TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

System Integration (HW - SW - Linux)

Barbara Gigerl, Rishub Nagpal
October 11th, 2023

> www.iaik.tugraz.at

Part 1
Creating a Custom IP core

Overview

What we want?
Extend the existing HW design by our individual IP core

40

Overview

What we want?
Extend the existing HW design by our individual IP core

What we have?
A Zybo FPGA board, a hardware design, software

40

Overview

What we want?
Extend the existing HW design by our individual IP core

What we have?
A Zybo FPGA board, a hardware design, software

How do we get there?

40

IP cores

IP = Intellectual Property

2/40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

2/40

IP cores

IP = Intellectual Property
Reusable logic component with a defined interface and behavior

Comparable to using a library in C

2/40

IP cores

IP = Intellectual Property
Reusable logic component with a defined interface and behavior
Comparable to using a library in C

Examples:

2/40

IP cores

IP = Intellectual Property

= Reusable logic component with a defined interface and behavior
= Comparable to usinga library in C

= Examples:

m Peripheral controllers like Ethernet, HDMI, VGA, USB, ...

2/40

IP cores

IP = Intellectual Property

= Reusable logic component with a defined interface and behavior
= Comparable to usinga library in C

= Examples:

m Peripheral controllers like Ethernet, HDMI, VGA, USB, ...

= Crypto cores

2/40

IP cores

IP = Intellectual Property

= Reusable logic component with a defined interface and behavior
= Comparable to usinga library in C

= Examples:

m Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
= Crypto cores

= Debug cores

2/40

Creating a new IP core in Vivado

1. Tools - Create and Package New IP

2. Create a new AXI4 peripheral
3. Enter name of your choice

4. Nextsteps: EditIP

5. Finish

6. IP editor will show 2 files:

m <IP_core_name>_v1_0_SO00_AXI.v

m <JP_core_name>_v1_0.v

3/40

Editing the IP core

<IP_core_name>_v1_0_SO00_AXI.v

= Define input ports for user inputs

= Define output ports for output to user

= Specify custom IP core logic

= TODO: Adapt ports and add logic
<IP_core_name>_v1_0.v

= AXI wrapper of our IP core

m |nstantiates <IP_core_name>_v1_0_SO00_AXI.v

= TODO: Adapt ports and instantiation

Package and integrate the IP core

=

Select Package IP and choose Merge Changes where necessary
2. Finish packaging with Re-Package IP and close the project

3. Open the block design and select Add IP to add our <IP_core_name>
4. Run connection automation
5. Foreach 10 port: Create Port...

6. Validate Design

7. Rightclick on the block design in Project Manager - Create HDL Wrapper

8. Adapt Constraints file if necessary

9. Generate bitstream

5/40

Adding SW

1. InVivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

40

Adding SW

1. InVivado: observe AXI Base Address in the Address Editor
2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
((int)0x43c20000) = Ox1;

//Read
int value = *((int*)0x43c20000);

40

Adding SW

1. InVivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
((int)0x43c20000) = Ox1;

//Read
int value = *((int*)0x43c20000);

— not very comfortable!

40

Part 2
Building, Deploying, and Running Linux

Overview

What we want?
Boot Linux and run a C program

7/40

Overview

What we want?
Boot Linux and run a C program

What we have?
A Zybo FPGA board, a hardware design, software, a Linux OS

= How do we get there?

1
2
3.
4

Try Buildroot setup by running simple Linux with Init Ramdisk
Build a device tree for our board
Write a device driver

Use Buildroot to build Linux with correct device tree file and device driver

7/40

Last time...

executes““:. 5. Linux 0S

8/40

Today

?
executes“"-._ -

9/40

Part 2a
Building Linux

Buildroot

® Pre-build Linux images might not be suitable.

10/40

Buildroot

® Pre-build Linux images might not be suitable.

