
S C I E N C E
P A S S I O N

T E C H N O L O G Y

System Integration (HW - SW - Linux)

Barbara Gigerl, Rishub Nagpal

October 11th, 2023

www.iaik.tugraz.at

Part 1
Creating a Custom IP core

Overview

What we want?
Extend the existing HW design by our individual IP core

What we have?
A Zybo FPGA board, a hardware design, software

How do we get there?

1 / 40

Overview

What we want?
Extend the existing HW design by our individual IP core

What we have?
A Zybo FPGA board, a hardware design, software

How do we get there?

1 / 40

Overview

What we want?
Extend the existing HW design by our individual IP core

What we have?
A Zybo FPGA board, a hardware design, software

How do we get there?

1 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores
Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores
Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores
Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores
Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...

Crypto cores
Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores

Debug cores

2 / 40

IP cores

IP = Intellectual Property

Reusable logic component with a defined interface and behavior

Comparable to using a library in C

Examples:

Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
Crypto cores
Debug cores

2 / 40

Creating a new IP core in Vivado

1. Tools - Create and Package New IP

2. Create a new AXI4 peripheral

3. Enter name of your choice

4. Next steps: Edit IP

5. Finish

6. IP editor will show 2 files:

<IP_core_name>_v1_0_S00_AXI.v

<IP_core_name>_v1_0.v

3 / 40

Editing the IP core

<IP_core_name>_v1_0_S00_AXI.v

Define input ports for user inputs

Define output ports for output to user

Specify custom IP core logic

TODO: Adapt ports and add logic

<IP_core_name>_v1_0.v

AXI wrapper of our IP core

Instantiates <IP_core_name>_v1_0_S00_AXI.v

TODO: Adapt ports and instantiation

4 / 40

Package and integrate the IP core

1. Select Package IP and choose Merge Changes where necessary

2. Finish packaging with Re-Package IP and close the project

3. Open the block design and select Add IP to add our <IP_core_name>

4. Run connection automation

5. For each IO port: Create Port...

6. Validate Design

7. Right click on the block design in Project Manager - Create HDL Wrapper

8. Adapt Constraints file if necessary

9. Generate bitstream
5 / 40

Adding SW

1. In Vivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
((int)0 x43c20000) = 0x1;

//Read
int value = *((int*)0 x43c20000);

→ not very comfortable!

6 / 40

Adding SW

1. In Vivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
((int)0 x43c20000) = 0x1;

//Read
int value = *((int*)0 x43c20000);

→ not very comfortable!

6 / 40

Adding SW

1. In Vivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
((int)0 x43c20000) = 0x1;

//Read
int value = *((int*)0 x43c20000);

→ not very comfortable!

6 / 40

Part 2
Building, Deploying, and Running Linux

Overview

What we want?
Boot Linux and run a C program

What we have?
A Zybo FPGA board, a hardware design, software, a Linux OS

How do we get there?

1. Try Buildroot setup by running simple Linux with Init Ramdisk
2. Build a device tree for our board
3. Write a device driver
4. Use Buildroot to build Linux with correct device tree file and device driver

7 / 40

Overview

What we want?
Boot Linux and run a C program

What we have?
A Zybo FPGA board, a hardware design, software, a Linux OS

How do we get there?

1. Try Buildroot setup by running simple Linux with Init Ramdisk
2. Build a device tree for our board
3. Write a device driver
4. Use Buildroot to build Linux with correct device tree file and device driver

7 / 40

Last time...

Start

1. BootROM

2. FSBL

3. BitStream

4. Standalone 4. U-Boot

5. Linux OS

C program
executes

executes

8 / 40

Today

Start

1. BootROM

2. FSBL

3. BitStream

4. Standalone 4. U-Boot

5. Linux OS

C program
executes

executes

9 / 40

Part 2a
Building Linux

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)

10 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation

11 / 40

The Buildroot tool directory

Makefile: top-level ”master” Makefile

Config.in: general configurations

configs, board: board configuration files

arch: contains config files for supported architectures

system/skeleton: rootfs template

linux: the linux kernel

package: userspace packages, e.g. Python, git, ...

fs: filesystem images

boot: bootloader packages

docs: buildroot documentation
11 / 40

The Buildroot output directory

After the build process finished, build artefacts are stored in output

Contains a lot of background information

output/images

Kernel image,
Bootloader image,
Root file system image, ...

