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Part 1
Creating a Custom IP core



Overview
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Extend the existing HW design by our individual IP core
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IP cores

IP = Intellectual Property

= Reusable logic component with a defined interface and behavior
= Comparable to usinga library in C

= Examples:

m  Peripheral controllers like Ethernet, HDMI, VGA, USB, ...
= Crypto cores

= Debug cores
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Creating a new IP core in Vivado

1. Tools - Create and Package New IP

2. Create a new AXI4 peripheral
3. Enter name of your choice

4. Nextsteps: EditIP

5.  Finish

6. IP editor will show 2 files:

m  <IP_core_name>_v1_0_SO00_AXI.v

m  <JP_core_name>_v1_0.v
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Editing the IP core

<IP_core_name>_v1_0_SO00_AXI.v

= Define input ports for user inputs

= Define output ports for output to user

= Specify custom IP core logic

= TODO: Adapt ports and add logic
<IP_core_name>_v1_0.v

= AXI wrapper of our IP core

m  |nstantiates <IP_core_name>_v1_0_SO00_AXI.v

= TODO: Adapt ports and instantiation



Package and integrate the IP core

=

Select Package IP and choose Merge Changes where necessary
2. Finish packaging with Re-Package IP and close the project

3. Open the block design and select Add IP to add our <IP_core_name>
4. Run connection automation
5. Foreach 10 port: Create Port...

6. Validate Design

7. Rightclick on the block design in Project Manager - Create HDL Wrapper

8. Adapt Constraints file if necessary

9. Generate bitstream
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Adding SW

1. InVivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

40



Adding SW

1. InVivado: observe AXI Base Address in the Address Editor
2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
*((int*)0x43c20000) = Ox1;

//Read
int value = *((int*)0x43c20000);

40



Adding SW

1. InVivado: observe AXI Base Address in the Address Editor

2. Open Vitis SDK as shown before

3. Use observed address to communicate with HW

//Write
*((int*)0x43c20000) = Ox1;

//Read
int value = *((int*)0x43c20000);

— not very comfortable!

40



Part 2
Building, Deploying, and Running Linux



Overview

What we want?
Boot Linux and run a C program
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Overview

What we want?
Boot Linux and run a C program

What we have?
A Zybo FPGA board, a hardware design, software, a Linux OS

= How do we get there?

1
2
3.
4

Try Buildroot setup by running simple Linux with Init Ramdisk
Build a device tree for our board
Write a device driver

Use Buildroot to build Linux with correct device tree file and device driver
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Last time...

executes““:. 5. Linux 0S
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Today

?
executes“"-._ -
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Part 2a
Building Linux



Buildroot

®  Pre-build Linux images might not be suitable.
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Buildroot

Pre-build Linux images might not be suitable.

Buildroot: automate build process for a specific
platform

Based on makefiles

Complicated, but much less complicated than building
the image without it

GUI based on curses

Many options to configure (packages, platforms, ...)
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The Buildroot tool directory

= Makefile: top-level "master” Makefile
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The Buildroot tool directory

Makefile: top-level "master” Makefile

®  Config.in: general configurations

= configs, board: board configuration files

m  arch: contains config files for supported architectures
®  system/skeleton: rootfs template

= linux: the linux kernel

®  package: userspace packages, e.g. Python, git, ...

= fs: filesystem images

®m  boot: bootloader packages

®  docs: buildroot documentation

11/40



The Buildroot output directory

= After the build process finished, build artefacts are stored in output
= Contains a lot of background information
® output/images

= Kernelimage,
m  Bootloaderimage,
m  Root file system image, ...
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Yocto

= Buildroot: small, simple, gives quick results YO‘ | O °

PROJECT

DEV DAY VIRTUAL
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Yocto

Buildroot: small, simple, gives quick results YO‘ | O °

Yocto: needs more build time, requires more disk space, PROJECT
is more complex DEV DAY VIRTUAL

Main advantage: more boards supported, more options
to configure packages

Both serve the same purpose

If you’re interested:
https://extgit.iaik.tugraz.at/sip/zybo_base_
design/-/blob/master/README.yocto.md
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Part 2b
Booting Linux



Bootloader

m  Task: initialize everything such that OS can be run
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Bootloader

Task: initialize everything such that OS can be run

= Highly processor and board specific

= Minimum peripheral initialization if needed (wake-on-lan, ...)