= Buildroot: automate build process for a specific
platform

10/40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

10/40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

10/40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

10/40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10/40

The Buildroot tool directory

= Makefile: top-level "master” Makefile

11/40

The Buildroot tool directory

= Makefile: top-level "master” Makefile

® Config.in: general configurations

11/40

The Buildroot tool directory

= Makefile: top-level "master” Makefile
® Config.in: general configurations

= configs, board: board configuration files

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

Config.in: general configurations

configs, board: board configuration files

m arch: contains config files for supported architectures

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures

® system/skeleton: rootfs template

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures
® system/skeleton: rootfs template

® linux: the linux kernel

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures
® system/skeleton: rootfs template

= linux: the linux kernel

® package: userspace packages, e.g. Python, git, ...

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures
® system/skeleton: rootfs template

= linux: the linux kernel

® package: userspace packages, e.g. Python, git, ...

= fs: filesystem images

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures
® system/skeleton: rootfs template

= linux: the linux kernel

® package: userspace packages, e.g. Python, git, ...

= fs: filesystem images

®m boot: bootloader packages

11/40

The Buildroot tool directory

Makefile: top-level "master” Makefile

® Config.in: general configurations

= configs, board: board configuration files

m arch: contains config files for supported architectures
® system/skeleton: rootfs template

= linux: the linux kernel

® package: userspace packages, e.g. Python, git, ...

= fs: filesystem images

®m boot: bootloader packages

® docs: buildroot documentation

11/40

The Buildroot output directory

= After the build process finished, build artefacts are stored in output
= Contains a lot of background information
® output/images

= Kernelimage,
m Bootloaderimage,
m Root file system image, ...

12/40

Yocto

= Buildroot: small, simple, gives quick results YO‘ | O °

PROJECT

DEV DAY VIRTUAL

13/40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

= Buildroot: small, simple, gives quick results YO‘ | O °

= Yocto: needs more build time, requires more disk space, PROJECT
is more complex DEV DAY VIRTUAL

13/40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results YO‘ | O °

Yocto: needs more build time, requires more disk space, PROJECT
is more complex DEV DAY VIRTUAL

Main advantage: more boards supported, more options
to configure packages

13/40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results YO‘ | O °

Yocto: needs more build time, requires more disk space, PROIJECT
is more complex DEV DAY VIRTUAL

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

13/40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results YO‘ | O °

Yocto: needs more build time, requires more disk space, PROJECT
is more complex DEV DAY VIRTUAL

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13/40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Part 2b
Booting Linux

Bootloader

m Task: initialize everything such that OS can be run

14/40

Bootloader

m Task: initialize everything such that OS can be run

= Highly processor and board specific

14/40

Bootloader

m Task: initialize everything such that OS can be run

= Highly processor and board specific

= Minimum peripheral initialization if needed (wake-on-lan, ...)

14/40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

= Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

14/40

Bootloader

Task: initialize everything such that OS can be run

= Highly processor and board specific

= Minimum peripheral initialization if needed (wake-on-lan, ...)
= Decide on kernel image and load it

= FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

14/40

Bootloader

Task: initialize everything such that OS can be run

= Highly processor and board specific

= Minimum peripheral initialization if needed (wake-on-lan, ...)

= Decide on kernel image and load it

= FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

m SSBL: U-boot or grub, more complex peripherals, load kernel

14/40

Bootloader

Buildroot supports many different bootloaders, for example:

= U-Boot

15/40

Bootloader

Buildroot supports many different bootloaders, for example:
= U-Boot

= Barebox: derived from U-Boot (has more beautiful code)

15/40

Bootloader

Buildroot supports many different bootloaders, for example:
= U-Boot
= Barebox: derived from U-Boot (has more beautiful code)

= Grub: Windows support, bigger bootloader

15/40

Bootloader

Buildroot supports many different bootloaders, for example:
= U-Boot

= Barebox: derived from U-Boot (has more beautiful code)
= Grub: Windows support, bigger bootloader

= xloader, AT91bootstrap: for AVR microcontrollers

15/40

U-boot

= Boot loader for embedded devices

U-Boot

16/40

U-boot

= Boot loader for embedded devices

m Supports 13 architectures and about 300 different
boards

U-Boot

16/40

U-boot

Boot loader for embedded devices

Supports 13 architectures and about 300 different
boards

Used in many projects:

m ARM-based Chromebooks

= Amazon Kindle

C U-Boot

16/40

Preparation

® The base demo project has been built and is still available.

