FPGAs and Neural Networks

Clemens Lechner
January 24, 2024

Motivation and Goals

Basics of neural networks (NNs) and important factors for hardware design

Why traditional computer architectures struggle with NNs

An overview of state of the art NN accelerators

An example NN accelerator architecture on an FPGA

A short outlook on future technologies

Introduction to Neural Networks

Aritificial Neuron

P wegns s Acheter
e Fundamental building block of neural
networks [1]
e Learnable weights
e Usually nonlinear activation function o
e Resources used:

e Memory: weights (and inputs)
e Computational: Multiply-Accumulate
(MAC) and activation

Figure 1: Artificial Neuron

Neural Network

Input Hidden Output
Layer Layer Layer

e Network of Artificial Neurons [1]

e Architecture varies depending on
application and required model

capacity

Figure 2: Neural Network

Training: Backpropagation and Gradient Descent

e An appropriate loss function is added after the output layer [1]

e Loss is evaluated for training samples consisting of inputs (x) and targets (t)

Gradient of loss is computed and propagated back through the network
(Backpropagation)

Weights are “nudged” proportionally to their negative gradients, minimizing loss
(Gradient Descend)

Training vs. Inference

Can be viewed as two separate problems

Training:
e Usually only performed during development

e Resource intensive

Inference:

e Deploy a pretrained model
e Less resources needed

Two different hardware platforms could be considered (e.g.: train on server deploy
on edge/embedded)

Fields of Application

Selection of fields of application: [2]

e Speech recognition
e Computer vision

e Pattern recognition

Natural language processing

Finance

Neural Networks on Hardware
Platforms

Von Neumann Architecture

Central Processing Unit

e Basis for traditional computer
architectures
LD =E
e Memory Access Bottleneck [3]
e Traditionally no parallelization [3]
e Modern CPUs still have low degree of

parallelization

Figure 3: Von Neumann Architecture [4]

(GP)GPU: Solving Parallelization

e GPUs originally designed for graphics

workloads (high parallelization and Control
memory bandwidth) [5]

(e

e GPGPU: general purpose computing
on GPUs [5 S oww o

e APIs: CUDA (NVIDIA), OpenCL [6] cPU GPU

e Now: dedicated “Al GPUs" like

NVIDIA H100 Tensor Core GPU [7] Figure 4: CPU vs GPU architecture [5]

Dedicated Neural Network Accelerators

Try to solve two problems specifically:

Local Unified Buffer for Matrix Multiply Unit
L. . o Activations (256x256x8b=64K MAC)
e Parallelization of matrix multiplication (96Kx256x8b = 24 MiB) 24%

29% of chip

e Von Neumann memory bottleneck

Usually designed as coprocessors either as D Host Accumulators 2
B Interf. 2% | | (4Kx256x32b =4 MiB) 6% | R
e standalone ASIC (i.e.: Google TPU M : e M
port || ‘ Activation Pipeline 6% |~ | port
[8]) or as ddr3 : * | ddrs
g, - 3%

Interface 3% | o | Misc. /O 1% |

e IP in SoC or FPGA bl

Figure 5: Floor plan of Google Tensor
Processing Unit (TPU) [8]
10

NN Accelerators on FPGAs

Currently neural network architectures are subject to fast-paced improvements. Thus,
the flexibility of FPGAs could be leveraged for NN Accelerators:

e Can be tailored to a specific NN architecture

e Could complement software via runtime partial reconfiguration
e Can leverage High Level Sythesis for rapid development

e Rollout of Over-The-Air (OTA) updates

11

Example Architecture: ZyngNet

ZynqNet Overview

SCS Zyngbox (Zynq XCZ-7045) [16BDDR3-1066 @26i) | (512M8: Dntm (16b)) (256MB n:mueb)]
1

. pe - H Processing System Programmable Logic

C Image C/aSSI flca tion usin ga [} FlashController] [DRAM Controller | System Gates, g
5] DSP, Block RAM 3
convolutional neural network M*_J‘ AT | | s

* 8

(CNN) architecture based on < mm - z
= -
SqueezeNet [6 e W RREEESRERERREaer] A

a 6] - | s
e Accelerator for Inference on Uss _,_ [Aol |

Zyng-7000 Series SoC a1 B — g '

e Design for high throughput
Figure 6: Zyngbox Embedded Platform with ZyngNet

Accelerator [6]

and real-time classification

12

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops
(high parallelism through loop

unrolling)

Figure 7: Convolution Operation [9] =

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops
(high parallelism through loop

unrolling)

Figure 7: Convolution Operation [9] =

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops
(high parallelism through loop

unrolling)

Figure 7: Convolution Operation [9] =

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops

(high parallelism through loop

unrolling) Figure 7: Convolution Operation [9] .

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops

(high parallelism through loop

unrolling) Figure 7: Convolution Operation [9] .