= Decide on kernel image and load it

= FSBL: configure FPGA, prepare processor and basic peripherals, loads the SSBL

m  SSBL: U-boot or grub, more complex peripherals, load kernel

14/40



Bootloader

Buildroot supports many different bootloaders, for example:

= U-Boot
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Bootloader

Buildroot supports many different bootloaders, for example:
= U-Boot

= Barebox: derived from U-Boot (has more beautiful code)
= Grub: Windows support, bigger bootloader

= xloader, AT91bootstrap: for AVR microcontrollers
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U-boot

= Boot loader for embedded devices

U-Boot
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boards
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U-boot

Boot loader for embedded devices

Supports 13 architectures and about 300 different
boards

Used in many projects:

m  ARM-based Chromebooks

= Amazon Kindle

C U-Boot
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Preparation

®  The base demo project has been built and is still available.

®  Including Bitstream
= Including FSBL

m  Including User application

= Install buildroot into <BUILDROOT>
git clone https://github.com/buildroot/buildroot
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Simple Linux with Init Ramdisk

= Testyoursetup
= Linux without FPGA Bitstream
= Buildroot does not have a default configuration for the Zybo board

=  Adapt the one from Zedboard
= Canbefoundin zybo-buildroot-simple

= Build commands:

1. cd <BUILDROOT>
2. make BR2_EXTERNAL=../zybo-buildroot-simple zynq_zybo_defconfig

3. make

®=  BR2_EXTERNAL: separate Buildroot from board-specific customizations
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Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

m  uEnv.txt: U-Boot environment file
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Simple Linux with Init Ramdisk

Output files in <BUILDROOT>/output/images

uEnv. txt: U-Boot environment file
uImage: Kernel image with U-Boot wrapper

m  image: generic kernel binary
m  zImage: compressed kernel image (self-extracting)

= Wrapper = 64 byte header before ziImage (version, loading position, size, ...)
rootfs.cpio.uboot: initial Linux root file system
zynqg-zybo-z7.dtb: device tree blob

boot.bin, u-boot.img: (U-Boot) images
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Hints and (possible) errors

u You have PERL_MM_OPT defined because Perl local::1ib is installed
on your system. Please unset this variable
before starting Buildroot, otherwise the
compilation of Perl related packages will fail

Solution: unset PERL_MM_OPT

= You might encounter problems when using gcc 10. If so, either downgrade your compiler
(toe.g.9.4.00r9.3.0, 0r use a newer version (we use 11.4.0).

= |nstall libssl-dev
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Simple Linux with Init Ramdisk

Test your setup:
m  Make sure SD card is formatted correctly

m  First partition: FAT32, around 50 MB

m  Second partition: ext4 or other, used as root file
system and data storage
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Simple Linux with Init Ramdisk

Test your setup:

Terminal Help

m  Make sure SD card is formatted correctly LI D G

buildroot login: root

m  First partition: FAT32, around 50 MB

m  Second partition: ext4 or other, used as root file
system and data storage

= Copy to SD card:

®  boot.bin ®  ulmage
]
. uEnv.txt
rootfs.cpio.uboot

®  u-boot.img ®  zynq-zybo-z7.dtb
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Part 2¢
Linux Device Trees



The Device Tree

Booting without a device tree

= Kernel image contains the whole hardware configuration.
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The Device Tree

Booting without a device tree

Kernel image contains the whole hardware configuration.
Bootloader (U-Boot) loads a single binary: the kernel image
Kernel image runs as a bare-metal application on the CPU.

Disadvantage: need to recompile kernel for every specific chip for every specific
board
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The Device Tree

Booting with a device tree

= Kernel is kernel and hardware config is hardware config
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The Device Tree

Booting with a device tree

= Kernel is kernel and hardware config is hardware config

= Device tree blob: separate binary containing the hardware description
= Bootloader (U-Boot) loads two binaries: the kernel image and the DTB

= Decouples the hardware description from the kernel image
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The Device Tree

= Device tree: tree data structure with nodes that describe physical devices in
system

24 /40
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3. File systemin arunning Linux: /proc/device-tree, node = directory
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The Device Tree

= Device tree: tree data structure with nodes that describe physical devices in
system

= Formats:

1. Textfile (.dts): source
2. Binary blob (.dtb): loaded by bootloader

3. File systemin arunning Linux: /proc/device-tree, node = directory

m  Example: https://github.com/Xilinx/linux-x1lnx/blob/master/arch/armé4/
boot/dts/xilinx/zynqmp.dtsi

m  More information: http://xillybus.com/tutorials/device-tree-zynq-1
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Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:
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Device Tree Structure

= Device tree for Linux on Zynq mostly consists of:

m 3 partdescribing the ARM CPUs

m  apartdescribing the peripherals

m  cpus: describes the two ARM cores (which clock is used, frequency CPU supports
in a certain voltage domain)

m  Peripherals: LEDs, Switches, ...
m  compatible string: link between hardware and driver

= Device drivers contain same string in their source code

= Allows to match hardware and driver
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Device tree generation

