation of: ideas, results, technology in
English

o X
2l

19/3

Goals

= Build a working prototype
= Project management and self-organization

= Presentation of: ideas, results, technology in
English

= Preparation for project/thesis

o X
2l

19/3

Required Previous Knowledge

SIP addresses advanced-level students. You need:

= Knowledge about hardware including an HDL (Verilog/VHDL)

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:
= Knowledge about hardware including an HDL (Verilog/VHDL)
= Very good C/C++ skills

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:
= Knowledge about hardware including an HDL (Verilog/VHDL)
= Very good C/C++ skills

= Some knowledge about Linux

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:
= Knowledge about hardware including an HDL (Verilog/VHDL)
= Very good C/C++ skills

= Some knowledge about Linux

m Buildroot/Yocto, kernel modules, drivers, device trees, GPIO

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:

Knowledge about hardware including an HDL (Verilog/VHDL)
Very good C/C++ skills

Some knowledge about Linux

m Buildroot/Yocto, kernel modules, drivers, device trees, GPIO

Some knowledge about FPGAs, bus protocols, CPUs, networks

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:

Knowledge about hardware including an HDL (Verilog/VHDL)
Very good C/C++ skills

Some knowledge about Linux

m Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
Some knowledge about FPGAs, bus protocols, CPUs, networks

Very good time-management skills

20/31

Required Previous Knowledge

SIP addresses advanced-level students. You need:

Knowledge about hardware including an HDL (Verilog/VHDL)
Very good C/C++ skills

Some knowledge about Linux

m Buildroot/Yocto, kernel modules, drivers, device trees, GPIO
Some knowledge about FPGAs, bus protocols, CPUs, networks
Very good time-management skills

Good presentation skills

20/31

Teaching method

We offer:

= Project driven work (group-oriented, project-centric)

®

=

21/31

Teaching method

We offer:
= Project driven work (group-oriented, project-centric)

= Hands-on project with real hardware i

=

21/31

Teaching method

We offer:
= Project driven work (group-oriented, project-centric)

= Hands-on project with real hardware i
= Upgrading of soft skills

=

21/31

Teaching method

We offer:

Project driven work (group-oriented, project-centric)
Hands-on project with real hardware
Upgrading of soft skills

m Presentations

21/31

Teaching method

We offer:

Project driven work (group-oriented, project-centric)
Hands-on project with real hardware
Upgrading of soft skills

m Presentations

= Speaking English

21/31

Teaching method

We offer:

Project driven work (group-oriented, project-centric)
Hands-on project with real hardware
Upgrading of soft skills

m Presentations
= Speaking English

= Group communication

21/31

Teaching method

We expect:

® |nvestment of time

22/31

Teaching method

We expect:
= [nvestment of time

= SIP:3VU (5ECTS)

22/31

Teaching method

We expect:
= [nvestment of time

= SIP:3VU (5ECTS) @
m 5x25=125hours work =28 days of 8 hours e’

22/31

Teaching method

We expect:
= [nvestment of time

= SIP:3VU (5ECTS) @
m 5x25=125hours work =28 days of 8 hours e’

= Active communication within your group r.Qn°

22/31

Teaching method

We expect:

® |nvestment of time

= SIP:3VU (5 ECTS) @
m 5x25=125hours work =28 days of 8 hours e’
= Active communication within your group r.Qn°

= Active participation, presence during lectures

22/31

Teaching method

We expect:

® |nvestment of time

= SIP:3VU (5 ECTS) @
m 5x25=125hours work =28 days of 8 hours e’
= Active communication within your group r.Qn°

= Active participation, presence during lectures

m Courses with continual assessment (UE, VU, SE, etc.) are
subject to compulsory attendance (§ 15 of the Statute part
Legal Regulations for Academic Affairs).

22/31

Grading

Your grade consists of:

® Project 1: 20%

3/31

Grading

Your grade consists of:
® Project 1: 20%

m Individual work, independent submissions

3/31

Grading

Your grade consists of:
® Project 1: 20%
m Individual work, independent submissions

= Project 2: 50%

3/31

Grading

Your grade consists of:
® Project 1: 20%

m Individual work, independent submissions
= Project 2: 50%

= Team work in groups of 3-4 students

3/31

Grading

Your grade consists of:
® Project 1: 20%

m Individual work, independent submissions
= Project 2: 50%

= Team work in groups of 3-4 students

= Seminar presentation: 30%

3/31

Grading

Your grade consists of:
® Project 1: 20%
m Individual work, independent submissions
= Project 2: 50%
= Team work in groups of 3-4 students
= Seminar presentation: 30%

= Selection from course catalog OR suggest your own topic

3/31

Grading

Your grade consists of:
® Project 1: 20%
m Individual work, independent submissions
= Project 2: 50%
= Team work in groups of 3-4 students
= Seminar presentation: 30%

= Selection from course catalog OR suggest your own topic
m Slides are reviewed by us (submit until Monday evening)

3/31

Grading

Your grade consists of:

Project 1: 20%

m Individual work, independent submissions
Project 2: 50%

= Team work in groups of 3-4 students
Seminar presentation: 30%

= Selection from course catalog OR suggest your own topic
m Slides are reviewed by us (submit until Monday evening)

Bonus points for questions during/after seminar presentations

Team work

= Team Size for Project 1: 1

= Team Size for Project 2:

m Group size = Number of Participants / Number of Boards =27/ 8
= 5groups of 3,3 groups of 4