Convolutional Neural Networks (CNNs)

e NN architecture particularly suited for
operations on image data (6]

e Several learnable convolutional filter
kernels

e Exploit locality of information in
images

e Weight sharing through convolution
operation

e Can be computed using nested loops

(high parallelism through loop

unrolling) Figure 7: Convolution Operation [9] .

o OO

Figure 8: High-Level Visualization of the ZynqNet Topology. Red dots symbolize
Convolutional Layers with ReLu Activations, yellow dots Concatenations or the final Average
Pooling. [6]

Figure 9: Sample Images from the ImageNet Dataset (white shark, banana, volcano, fire
engine, pomeranian, space shuttle, toilet paper) [6] 14

ZyngNet Hardware Architecture

Implemented as AXI-Peripheral [6]
e Npg = 16 parallel MAC units for filter
dot products
e Uses single-precision floating-point
arithmetic

e Caches for

Image (ICache)

Outputs (OCache)

Weights (WCache)

Global Pooling (GPoolCache)

e Implemented with ideal caching
strategy

{AXIbus - — 7
—>{ Memory
| Controller

[x[x

ICache x
pixel [+ +]
double-buffer [Ltl+1+ 4]
(N

GPool
@—‘

¥

RelU

¥

(? (? ® ®
OCache 0 | [OCache 1 [OCacnez OCache 3
T
bias

&
N PE-2 N _PE-1

i
(from WCache)

Figure 10: Block Diagram of ZynqNet accelerator [6]

15

Results (1)

e Maximum operating frequency:
fmax = 200 MHz [6]

e Throughput: 1.95s per frame vs 45s
on ARM CPU at f = 100 MHz
e Stated improvements:

e Configuring the FPGA clock at
fmax = 200 MHz

e Using 16-bit fixed-point instead of
single-precision floating-point

e Resolving a pipeline flushing issue in
the High-Level-Synthesis (slow-down
factor of 6.2x)

Table 1: Resource Requirements and FPGA
Utilization of ZyngNet when synthesized for
Zynq XC-7Z045. [6]

resource Block RAM DSP Slices FF LUT

used 996 739 137k 154k
available 1090 900 437k 218k
utilization 91% 82% 31% 70%

16

Results (2)

Table 2: Comparison of ZyngNet CNN to CNN Architectures from prior work [6]

#conv. #MACCs #params #activations ImageNet

layers [millions] [millions] [millions] top-5 error
ZyngNet CNN 18 530 2.5 8.8 15.4%
AlexNet 5 1140 62.4 2.4 19.7%
Network-in-Network 12 1100 7.6 4.0 ~19.0%
VGG-16 16 15470 138.3 29.0 8.1%
GoogLeNet 22 1600 7.0 10.4 9.2%
ResNet-50 50 3870 25.6 46.9 7.0%
Inception v3 48 5710 23.8 32.6 5.6%
Inception-ResNet-v2 96 9210 31.6 74.5 4.9%
SqueezeNet 18 860 1.2 12.7 19.7%

SqueezeNet v1.1 18 390 1.2 7.8 19.7%

17

Neural Network Quantization

Reducing weight and activation precision for inference. [10]

Enables small, low-latency and energy efficient neural network solutions.
e Two main classes of algorithms:

e Post-Training-Quantization (PTQ)
e Quantization-Aware-Training (QAT)

Example: Moving from 32 to 8 bits:

e Memory overhead decreases by factor of 4.
e Computational cost for matrix multiplications decreases quadratically by factor of 16.

Moving from Floating-Point to Fixed-Point eliminates need for floating-point logic

18

Quantization Grids Comparison

Symmetric signed Symmetric unsigned
5 Xint§ S Xuint8
-128 127 255
Lovilvroliog o] ol vl el
0 L.'; max 0 L!,J max
Asymmetric
S(XuintS - Z)
0 255
Lo loa bbb
min = —sz ‘_'g_’ 0 max

Figure 11: A visual explanation of the different uniform quantization grids for a bit width of 8.

[10]
19

Post-Training-Quantization (PTQ)

Symmetric MSE Range MSE Range
Weights Setting Setting

AdaRound

Weight Activation
Range Range
Setting Setting
Bias
Correction

Pre-trained
FP Model

Add
Quantizers

Asymmetric
Activations

Figure 12: Standard PTQ pipeline according to [10]. CLE stands for Cross-layer-equalization.