12 / 40

Yocto

Buildroot: small, simple, gives quick results

Yocto: needs more build time, requires more disk space,
is more complex

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13 / 40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results

Yocto: needs more build time, requires more disk space,
is more complex

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13 / 40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results

Yocto: needs more build time, requires more disk space,
is more complex

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13 / 40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results

Yocto: needs more build time, requires more disk space,
is more complex

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13 / 40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Yocto

Buildroot: small, simple, gives quick results

Yocto: needs more build time, requires more disk space,
is more complex

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md

13 / 40

https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md
https://extgit.iaik.tugraz.at/sip/zybo_base_design/-/blob/master/README.yocto.md

Part 2b
Booting Linux

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Task: initialize everything such that OS can be run

Highly processor and board specific

Minimum peripheral initialization if needed (wake-on-lan, ...)

Decide on kernel image and load it

FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

SSBL: U-boot or grub, more complex peripherals, load kernel

14 / 40

Bootloader

Buildroot supports many different bootloaders, for example:

U-Boot

Barebox: derived from U-Boot (has more beautiful code)

Grub: Windows support, bigger bootloader

xloader, AT91bootstrap: for AVR microcontrollers

15 / 40

Bootloader

Buildroot supports many different bootloaders, for example:

U-Boot

Barebox: derived from U-Boot (has more beautiful code)

Grub: Windows support, bigger bootloader

xloader, AT91bootstrap: for AVR microcontrollers

15 / 40

Bootloader

Buildroot supports many different bootloaders, for example:

U-Boot

Barebox: derived from U-Boot (has more beautiful code)

Grub: Windows support, bigger bootloader

xloader, AT91bootstrap: for AVR microcontrollers

15 / 40

Bootloader

Buildroot supports many different bootloaders, for example:

U-Boot

Barebox: derived from U-Boot (has more beautiful code)

Grub: Windows support, bigger bootloader

xloader, AT91bootstrap: for AVR microcontrollers

15 / 40

U-boot

Boot loader for embedded devices

Supports 13 architectures and about 300 different
boards

Used in many projects:

ARM-based Chromebooks
Amazon Kindle
SpaceX

16 / 40

U-boot

Boot loader for embedded devices

Supports 13 architectures and about 300 different
boards

Used in many projects:

ARM-based Chromebooks
Amazon Kindle
SpaceX

16 / 40

U-boot

Boot loader for embedded devices

Supports 13 architectures and about 300 different
boards

Used in many projects:

ARM-based Chromebooks
Amazon Kindle
SpaceX

16 / 40

Preparation

The base demo project has been built and is still available.

Including Bitstream
Including FSBL
Including User application

Install buildroot into <BUILDROOT>
git clone https://github.com/buildroot/buildroot

17 / 40

Simple Linux with Init Ramdisk

Test your setup

Linux without FPGA Bitstream

Buildroot does not have a default configuration for the Zybo board

Adapt the one from Zedboard
Can be found in zybo-buildroot-simple

Build commands:

1. cd <BUILDROOT>
2. make BR2_EXTERNAL=../zybo-buildroot-simple zynq_zybo_defconfig

3. make

BR2_EXTERNAL: separate Buildroot from board-specific customizations

18 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary

zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)

Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv.txt: U-Boot environment file

uImage: Kernel image with U-Boot wrapper

image: generic kernel binary
zImage: compressed kernel image (self-extracting)
Wrapper = 64 byte header before zImage (version, loading position, size, ...)

rootfs.cpio.uboot: initial Linux root file system

zynq-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images

19 / 40

Hints and (possible) errors

You have PERL_MM_OPT defined because Perl local::lib is installed
on your system. Please unset this variable
before starting Buildroot, otherwise the
compilation of Perl related packages will fail

Solution: unset PERL_MM_OPT

You might encounter problems when using gcc 10. If so, either downgrade your compiler
(to e.g. 9.4.0 or 9.3.0, or use a newer version (we use 11.4.0).