= Team Size for Seminar presentation: 1

24/31

Registration Process

1. Find a group

2. Register your group: sip-team@iaik.tugraz.at

3. Wait for the confirmation mail to get your group number
4. Choose a seminar topic

5. Register for a seminar topic: https://www.termino.gv.at/meet/b/
96af1b7b54cbfedfbfbcdb4a2bb94788-256179

6. Receive your git repositories (by email)

Deadline: Monday, 9.10., 23:59

25/31

sip-team@iaik.tugraz.at
https://www.termino.gv.at/meet/b/96af1b7b54cbfe4fbfbcdb4a2bb94788-256179
https://www.termino.gv.at/meet/b/96af1b7b54cbfe4fbfbcdb4a2bb94788-256179

Schedule of SIP 2022

Sessions

= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042

26/31

Schedule of SIP 2022

Sessions

= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042

= Program for each session

26/31

Schedule of SIP 2022

Sessions

= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042
= Program for each session

1. Seminar talk + discussion

26/31

Schedule of SIP 2022

Sessions
= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042
= Program for each session

1. Seminar talk + discussion

2. Seminar talk + discussion

26/31

Schedule of SIP 2022

Sessions
= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042
= Program for each session

1. Seminar talk + discussion
2. Seminar talk + discussion

3. Seminar talk + discussion

26/31

Schedule of SIP 2022

Sessions
= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042
= Program for each session

Seminar talk + discussion
Seminar talk + discussion

Seminar talk + discussion

> w e

Everyone briefly (1-2 sentences) comments on own project progress

26/31

Schedule of SIP 2022

Sessions
= Regular weekly sessions: Wednesday 10:00 - 12:00, IFEG042
= Program for each session

Seminar talk + discussion
Seminar talk + discussion
Seminar talk + discussion

Everyone briefly (1-2 sentences) comments on own project progress

o e

Questions, problems about the project

26/31

Preliminary timeline

Date | Topic

04.10. | Kick-off / Introduction to Seminar Topics / SoC Design Flow Tutorial
11.10. | Embedded Linux Tutorial / Presentation Project 1
18.10. | Debugging Tutorial

25.10. | Q&A Project 1

1.11. | Public holiday (no meeting)

8.11. | Seminar talks + Q&A

15.11. | Presentation Project 2a+2b / Seminar talks + Q&A
22.11. | Seminar talks + Q&A

29.11. | Seminar talks + Q&A

6.12. | Seminar talks + Q&A

13.12. | Seminar talks + Q&A

10.01. | Seminar talks + Q&A

17.01. | Seminar talks + Q&A

24.01. | Seminar talks + Q&A

27/31

Important Dates and Deadlines

Date Topic

9.10.,23:59 | Deadline Group Registration
14.11.,23:59 | Deadline Project 1
15.11.-17.11. | Exercise Interviews Project 1
12.12.,23:59 | Deadline Project 2a
13.12.-15.12. | Exercise Interviews Project 2a
23.01.,23:59 | Deadline Project 2b
24.01.-26.01. | Exercise Interviews Project 2a

28/31

Project 1: Fancy Lights

= Get to know the board and run through all
steps

29/31

Project 1: Fancy Lights

= Get to know the board and run through all
steps

= Design hardware, build a driver, write an
application

29/31

Project 1: Fancy Lights

= Get to know the board and run through all
steps

= Design hardware, build a driver, write an
application

m Access the LEDs from a bare-metal
application and from within Linux

29/31

Project 1: Fancy Lights

= Get to know the board and run through all
steps

= Design hardware, build a driver, write an
application

m Access the LEDs from a bare-metal
application and from within Linux

= No team work; everybody should do all
steps (share your board within group)

29/31

Project 1: Fancy Lights

= Get to know the board and run through all
steps

= Design hardware, build a driver, write an
application

m Access the LEDs from a bare-metal
application and from within Linux

= No team work; everybody should do all
steps (share your board within group)

= Aim: After completing, everybody should
have the same basic knowledge.

29/31

Project 2: FPGA-based image classification

= Use knowledge from Project 1 to build
larger system

30/31

Project 2: FPGA-based image classification

= Use knowledge from Project 1 to build
larger system

= FPGA runs NN to classify images from the
MNIST test dataset

30/31

Project 2: FPGA-based image classification

= Use knowledge from Project 1 to build
larger system

= FPGA runs NN to classify images from the
MNIST test dataset

= Receive image via Ethernet - send to NN -
return classification result to correct user

30/31

Project 2: FPGA-based image classification

= Use knowledge from Project 1 to build
larger system

= FPGA runs NN to classify images from the
MNIST test dataset

= Receive image via Ethernet - send to NN -
return classification result to correct user

m Team work

30/31

Project 2: FPGA-based image classification

= Use knowledge from Project 1 to build
larger system

= FPGA runs NN to classify images from the
MNIST test dataset

= Receive image via Ethernet - send to NN -
return classification result to correct user

m Team work

= Aim: Get some deeper understanding of the
topic

30/31

References |

[CLR22] Vinicius Lagrota Rodrigues da Costa, Julio Lopez, and Moises Vidal Ribeiro. A

System-on-a-Chip Implementation of a Post-Quantum Cryptography Scheme for
Smart Meter Data Communications. Sensors 22.19 (2022), p. 7214. pol:

10.3390/522197214. URL: https://doi.org/10.3390/522197214.

31/31

https://doi.org/10.3390/s22197214
https://doi.org/10.3390/s22197214

	Digital system integration and programming
	About this course
	Outlook: Projects
	References