20

PTQ Performance

Table 3: Performance (average over 5 runs) of PTQ pipeline for various models and tasks.
Higher is better in all cases. [10]

Per-tensor Per-channel
Models FP32 | WS8A8 W4A8 | WSBA8 W4AS8
ResNetl8 69.68 69.60 68.62 69.56 68.91
ResNet50 76.07 75.87 75.15 75.88 75.43

MobileNetV?2 71.72 | 7099 69.21 71.16 69.79
InceptionV3 7740 | 77.68 7648 | 7771 76.82
EfficientNet lite | 75.42 | 75.25 71.24 | 75.39 74.01
DeeplabV3 7294 | 7244 70.80 | 7227 71.67
EfficientDet-D1 | 40.08 | 38.29 0.31 38.67 35.08
BERT-base’ 83.06 | 8243 81.76 | 82.77 82.02

21

Quantization-Aware-Training (QAT)

-5 » Backward

—Y
[I

Activation

Symmetric MSE Range
Weights Setting
Learnable

v
SREIERES g add R Quantization

Asymmetric
Activations

Figure 14: Standard QAT pipeline according to [10].
CLE stands for Croll-layer-equalization.

FP model i imati
Quantizers Estimation Params

Input

Figure 13: Forward and backward

computation graph for

Quantization-Aware-Training [10]
22

QAT Performance

Table 4: Performance (average over 3 runs) of QAT pipeline for various models and tasks.
Higher is better in all cases. [10]

Per-tensor Per-channel
Models FP32 | W8S8A8 W4A8 W4A4 | WSA8 W4A8 W4A4
ResNetl8 69.68 | 7038 69.76 68.32 | 7043 70.01 08.83
ResNet50 76.07 | 76.21 75.89 75.10 | 76.58 76.52 75.53

InceptionV3 7740 | 7833 77.84 7749 | 7845 78.12 77.74
MobileNetV2 7172 | 7176 70.17 6643 | 71.82 70.48 66.89
EfficientNet lite | 7542 | 75.17 7155 7022 | 7475 7392 7155
DeeplabV3 7294 | 7399 7090 66.78 | 72.87 73.01 68.90
EfficientDet-D1 | 40.08 | 38.94 3534 2470 | 3897 36.75 28.68
BERT-base 83.06 | 83.26 8264 7883 | 8244 8239 77.63

23

Outlook: Breaking the Memory
Bottleneck

In-Memory Computing (IMC)

Idea: Compute in situ instead of in separate
memory and compute units [11]
Problem: Low density of SRAM; difficulties
combining DRAM with logic
e Multiple new nonvolatile memory (NVM)
technologies are developed to overcome IMC's
integration issues.
e Analog or mixed approaches to solve common
operations are explored: e.g. matrix-vector
multiplication via Ohm’s and Kirchhoff's laws

in a memory array.

1010

10°
DRAM
— 3
£ 108 out
(= x w
® x
E x
= 107 * *
@
£ 10
* oM
105H ¢ RRAM NAND FLASH
% STT-MAAM
FeFET
104 T .3
10% 10" 10°

1/Cell size [nm?]

Figure 15: Performance
characteristics of various emerging
memory demonstrators. [11]

24

References i

(1]
2]

(3]

[4]

References

F. Pernkopf and C. Knoll, Computational intelligence (lecture notes), 2021.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad,
State-of-the-art in artificial neural network applications: A survey,, 2018. [Online|. Available:
https://www.cell.com/heliyon/pdf/S2405-8440(18)33206-7.pdf.

I. Arikpo, F. Ogban, and |. Eteng, Von neumann architecture and modern computers, Global
Journal of Mathematical Sciences, vol. 6, no. 2, pp. 97-103, 2007.

W. Commons, Von neumann architecture, (2013), [Online]. Available:

https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg.

23

https://www.cell.com/heliyon/pdf/S2405-8440(18)33206-7.pdf
https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg

References ii

(5]

[6]

[7]

(8]

[9]

P. Gupta, Cuda refresher: Reviewing the origins of gpu computing,, 2020. [Online]. Available:
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-
computing/.

D. Gschwend, Zyngnet: An fpga-accelerated embedded convolutional neural network, arXiv

preprint arXiv:2005.06892, 2020.
Nvidia h100 tensor core gpu datasheet, NVIDIA Corporation, 2023. [Online]. Available: https:

//resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet.

N. P. Jouppi, C. Young, N. Patil, et al., In-datacenter performance analysis of a tensor
processing unit, in Proceedings of the 44th annual international symposium on computer
architecture, 2017, pp. 1-12.

S. Saha, A comprehensive guide to convolutional neural networks,, 2018. [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-elib-way-3bd2b1164a53.

26

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

References iii

[10]

[11]

M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and T. Blankevoort, A
white paper on neural network quantization, arXiv preprint arXiv:2106.08295, 2021.

S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, Compute-in-memory chips for deep learning:
Recent trends and prospects, IEEE Circuits and Systems Magazine, vol. 21, no. 3, pp. 31-56,
2021. po1: 10.1109/MCAS.2021.3092533.

27

https://doi.org/10.1109/MCAS.2021.3092533

	Introduction to Neural Networks
	Neural Networks on Hardware Platforms
	Example Architecture: ZynqNet
	Outlook: Breaking the Memory Bottleneck
	References