® Including Bitstream
= Including FSBL

m Including User application

= Install buildroot into <BUILDROOT>
git clone https://github.com/buildroot/buildroot

17/40

Simple Linux with Init Ramdisk

= Testyoursetup
= Linux without FPGA Bitstream
= Buildroot does not have a default configuration for the Zybo board

= Adapt the one from Zedboard
= Canbefoundin zybo-buildroot-simple

= Build commands:

1. cd <BUILDROOT>
2. make BR2_EXTERNAL=../zybo-buildroot-simple zynq_zybo_defconfig

3. make

®= BR2_EXTERNAL: separate Buildroot from board-specific customizations

18/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

m uEnv.txt: U-Boot environment file

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images
m uEnv.txt: U-Boot environment file

= uImage: Kernel image with U-Boot wrapper

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images
® uEnv.txt: U-Boot environment file
= uImage: Kernel image with U-Boot wrapper

® image: generic kernel binary

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images
® uEnv.txt: U-Boot environment file
= uImage: Kernel image with U-Boot wrapper

® image: generic kernel binary

m zImage: compressed kernel image (self-extracting)

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images
® uEnv.txt: U-Boot environment file
= uImage: Kernel image with U-Boot wrapper

m image: generic kernel binary
m zImage: compressed kernel image (self-extracting)

= Wrapper = 64 byte header before ziImage (version, loading position, size, ...)

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images
® uEnv.txt: U-Boot environment file
= uImage: Kernel image with U-Boot wrapper

m image: generic kernel binary
m zImage: compressed kernel image (self-extracting)

= Wrapper = 64 byte header before ziImage (version, loading position, size, ...)

® rootfs.cpio.uboot: initial Linux root file system

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv. txt: U-Boot environment file
uImage: Kernel image with U-Boot wrapper

m image: generic kernel binary
m zImage: compressed kernel image (self-extracting)

= Wrapper = 64 byte header before ziImage (version, loading position, size, ...)
rootfs.cpio.uboot: initial Linux root file system

zynqg-zybo-z7.dtb: device tree blob

19/40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv. txt: U-Boot environment file
uImage: Kernel image with U-Boot wrapper

m image: generic kernel binary
m zImage: compressed kernel image (self-extracting)

= Wrapper = 64 byte header before ziImage (version, loading position, size, ...)
rootfs.cpio.uboot: initial Linux root file system
zynqg-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19/40

Hints and (possible) errors

u You have PERL_MM_OPT defined because Perl local::1ib is installed
on your system. Please unset this variable
before starting Buildroot, otherwise the
compilation of Perl related packages will fail

Solution: unset PERL_MM_OPT

= You might encounter problems when using gcc 10. If so, either downgrade your compiler
(toe.g.9.4.00r9.3.0, 0r use a newer version (we use 11.4.0).

= |nstall libssl-dev

20/40

Simple Linux with Init Ramdisk

Test your setup:
m Make sure SD card is formatted correctly

m First partition: FAT32, around 50 MB

m Second partition: ext4 or other, used as root file
system and data storage

21/40

Simple Linux with Init Ramdisk

Test your setup:

Terminal Help

m Make sure SD card is formatted correctly LI D G

buildroot login: root

m First partition: FAT32, around 50 MB

m Second partition: ext4 or other, used as root file
system and data storage

= Copy to SD card:

® boot.bin ® ulmage
]
. uEnv.txt
rootfs.cpio.uboot

® u-boot.img ® zynq-zybo-z7.dtb

21/40

Part 2¢
Linux Device Trees

The Device Tree

Booting without a device tree

= Kernel image contains the whole hardware configuration.