= Creating device tree manually is very cumbersome.
m  Therefore: Xilinx Device Tree Generator
® Install the DT Generator (in SDK):

m  Clonehttps://github.com/Xilinx/device-tree-x1lnx

m  Vitis - Software Repositories - New Local Repository ...
= Useit:

m  Xilinx - Generate Device Tree
m  Specify . xsa file and output directory

®m  Theresulting dts and dtsi files should be used to replace the ones in
<BUILDROOT>/../zybo-buildroot/board/zynq_zybo/DTS
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Part 2d
Linux Device Drivers



Kernel Modules
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Kernel Modules

= Extend the kernel’s functionality during runtime

m  Can be loaded during runtime on demand
= No need to reboot the system

= Without kernel modules: include functionality into the kernel image before
building

= Most famous example: device drivers
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Kernel Modules

= See what modules are already loaded: 1smod or cat /proc/modules

= Handling kernel modules

Using kmod (kernel module daemon)

kmod runs modprobe to load module and check dependencies
Example: modprobe test123to load kernel module test123
In the background: insmod to insert kernel module

modprobe -r or rmmod to remove kernel module

28/40



Simple Example

Seehttps://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip
hello_sip.c:

#include <linux/module.h>
#include <linux/kernel.h>

static int __init sip_init(void)

{
printk (KERN_INFO "Hello_ SIP,students!\n");
return 0;

}
static void __exit sip_cleanup(void)
{
printk (KERN_INFO "Goodbye_ SIP, students!\n");
}

module_init (sip_init);
module_exit (sip_cleanup);
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https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_sip

Simple Example

Makefile:

obj-m += hello_sip.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
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Simple Example

=  Build: make

®  Infos: modinfo hello_sip.ko

= Load: insmod ./hello_sip.ko

= Kernellog: tail /var/log/kern.logordmesg -T

= Remove: rmmod hello_sip
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Advanced Example

= /proc: one subdirectory for each process
= Weuseitto access internal kernel structures in general.

= See
https://extgit.iaik.tugraz.at/sip/tutorials/-/tree/master/hello_proc
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Device drivers

= Allow the kernel to access hardware
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Device drivers

= Allow the kernel to access hardware
= Convenientif hardware = file in /dev/ or /proc
= Device driver handels communication with hardware

m  Example: /dev/media0 is connected to SD card driver

m  Userspace program can use /dev/media0 without knowing about which SD
card or driver is used

m  Writing, e.g. echo "test"> /dev/media0, reading, opening, closing, ... has
specific functionality
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Building blocks of device drivers

Module documentation: MODULE_AUTHOR, MODULE_LICENSE,
MODULE_DESCRIPTION

For usage with /proc:
m  proc_ops: struct which defines when reading/writing/opening/closing/... the

device
m  Functions for open/close/read/write as needed

Standard kernel module:
m  __initand __exit functions registered with module_init and module_exit

Driver specific:

m  of_device_id: compatibility

®  Inserted into the device table with MODULE_DEVICE_TABLE

m  platform_driver: specifies __init and __exit for driver, registered with
module_platform_driver
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Adding a device driver for the Zybo board with Buildroot

1. Create zybo-buildroot/package/<DRIVER_NAME> and put the following files
there:

2. Config.in: Info for the buildroot menu
3. Kbuild, <DRIVER_NAME>.mk: Makefile
4. <DRIVER_NAME>.c: device driver source

5. Enable kernel module build for buildroot by selecting (= [*1):
make menuconfig - External options- <DRIVER\_NAME>
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Putting it all together



Linux with Root File System and FPGA Bitstream

= Create device tree as shown above

= Copy all the dts and dtsi files to
<BUILDROQT>/../zybo-buildroot/board/zynq_zybo/DTS

= cd <BUILDROOT>

= make BR2_EXTERNAL=../zybo-buildroot zynq_zybo_defconfig (takesabout
30 minutes)
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Linux with Root File System and FPGA Bitstream

= Configurations can be made:

= buildroot: make menuconfig

®  u-boot: make uboot-menuconfig

= linux: make linux-menuconfig

m  busybox: make busybox-menuconfig

m  uclibc: make uclibc-menuconfig

= Runmake
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Linux with Root File System and FPGA Bitstream

= Copy to first partition of SD card:

<BUILDROOT>/output/images/boot.bin
<BUILDROQOT>/output/images/u-boot.img
<BUILDROOT>/output/images/ulmage
<BUILDROOT>/output/images/system.dtb
<BUILDROOT>/output/images/uEnv.txt

The bitstream file: system_wrapper.bit

m  Create the root file system on the second partition:

®  sudo tar -C <MOUNTPOINT> -xf <BUILDROOT>/output/images/rootfs.tar
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