Install libssl-dev

20 / 40

Simple Linux with Init Ramdisk

Test your setup:

Make sure SD card is formatted correctly

First partition: FAT32, around 50 MB
Second partition: ext4 or other, used as root file
system and data storage

Copy to SD card:

boot.bin

rootfs.cpio.uboot
u-boot.img

uImage

uEnv.txt

zynq-zybo-z7.dtb

21 / 40

Simple Linux with Init Ramdisk

Test your setup:

Make sure SD card is formatted correctly

First partition: FAT32, around 50 MB
Second partition: ext4 or other, used as root file
system and data storage

Copy to SD card:

boot.bin

rootfs.cpio.uboot
u-boot.img

uImage

uEnv.txt

zynq-zybo-z7.dtb

21 / 40

Part 2c
Linux Device Trees

The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.

Bootloader (U-Boot) loads a single binary: the kernel image

Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board

22 / 40

The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.

Bootloader (U-Boot) loads a single binary: the kernel image

Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board

22 / 40

The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.

Bootloader (U-Boot) loads a single binary: the kernel image

Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board

22 / 40

The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.

Bootloader (U-Boot) loads a single binary: the kernel image

Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board

22 / 40

The Device Tree

Booting with a device tree

Kernel is kernel and hardware config is hardware config

Device tree blob: separate binary containing the hardware description

Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

Decouples the hardware description from the kernel image

23 / 40

The Device Tree

Booting with a device tree

Kernel is kernel and hardware config is hardware config

Device tree blob: separate binary containing the hardware description

Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

Decouples the hardware description from the kernel image

23 / 40

The Device Tree

Booting with a device tree

Kernel is kernel and hardware config is hardware config

Device tree blob: separate binary containing the hardware description

Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

Decouples the hardware description from the kernel image

23 / 40

The Device Tree

Booting with a device tree

Kernel is kernel and hardware config is hardware config

Device tree blob: separate binary containing the hardware description

Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

Decouples the hardware description from the kernel image

23 / 40

The Device Tree

Device tree: tree data structure with nodes that describe physical devices in
system

Formats:

1. Text file (.dts): source
2. Binary blob (.dtb): loaded by bootloader
3. File system in a running Linux: /proc/device-tree, node = directory

Example: https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/
boot/dts/xilinx/zynqmp.dtsi

More information: http://xillybus.com/tutorials/device-tree-zynq-1

24 / 40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

The Device Tree

Device tree: tree data structure with nodes that describe physical devices in
system

Formats:

1. Text file (.dts): source
2. Binary blob (.dtb): loaded by bootloader
3. File system in a running Linux: /proc/device-tree, node = directory

Example: https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/
boot/dts/xilinx/zynqmp.dtsi

More information: http://xillybus.com/tutorials/device-tree-zynq-1

24 / 40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

The Device Tree

Device tree: tree data structure with nodes that describe physical devices in
system

Formats:

1. Text file (.dts): source
2. Binary blob (.dtb): loaded by bootloader
3. File system in a running Linux: /proc/device-tree, node = directory

Example: https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/
boot/dts/xilinx/zynqmp.dtsi

More information: http://xillybus.com/tutorials/device-tree-zynq-1

24 / 40

https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
https://github.com/Xilinx/linux-xlnx/blob/master/arch/arm64/boot/dts/xilinx/zynqmp.dtsi
http://xillybus.com/tutorials/device-tree-zynq-1

Device Tree Structure

Device tree for Linux on Zynq mostly consists of:

a part describing the ARM CPUs
a part describing the peripherals

cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

Peripherals: LEDs, Switches, ...

compatible string: link between hardware and driver

Device drivers contain same string in their source code
Allows to match hardware and driver

25 / 40

Device Tree Structure

Device tree for Linux on Zynq mostly consists of:

a part describing the ARM CPUs
a part describing the peripherals

cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

Peripherals: LEDs, Switches, ...