22/40

The Device Tree

Booting without a device tree
= Kernel image contains the whole hardware configuration.

= Bootloader (U-Boot) loads a single binary: the kernel image

22/40

The Device Tree

Booting without a device tree
= Kernel image contains the whole hardware configuration.
= Bootloader (U-Boot) loads a single binary: the kernel image

= Kernel image runs as a bare-metal application on the CPU.

22/40

The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.
Bootloader (U-Boot) loads a single binary: the kernel image
Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board

22/40

The Device Tree

Booting with a device tree

= Kernel is kernel and hardware config is hardware config

3/40

The Device Tree

Booting with a device tree
= Kernel is kernel and hardware config is hardware config

= Device tree blob: separate binary containing the hardware description

23/40

The Device Tree

Booting with a device tree
= Kernel is kernel and hardware config is hardware config
= Device tree blob: separate binary containing the hardware description

= Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

23/40

The Device Tree

Booting with a device tree

= Kernel is kernel and hardware config is hardware config

= Device tree blob: separate binary containing the hardware description
= Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

= Decouples the hardware description from the kernel image

23/40

The Device Tree

= Device tree: tree data structure with nodes that describe physical devices in
system

24 /40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

The Device Tree

= Device tree: tree data structure with nodes that describe physical devices in
system

= Formats:

1. Textfile (.dts): source
2. Binary blob (.dtb): loaded by bootloader

3. File systemin arunning Linux: /proc/device-tree, node = directory

24 /40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

The Device Tree

= Device tree: tree data structure with nodes that describe physical devices in
system

= Formats:

1. Textfile (.dts): source
2. Binary blob (.dtb): loaded by bootloader

3. File systemin arunning Linux: /proc/device-tree, node = directory

m Example: https://github.com/Xilinx/linux-x1lnx/blob/master/arch/armé4/
boot/dts/xilinx/zynqmp.dtsi

m More information: http://xillybus.com/tutorials/device-tree-zynq-1

24 /40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:

m 3 partdescribing the ARM CPUs

m apartdescribing the peripherals

25/40

Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:

m 3 partdescribing the ARM CPUs
m apartdescribing the peripherals

m cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

25/40

Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:

m 3 partdescribing the ARM CPUs

m apartdescribing the peripherals

m cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

m Peripherals: LEDs, Switches, ...

25/40

Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:

m 3 partdescribing the ARM CPUs

m apartdescribing the peripherals

m cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

m Peripherals: LEDs, Switches, ...
m compatible string: link between hardware and driver

= Device drivers contain same string in their source code

= Allows to match hardware and driver

25/40

Device tree generation

= Creating device tree manually is very cumbersome.
m Therefore: Xilinx Device Tree Generator
® Install the DT Generator (in SDK):

m Clonehttps://github.com/Xilinx/device-tree-x1lnx

m Vitis - Software Repositories - New Local Repository ...
= Useit:

m Xilinx - Generate Device Tree
m Specify . xsa file and output directory

®m Theresulting dts and dtsi files should be used to replace the ones in
<BUILDROOT>/../zybo-buildroot/board/zynq_zybo/DTS

26/40

https://github.com/Xilinx/device-tree-xlnx

Part 2d
Linux Device Drivers

Kernel Modules

27/40

Kernel Modules

= Extend the kernel’s functionality during runtime

m Can be loaded during runtime on demand

27/40

Kernel Modules

= Extend the kernel’s functionality during runtime

m Can be loaded during runtime on demand

= No need to reboot the system

27/40

Kernel Modules

= Extend the kernel’s functionality during runtime

m Can be loaded during runtime on demand
= No need to reboot the system

= Without kernel modules: include functionality into the kernel image before
building

27/40

Kernel Modules

= Extend the kernel’s functionality during runtime

m Can be loaded during runtime on demand
= No need to reboot the system

= Without kernel modules: include functionality into the kernel image before
building