compatible string: link between hardware and driver

Device drivers contain same string in their source code
Allows to match hardware and driver

25 / 40

Device Tree Structure

Device tree for Linux on Zynq mostly consists of:

a part describing the ARM CPUs
a part describing the peripherals

cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

Peripherals: LEDs, Switches, ...

compatible string: link between hardware and driver

Device drivers contain same string in their source code
Allows to match hardware and driver

25 / 40

Device Tree Structure

Device tree for Linux on Zynq mostly consists of:

a part describing the ARM CPUs
a part describing the peripherals

cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

Peripherals: LEDs, Switches, ...

compatible string: link between hardware and driver

Device drivers contain same string in their source code
Allows to match hardware and driver

25 / 40

Device tree generation

Creating device tree manually is very cumbersome.

Therefore: Xilinx Device Tree Generator

Install the DT Generator (in SDK):

Clone https://github.com/Xilinx/device-tree-xlnx

Vitis - Software Repositories - New Local Repository ...

Use it:

Xilinx - Generate Device Tree
Specify .xsa file and output directory

The resulting dts and dtsi files should be used to replace the ones in
<BUILDROOT>/../zybo-buildroot/board/zynq_zybo/DTS

26 / 40

https://github.com/Xilinx/device-tree-xlnx

Part 2d
Linux Device Drivers

Kernel Modules

Extend the kernel’s functionality during runtime

Can be loaded during runtime on demand
No need to reboot the system
Without kernel modules: include functionality into the kernel image before
building

Most famous example: device drivers

27 / 40

Kernel Modules

Extend the kernel’s functionality during runtime

Can be loaded during runtime on demand

No need to reboot the system
Without kernel modules: include functionality into the kernel image before
building

Most famous example: device drivers

27 / 40

Kernel Modules

Extend the kernel’s functionality during runtime

Can be loaded during runtime on demand
No need to reboot the system

Without kernel modules: include functionality into the kernel image before
building

Most famous example: device drivers

27 / 40

Kernel Modules

Extend the kernel’s functionality during runtime

Can be loaded during runtime on demand
No need to reboot the system
Without kernel modules: include functionality into the kernel image before
building

Most famous example: device drivers

27 / 40

Kernel Modules

Extend the kernel’s functionality during runtime

Can be loaded during runtime on demand
No need to reboot the system
Without kernel modules: include functionality into the kernel image before
building

Most famous example: device drivers

27 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)

kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies

Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module

modprobe -r or rmmod to remove kernel module

28 / 40

Kernel Modules

See what modules are already loaded: lsmod or cat /proc/modules

Handling kernel modules

Using kmod (kernel module daemon)
kmod runs modprobe to load module and check dependencies
Example: modprobe test123 to load kernel module test123

In the background: insmod to insert kernel module
modprobe -r or rmmod to remove kernel module

28 / 40

Simple Example

See https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip
hello_sip.c:

#include <linux/module.h>
#include <linux/kernel.h>

static int __init sip_init(void)
{

printk(KERN_INFO "Hello␣SIP␣students !\n");
return 0;

}

static void __exit sip_cleanup(void)
{

printk(KERN_INFO "Goodbye␣SIP␣students !\n");
}
module_init(sip_init);
module_exit(sip_cleanup);

29 / 40

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip

Simple Example

Makefile:

obj -m += hello_sip.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

30 / 40

Simple Example

Build: make

Infos: modinfo hello_sip.ko

Load: insmod ./hello_sip.ko

Kernel log: tail /var/log/kern.log or dmesg -T

Remove: rmmod hello_sip

31 / 40

Advanced Example

/proc: one subdirectory for each process

We use it to access internal kernel structures in general.

See
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_proc

32 / 40

https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_proc

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver
Userspace program can use /dev/media0 without knowing about which SD
card or driver is used
Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver
Userspace program can use /dev/media0 without knowing about which SD
card or driver is used
Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver
Userspace program can use /dev/media0 without knowing about which SD
card or driver is used
Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver

Userspace program can use /dev/media0 without knowing about which SD
card or driver is used
Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver
Userspace program can use /dev/media0 without knowing about which SD
card or driver is used

Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Device drivers

Allow the kernel to access hardware

Convenient if hardware = file in /dev/ or /proc

Device driver handels communication with hardware

Example: /dev/media0 is connected to SD card driver
Userspace program can use /dev/media0 without knowing about which SD
card or driver is used
Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality

33 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device

Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility

Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE

platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:

proc_ops: struct which defines when reading/writing/opening/closing/... the
device
Functions for open/close/read/write as needed

Standard kernel module:

__init and __exit functions registered with module_init and module_exit

Driver specific:
of_device_id: compatibility
Inserted into the device table with MODULE_DEVICE_TABLE
platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver

34 / 40

Adding a device driver for the Zybo board with Buildroot

1. Create zybo-buildroot/package/<DRIVER_NAME> and put the following files
there:

2. Config.in: Info for the buildroot menu

3. Kbuild, <DRIVER_NAME>.mk: Makefile

4. <DRIVER_NAME>.c: device driver source

5. Enable kernel module build for buildroot by selecting (= [*]):
make menuconfig - External options - <DRIVER_NAME>

35 / 40

Putting it all together

Linux with Root File System and FPGA Bitstream

Create device tree as shown above

Copy all the dts and dtsi files to
<BUILDROOT>/../zybo-buildroot/board/zynq_zybo/DTS

cd <BUILDROOT>

make BR2_EXTERNAL=../zybo-buildroot zynq_zybo_defconfig (takes about
30 minutes)

36 / 40

Linux with Root File System and FPGA Bitstream

Configurations can be made:

buildroot: make menuconfig

u-boot: make uboot-menuconfig

linux: make linux-menuconfig

busybox: make busybox-menuconfig

uclibc: make uclibc-menuconfig

Run make

37 / 40

Linux with Root File System and FPGA Bitstream

Copy to first partition of SD card:

<BUILDROOT>/output/images/boot.bin

<BUILDROOT>/output/images/u-boot.img

<BUILDROOT>/output/images/uImage

<BUILDROOT>/output/images/system.dtb

<BUILDROOT>/output/images/uEnv.txt

The bitstream file: system_wrapper.bit

Create the root file system on the second partition:

sudo tar -C <MOUNTPOINT> -xf <BUILDROOT>/output/images/rootfs.tar

38 / 40

References I

[1] Thomas Petazzoni. Buildroot: a deep dive into the core.
https://events.static.linuxfound.org/sites/events/files/slides/
petazzoni-dive-into-buildroot-core.pdf. Online; accessed 13 October 2020.

[2] Nathan Willis. Deciding between Buildroot and Yocto.
https://lwn.net/Articles/682540/. Online; accessed 13 October 2020.

[3] Ori Idan Helicon technologies. Linux Bootloaders for Embedded systems and PCs.
https://www.cs.tau.ac.il/telux/lin-club_files/linux-boot/slide0000.htm.
Online; accessed 13 October 2020.

[4] Thomas Petazzoni. Device Tree for Dummies.
https://events.static.linuxfound.org/sites/events/files/slides/
petazzoni-device-tree-dummies.pdf. Online; accessed 13 October 2020.

39 / 40

https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-dive-into-buildroot-core.pdf
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-dive-into-buildroot-core.pdf
https://lwn.net/Articles/682540/
https://www.cs.tau.ac.il/telux/lin-club_files/linux-boot/slide0000.htm
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf

References II

[5] Xillybus Ltd. A Tutorial on the Device Tree (Zynq).
http://xillybus.com/tutorials/device-tree-zynq-1. Online; accessed 13
October 2020.

[6] Peter Jay Salzman. The Linux Kernel Module Programming Guide.
https://tldp.org/LDP/lkmpg/2.6/html/index.html. Online; accessed 13 October
2020.

40 / 40

http://xillybus.com/tutorials/device-tree-zynq-1
https://tldp.org/LDP/lkmpg/2.6/html/index.html

	Part 1
	
	Part 2
	
	Part 2a
	
	Part 2b
	
	Part 2c
	
	Part 2d
	
	Putting it all together
	