= Most famous example: device drivers

27/40

Kernel Modules

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules

= Handling kernel modules

m Using kmod (kernel module daemon)

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules
= Handling kernel modules

m Using kmod (kernel module daemon)

m kmod runsmodprobe to load module and check dependencies

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules
= Handling kernel modules

m Using kmod (kernel module daemon)
m kmod runsmodprobe to load module and check dependencies

m Example: modprobe test123to load kernel module test123

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules
= Handling kernel modules

m Using kmod (kernel module daemon)
m kmod runsmodprobe to load module and check dependencies
m Example: modprobe test123to load kernel module test123

m Inthe background: insmod to insert kernel module

28/40

Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules

= Handling kernel modules

Using kmod (kernel module daemon)

kmod runs modprobe to load module and check dependencies
Example: modprobe test123to load kernel module test123
In the background: insmod to insert kernel module

modprobe -r or rmmod to remove kernel module

28/40

Simple Example

Seehttps://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip
hello_sip.c:

#include <linux/module.h>
#include <linux/kernel.h>

static int __init sip_init(void)

{
printk (KERN_INFO "Hello_ SIP,students!\n");
return 0;

}
static void __exit sip_cleanup(void)
{
printk (KERN_INFO "Goodbye_ SIP, students!\n");
}

module_init (sip_init);
module_exit (sip_cleanup);

29/40

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip

Simple Example

Makefile:

obj-m += hello_sip.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

30/40

Simple Example

= Build: make

® Infos: modinfo hello_sip.ko

= Load: insmod ./hello_sip.ko

= Kernellog: tail /var/log/kern.logordmesg -T

= Remove: rmmod hello_sip

31/40

Advanced Example

= /proc: one subdirectory for each process
= Weuseitto access internal kernel structures in general.

= See
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_proc

32/40

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_proc

Device drivers

= Allow the kernel to access hardware

3/40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

3/40

Device drivers

Allow the kernel to access hardware
Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

3/40

Device drivers

= Allow the kernel to access hardware
= Convenientif hardware = file in /dev/ or /proc
= Device driver handels communication with hardware

m Example: /dev/media0 is connected to SD card driver

3/40

Device drivers

= Allow the kernel to access hardware
= Convenientif hardware = file in /dev/ or /proc
= Device driver handels communication with hardware

m Example: /dev/media0 is connected to SD card driver

m Userspace program can use /dev/media0 without knowing about which SD
card or driver is used

33/40

Device drivers

= Allow the kernel to access hardware
= Convenientif hardware = file in /dev/ or /proc
= Device driver handels communication with hardware

m Example: /dev/media0 is connected to SD card driver

m Userspace program can use /dev/media0 without knowing about which SD
card or driver is used

m Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33/40

Building blocks of device drivers

34/40

Building blocks of device drivers

m Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

34/40

Building blocks of device drivers

m Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

= Forusage with /proc:

34/40

Building blocks of device drivers

m Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

m For usage with /proc:

m proc_ops: struct which defines when reading/writing/opening/closing/... the
device

34/40

Building blocks of device drivers

m Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

m For usage with /proc:

m proc_ops: struct which defines when reading/writing/opening/closing/... the
device
m Functions for open/close/read/write as needed

34/40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

m proc_ops: struct which defines when reading/writing/opening/closing/... the
device
m Functions for open/close/read/write as needed

Standard kernel module:

m __initand __exit functions registered with module_init and module_exit

34/40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

m proc_ops: struct which defines when reading/writing/opening/closing/... the
device
m Functions for open/close/read/write as needed

Standard kernel module:
m __initand __exit functions registered with module_init and module_exit

Driver specific:
m of_device_id: compatibility

34/40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

m proc_ops: struct which defines when reading/writing/opening/closing/... the
device
m Functions for open/close/read/write as needed

Standard kernel module:
m __initand __exit functions registered with module_init and module_exit

Driver specific:

m of_device_id: compatibility
m |nserted into the device table with MODULE_DEVICE_TABLE

34/40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:
m proc_ops: struct which defines when reading/writing/opening/closing/... the

device
m Functions for open/close/read/write as needed

Standard kernel module:
m __initand __exit functions registered with module_init and module_exit

Driver specific:

m of_device_id: compatibility

® Inserted into the device table with MODULE_DEVICE_TABLE

m platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34/40

Adding a device driver for the Zybo board with Buildroot

1. Create zybo-buildroot/package/<DRIVER_NAME> and put the following files
there:

2. Config.in: Info for the buildroot menu
3. Kbuild, <DRIVER_NAME>.mk: Makefile
4. <DRIVER_NAME>.c: device driver source

5. Enable kernel module build for buildroot by selecting (= [*1):
make menuconfig - External options- <DRIVER_NAME>

35/40

Putting it all together

Linux with Root File System and FPGA Bitstream

= Create device tree as shown above

= Copy all the dts and dtsi files to
<BUILDROQT>/../zybo-buildroot/board/zynq_zybo/DTS

= cd <BUILDROOT>

= make BR2_EXTERNAL=../zybo-buildroot zynq_zybo_defconfig (takesabout
30 minutes)

36/40

Linux with Root File System and FPGA Bitstream

= Configurations can be made:

= buildroot: make menuconfig

® u-boot: make uboot-menuconfig

= linux: make linux-menuconfig

m busybox: make busybox-menuconfig

m uclibc: make uclibc-menuconfig

= Runmake

37/40

Linux with Root File System and FPGA Bitstream

= Copy to first partition of SD card:

<BUILDROOT>/output/images/boot.bin
<BUILDROQOT>/output/images/u-boot.img
<BUILDROOT>/output/images/ulmage
<BUILDROOT>/output/images/system.dtb
<BUILDROOT>/output/images/uEnv.txt

The bitstream file: system_wrapper.bit

m Create the root file system on the second partition:

® sudo tar -C <MOUNTPOINT> -xf <BUILDROOT>/output/images/rootfs.tar

38/40

References |

[1] Thomas Petazzoni. Buildroot: a deep dive into the core.
https://events.static.linuxfound.org/sites/events/files/slides/
petazzoni-dive-into-buildroot-core.pdf. Online; accessed 13 October 2020.

[2] Nathan Willis. Deciding between Buildroot and Yocto.
https://lwn.net/Articles/682540/. Online; accessed 13 October 2020.

[3] Orildan Helicon technologies. Linux Bootloaders for Embedded systems and PCs.

https://www.cs.tau.ac.il/telux/lin-club_files/linux-boot/s1ide0000.htm.

Online; accessed 13 October 2020.

[4] Thomas Petazzoni. Device Tree for Dummies.
https://events.static.linuxfound.org/sites/events/files/slides/
petazzoni-device-tree-dummies.pdf. Online; accessed 13 October 2020.

39/40

https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-dive-into-buildroot-core.pdf
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-dive-into-buildroot-core.pdf
https://lwn.net/Articles/682540/
https://www.cs.tau.ac.il/telux/lin-club_files/linux-boot/slide0000.htm
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf

References lI

[5] Xillybus Ltd. A Tutorial on the Device Tree (Zynq).

http://xillybus.com/tutorials/device-tree-zyng-1.Online; accessed 13
October 2020.

[6] Peter Jay Salzman. The Linux Kernel Module Programming Guide.

https://tldp.org/LDP/1kmpg/2.6/html/index.html. Online; accessed 13 October
2020.

40/40

http://xillybus.com/tutorials/device-tree-zynq-1
https://tldp.org/LDP/lkmpg/2.6/html/index.html

	Part 1
	
	Part 2
	
	Part 2a
	
	Part 2b
	
	Part 2c
	
	Part 2d
	
	Putting it all together
	

